The Grainger Center for Electric Machinery and Electromechanics at the University of Illinois

P. Krein
Department of Electrical and Computer Engineering
Introduction

- The Grainger CEME began operation in 1999.
- Became permanent in 2003.
- Perhaps the nation’s largest endowed *program* in an electrical engineering specialty area.
- Research leverages the broader program in power and energy systems.
- Emphasis on very long term fundamental advances.
Motivation

- Electric machines consume nearly 2/3 of all global electricity.
- They are nearly universal in electricity production.
- Major growth in transportation, in small portable devices, in wind and wave generation, . . .
- Many designs are old, both in the sense of predating computer tools and modern manufacturing methods, and in the sense of not making use of power electronics.
Design

• Magnetic machines:
 – Force density is $J \times B$.
 – For steel machines, B is determined by saturation.
 – J is thermally limited – copper current density.

• Some fundamental aspects are clear:
 – Wound-rotor synchronous machines can reach both limits and have stator cooling access.
 – Induction machines can also reach both limits, but rotor cooling is more limited.
 – Permanent magnet machines generally have lower flux limits.
 – Reluctance machines do not decouple the effects, so the force density is lower.
Design

- Future design has four key attributes:
 - Fast, accurate electromagnetic design that can be used repeatedly.
 - Incorporation of thermal and mechanical analysis.
 - Materials and manufacturing as design objectives rather than constraints.
 - System-level designs: controls and loads.
- In combination, these give crucial results:
 - Unlikely that one type of machine is universal
 - Power electronics and sensors are fundamental.
- Important to recognize that innovations in machines are not necessarily in industrial applications.
CEME and Predecessor Innovations

- Plug-in hybrid electric vehicle, on-board charger: 1994.
Sample Innovations

- Ripple correlation control
 - Extracts information from converter ripple signals
 - Use this information to drive toward an optimum (lowest loss, highest power delivery, etc.)

- Fabrication of inductors for monolithic converters
 - Plastic deformation process yields inductors with much higher Q than spiral planar constructions

Ripple correlation near MPP for solar application
Emerging Topics

- Transportation electrification
 - Drive reliability
 - “Appropriate control” for low-performance loads
 - Delivering extreme peak torques
 - Extensions to off-road, rail, aircraft, and other transportation modes

- Wind energy conversion
 - Comprehensive mechanical and electrical optimization.
 - Support wide operating ranges.
 - Reliability analysis.

www.doe.gov
Advanced Power Semiconductors

- Compound materials emerging for power electronics applications.
- Silicon carbide is being commercialized.
- Gallium nitride has several advantages compared to SiC.
- Important in high temperature drive applications.
Materials

- Ferromagnetic materials for machines
 - Emerging Si steels with extreme silicon content
 - Single-crystal manufacturing
 - Nanostructured magnetic materials
- Heat transfer advances
 - Phase-change heat pipes
 - Immersion methods
 - Optimize total design
- Materials based on process objectives

Institute of Experimental Materials, Slovakia
Sample topic areas

- Analysis and control
- Design optimization
- Modeling and simulation

- Hybrid cars
- Electric ships
- High performance drives
- Efficiency optimization
Machine as Metamaterial

- Metamaterials are composites that achieve otherwise implausible properties.
- Example: induction machine rotor is a ferromagnetic and conductor composite intended to provide an otherwise unavailable combination of conductivity and permeability.
- The structure also achieves anisotropic conductivity.
Machine as Metamaterial

• Notice the implications for design:
 – Optimize material properties and geometry.
 – Then determine how to implement properties.

• Similar arguments for IPM and other machines.
High-Performance Converters

“Time-optimal” control

- “Digital switch” fast dc-dc converter control for µP loads.
- Efficiency enhancement for digital loads, data centers.
- Inverters that match the operating life of silicon PV panels.

Energy-based real-time digital control
Drive Control

- Low-sensitivity dynamic methods.
- Determine the impact of uncertainty.
- “Appropriate control.”
Collaborative Network

• The Grainger CEME leads a national collaborative network for machines research:
 – Berkeley
 – Georgia Tech
 – Oregon State
 – Ohio State
 – Purdue
 – Wisconsin
Collaboration on campus

- Electromagnetics (Computation)
- Control and Circuits (Low-power circuits, hybrid control)
- Computer Engineering, CS, and CSL (Smart Grid)
- Materials Science (Devices and solar energy)
- Chemical Engineering (Fuel cells and carbon reduction)
- New ECE building – the largest planned US net-zero-energy facility
Data Center Power

• Less than 50% of electric power into a modern data center is delivered to the integrated circuits that do the work.
• Efficiency is even lower when considered in terms of data processing per unit of energy.
• The relative losses increase closer to the circuit boards.
• Issues:
 – Chip-level power
 – Board-level power
 – Rack-level power
 – Building-level power
Opportunities

- Plug-in vehicle grid integration, market methods, and storage performance.
- "Reference designs" for machines.
- System-level analysis, design.

- Grid intelligence
- Motors with "power throttle" capability
- Power converter drive integration.
Smart Grid: Customer Choice

- The conventional grid decouples consumer choice and electricity supply.
- Several current, emerging, and future strategies to improve the situation:
 - Time-of-day price signals
 - Real-time control
 - Customer-based utility-interactive appliances
 - Intelligent real-time metering and monitoring
The Smart Grid

- General concept of extensive intelligence embedded in the electricity grid.
 - Two-way data exchange.
 - Load priority.
 - Distributed renewables.
- Methods to adjust and control capacity.
- Methods to give choices to the end user.

www.epri.com
ICSEG System Scope

- Wind
- Solar
- Firewalls
- PHEV/Storage

Smart Grid sandbox
- Flexible and modular
- Algorithms
- Computing
- Communication
- Control
- Trust

Main grid

communication
ICSEG Validation Approach

Smart Grid Properties

Smart Grid Technologies

Validation Technologies

Smart Grid Validation Facility