
AC 2012-4637: IDENTIFYING THE CORE CONCEPTUAL FRAMEWORK
OF DIGITAL LOGIC

Dr. Geoffrey L. Herman, University of Illinois, Urbana-Champaign

Geoffrey L. Herman earned his Ph.D. in Electrical and Computer Engineering from the University of
Illinois, Urbana-Champaign as a Mavis Future Faculty Fellow. He is currently a Postdoctoral Researcher
for the Illinois Foundry for Engineering Education. His research interests include conceptual change and
development in engineering students, promoting intrinsic motivation in the classroom, blended learning
(integrating online teaching tools into the classroom), and intelligent tutoring systems. He is a recipient
of the 2011 American Society for Engineering Education (ASEE) Educational Research and Methods
Division Apprentice Faculty Grant. He has been recognized with the Olesen Award for Excellence in
Undergraduate Teaching from the Department of Electrical and Computer Engineering and the Ernest A.
Reid Fellowship for engineering education. He has served as a graduate affiliate for the Center for Teach-
ing Excellence. He is currently the information chair for the ASEE Student Division and the immediate
past chair of the Graduate Engineering Education Consortium for Students.

Prof. Michael C. Loui, University of Illinois, Urbana-Champaign

Michael C. Loui is professor of electrical and computer engineering and University Distinguished Teacher-
Scholar at the University of Illinois, Urbana-Champaign. His interests include computational complexity
theory, professional ethics, and the scholarship of teaching and learning. He serves as Executive Editor of
College Teaching, and as a member of the editorial board of Accountability in Research. He is a Carnegie
Scholar and an IEEE Fellow. Loui was Associate Dean of the Graduate College at Illinois from 1996 to
2000. He directed the theory of computing program at the National Science Foundation from 1990 to
1991. He earned the Ph.D. at the Massachusetts Institute of Technology in 1980.

c©American Society for Engineering Education, 2012

P
age 25.712.1

Identifying the Core Conceptual Framework of Digital Logic

Abstract

As a relatively new field, computer engineering has yet to reach the maturity of more

established disciplines such as physics and chemistry. Consequently, instructors in computer

engineering still disagree about what is essential for students (both computer engineering

students and others) to learn. In an effort to provide a basis for this discussion, we propose that

engineering educators should identify a core conceptual framework for its introductory level

courses. We suggest one such core conceptual framework that is built around the three central

concepts and skills of state, fixed-length information encoding, and the ability to switch between

levels and types of abstractions.

1 Introduction

With the development of concept inventories and other conceptual assessment tools,

engineering educators have become increasingly aware of the importance of teaching students

about concepts and conceptual frameworks rather than rote skills or lists of facts1. Students who

possess a consistent core conceptual framework are better able to recall knowledge, apply

knowledge, and learn new knowledge, because the framework helps students synthesize their

knowledge into a manageable cognitive unit.

In the context of long-established disciplines such as physics and chemistry, instructors

commonly agree upon a core conceptual framework for the discipline (e.g., Newton’s three laws

for mechanics; and molecules, reactions, and conservation of mass for chemistry). However, in

younger, emerging disciplines such as computer engineering and computer science, there is no

settled core conceptual framework. Furthermore, we are unaware of any widely accepted,

rigorous method for creating such a framework; rather it seems that these conceptual frameworks

evolve and emerge slowly over time. Consequently instructors disagree about what concepts,

tools, and skills are essential for a student to learn in a first course in many computing topics

such as digital logic and computer organization.

In this conference presentation, we hope to begin a dialogue to establish a core

conceptual framework for digital logic courses that will move disciplinary thinking away from

P
age 25.712.2

individual topics to a more interconnected web of concepts that are built upon a few foundational

concepts. We present evidence from a Delphi poll of experienced digital logic instructors and

textbook authors to define the scope for a “typical” digital logic course and to propose the core

concepts of digital logic. Next, we use evidence from a series of studies on students’

misconceptions in digital logic to bolster our argument for the centrality of certain concepts. We

conclude by suggesting how this conceptual framework can affect both research and instruction.

We believe that establishing an accepted core conceptual framework can empower

instructors to make better informed decisions when choosing learning goals for their courses and

about what content to keep in their courses. Establishing a core conceptual framework can also

focus instruction and help students develop better conceptual knowledge in computer

engineering.

2 Background

Recently Goldman et al. conducted a Delphi study to identify a set of core important and

difficult concepts in three computing topics: programming fundamentals, discrete mathematics,

and digital logic2. A panel of 20 digital logic experts proposed 44 concepts and skills which they

considered to be central and core to a first course on digital logic and computer organization.

Through a series of three ratings negotiations, the panel rated each of these concepts and skills

on a scale of one to ten on difficulty (with 1 as least difficult and 10 as most difficult) and

importance (with 1 as least important and 10 as most important). The list of important and

difficult concepts has since been used to guide the development of concept inventories for these

three computing topics3.

In addition to these ratings, the Delphi process also revealed disagreements about the

importance or centrality of different concepts and skills2. For example, experts disagreed about

whether a digital logic course should be theoretically focused and ignore the physical constraints

of real circuits (issues such as active-high versus active-low) or whether it should be practically

focused and emphasize the use of design tools such as hardware description languages.

A quick perusal of digital logic textbooks also reveals the same disagreement about the

centrality of various topics in digital logic4-10. For example, some textbooks teach digital logic

P
age 25.712.3

within the bounds of a chosen hardware description language, and others ignore hardware

description languages entirely. Further review of these textbooks also reveals differing opinions

about the definition of key terms such as state and state transition11. Remarkably, there are also

no accepted IEEE standard definition for the terms in digital logic.

These disagreements are the mark of any young, but maturing discipline. We hope to

find the common threads and core concepts of digital logic to better frame these ongoing

discussions and provide a core conceptual framework.

3 A Fresh Analysis of the Digital Logic Delphi Study

In this section, we reanalyze the results of the digital logic Delphi study of Goldman et al.

in an attempt to identify the core conceptual framework of digital logic2. Unlike the original

intent of the Delphi study, we are not concerned about the difficulty of acquiring certain concepts

or skills but only about the importance of each concept or skill.

To begin our new analysis, we sorted the list of topics from the Delphi study and looked

for a convenient breaking point in the data (See Table 1). This process led us to identify two

potential breakpoints: a rating of 9 or greater or a rating of 8 or greater. We decided to use the

breakpoint of 8 or greater for our analysis, because this breakpoint included a set of topics that

provided for a range of concepts and skills to be included but still sufficiently narrowed the list

of important topics. This breakpoint also proved to be convenient as the first contentious skill

(Using CAD tools) falls at the bottom of the list.

Table 1: Top 15 most important concepts and skills from the digital logic Delphi study2

Concept/Skill Importance
1. State transitions: Understanding the difference between the current state and
the next state, and how the current state transits to the next state. 9.8
2. Converting verbal specifications to state diagrams/tables 9.8
3. Functionality of multiplexers, decoders and other MSI components:
Excludes building larger MSI components from smaller MSI components. 9.6
4. Converting verbal specifications to boolean expressions 9.5
5. Hierarchical design 9.5
6. Relating timing diagrams to state machines, circuits 9.4
7. Understanding how a sequential circuit corresponds to a state diagram:
Recognizing the equivalence of a sequential circuit and a state diagram. 8.9

P
age 25.712.4

8. Modular design: Building circuits as a compilation of smaller components. 8.9
9. Number representations: Understanding the relationship between
representation (pattern) and meaning (value). 8.6
10. Analyzing sequential circuit behavior 8.5
11. Converting algorithms to register-transfer statements and datapaths 8.5
12. Designing control for datapaths 8.5
13. Debugging, troubleshooting, and designing simulations: Debugging skills
with a focus on designing rigorous test inputs/simulations for circuits. 8.5
14. Binary arithmetic: Topics such as binary addition and subtraction, but not
optimized circuits (e.g., carry-lookahead). 8.4
15. Using CAD tools 8.4

We then looked for commonalities among the list of concepts and skills in an attempt to

identify underlying concepts that undergird this list of essential topics. This search revealed

three candidate core concepts and skills: (1) state, (2) fixed-length information encoding, and (3)

ability to switch between levels and types of abstractions.

4 Building a Case for the Three Core Concepts and Skills

In this section we will attempt to build a case for the centrality of our three candidate

concepts and skills.

4.1 State

Based on word count in the Delphi results alone, the concept of state appears to be a

central concept of digital logic. Several concepts and skills directly address state or depend on

state and state machines: (1) State transitions; (2) Converting verbal specifications into state

diagrams/tables; (6) Relating timing diagrams to state machines/circuits; (7) Understanding how

a sequential circuit corresponds to a state diagram; (10) Analyzing sequential circuit behavior;

(11) Converting algorithms to register-transfer statements and datapaths; and (12) Designing

control for datapaths.

The argument for state as a central concept in computing has previously been made by

Shinners-Kennedy11. Shinners-Kennedy argues that a computer essentially does two things, both

of which depend on state: (1) store state and (2) manipulate state. From this perspective, a

computer could essentially be broken down into the (perhaps oversimplified) diagram in Figure

P
age 25.712.5

1. A computer consists of state storing devices (memory and registers), state manipulating

devices (arithmetic, logic, and shift units), and these two classes of devices are controlled by a

separate state machine (control unit): Essentially a small state machine that controls a larger state

machine.

Figure 1: Left – A simplified block diagram of a computer. Right – A demonstration of the

centrality of state within the block diagram.

Research into students’ misconceptions about state and sequential circuits has also

revealed the centrality of the concept of state. In their study of student misconceptions of state,

Herman et al. revealed that the typical student uses about four incompatible conceptions of

state10. Only those students who had a consistent, correct conception of state were able to

consistently solve a wide variety of problems related to state and sequential circuits.

4.2 Fixed-length information encoding

The second core concept, fixed-length information encoding, is more subtle in its

appearance than state, but it is potentially equally important and powerful in creating a strong

conceptual understanding of digital logic. The concept of fixed-length information encoding

appears in seven of the fifteen most important topics from the Delphi study. This concept appears

most readily in concepts (9) Number representations and (14) Binary arithmetic. Because

information in a computer is stored in fixed-length registers, the discussion of number

representations and binary arithmetic in digital logic must be situated within that context.

Furthermore, some number representations that are unique to computer architectures, such as

two’s complement representation, can be properly understood only within the context of fixed-

length representations. P
age 25.712.6

The concept of fixed-length information encoding also undergirds the design of MSI

components (3) and of state machines (7). Multiplexers, decoders, read-only memory (ROM),

and random-access memory (RAM) are all components that incorporate the concept of

addressing – a form of fixed-length information encoding. The selection bits of a multiplexer,

the data inputs of a decoder, the address bits of ROM and RAM all encode information in a

fixed-length representation. Similarly, the state of a state machine is encoded within the fixed-

length representation of the flip-flops or latches within a sequential circuit implementation.

The importance and interconnectedness of information encoding within these

components has been revealed in students’ misconceptions. For example, prior research has

shown correlations between students’ struggles with differentiating address and data bits for

RAM and their understanding how the state can be minimally encoded in a state machine and

their understanding of how to assign select bits within multiplexers12.

The concept of fixed-length information encoding appears in the process of hierarchical

design (5), modular design (8), and debugging and troubleshooting (13). In order to design

efficient and effective communication between components, students must understand how to

encode information with a fixed number of bits. Conversely, if students understand how

information is encoded with a fixed number of bits in modular designs, they can more easily test

and debug their circuits.

Finally, the fixed-length information encoding concept appears whenever computer

programs and instructions are treated like any other kind of data: microinstructions in control

units, machine-level instructions, compilers, and even Turing machines. This concept is

pervasive in computing.

4.3 Ability to switch between levels and types of abstractions

The final core idea lies somewhere between a concept and a skill. Digital logic

instructors value the development of rigorous, structured design and evaluation skills –

particularly the ability to move fluidly between levels and types of abstractions. This skill

manifests in almost every concept and skill, from the basic digital abstraction of treating voltages

as 1s and 0s to the large scale abstractions of datapaths and control units. P
age 25.712.7

Several concepts require students to convert information from one abstraction to another:

(2) converting verbal specifications to state diagrams/tables; (4) converting verbal specifications

to Boolean expressions; (6) Relating timing diagrams to state machines/circuits; and (7)

Understanding how a sequential circuit corresponds to a state diagram. Conversions between

different number representations (e.g., binary to hexadecimal) also provide an opportunity for

students to practice switching between types of abstractions.

Other concepts require students to represent information with different levels of

abstraction: (5) hierarchical design; (8) modular design; (13) debugging, troubleshooting, and

designing simulations; and (15) Using CAD tools. When students are creating larger circuits,

they must learn how and when to use abstraction to simplify a design problem. Similarly, when

students encounter unexpected bugs when designing with CAD tools, they must be able to

unpack these layers of abstraction to discover why a module operates incorrectly, or why two

modules fail to communicate properly.

Whether students are changing the type or level of abstractions, they need to understand

that different abstractions present different strengths or weaknesses for the design or analysis

processes: Different representations of information can make solutions more transparent. For

example, a Boolean function can be represented by different abstractions such as a Boolean

expression, a truth table, or a Karnaugh map, but one representation is easier than the others to

read or use in different circumstances.

5 Conclusions and Implications for Instruction

Figure 2 – Visual classification of the top 15 most important concepts and skills in digital logic
and how they relate to our three core concepts.

P
age 25.712.8

We believe that the core conceptual framework of digital logic and computer architecture

can be summarized with three core underlying concepts and skills: (1) state, (2) fixed-length

information encoding, and (3) ability to switch between levels and types of abstractions. These

core concepts can provide a basis that will help students organize and understand the concepts

and skills of digital logic.

5.1 Benefits for student learning

Generally, students tend to organize their knowledge from a course in a disjoint fashion

(i.e., fail to make connections between related concepts) or a linear fashion based on the order

that topics were presented (See Figure 3 for a linear order for digital logic). However, experts

tend to organize their knowledge with hierarchical structures or as an intricate interconnected

web of concepts (See Figure 4)15. Students often struggle to think of each concept in digital

logic as an isolated problem or idea14. So, rather than using their knowledge of one concept to

aid their understanding of the next, students often relearn the same idea for each new

presentation of these central concepts. For example, when students learn about the selection

inputs of a multiplexer, they do not readily recognize that the data inputs of decoder or the

address inputs of a RAM embody the same concept, fixed-length information encoding.

Alternatively, students struggle to solve structurally identical problems – problems that share the

same solution strategy. A student who can build a large (e.g., 16-to-1 multiplexer) from smaller

multiplexers (e.g., 4-to-1 multiplexers) will struggle to assign the address bits when building a

large (16x1) RAM from smaller (4x1) RAMs even though these two problems are structurally

identical.

P
age 25.712.9

Figure 3: Caricature of the linear knowledge structure of a student

Figure 4: Example, non-comprehensive interconnected knowledge structure of an expert

P
age 25.712.10

Computer science majors and electrical engineering majors are often required to take a

digital logic course, but most probably do not know why this course is required and are

demotivated when they do not see the relevance of what they are learning16. By teaching

students a focused, conceptual core, instructors can improve students’ motivation by helping

students to see how the concepts and skills that they learn will be applicable throughout their

learning and careers. Each of the three core concepts that we identified can be applied through

computer science and electrical and computer engineering. For example, the concept of state

permeates communications, control, and signals and systems in Markov models and the design

of digital filters. The concept of state is also critical in understanding recursion, iteration, and

the assignment of values to variables in computer programming. The concept of information

encoding is also invaluable in communications. The ability to move between levels and types of

abstractions is valuable in all fields of engineering, but is particularly valuable in the design of

large computer programs.

By emphasizing a conceptual framework in our instruction, we can also better prepare

students for future learning. By illustrating and emphasizing the interconnectedness of concepts

in digital logic, we can help students look for these similarly complex webs of knowledge in

other disciplines.

5.2 Benefits to instructors

Digital logic, like many engineering and science courses, is susceptible to “content creep”

as each advance in the field or each change of instructors adds new content to the course. During

our Delphi poll some of the experts complained that they could not cover all of the “basics” in a

first course on digital logic. Part of the challenge of fighting against content creep is that often

instructors have no framework for discussing or establishing the “basics.” What minimal level

of knowledge do we want our students to know when they leave our digital logic courses? This

core conceptual framework provides a focal point to help establish the basics.

With a core conceptual framework, digital logic instructors have a reliable way to decide

what topics or skills are necessary and what topics or skills are negotiable. If instructors can

focus their instruction on these three concepts and skills, they can more easily ascertain how well P
age 25.712.11

their students have learned the core material. Instructors who teach more advanced courses can

also know what they can expect students to have mastered.

Finally, the identification of core conceptual frameworks can facilitate the design of

curriculum and the evaluation of those curricula for accreditation. Many curriculum design

procedures recommend “spiral curricula” that teach students the same concepts repeatedly, but

add depth and breadth to these concepts with each pass. The creation of tightly focused

conceptual core can facilitate the creation of this curriculum spiral. In order to create valid and

reliable assessments of courses and curricula, we similarly need to know what topics and skills

are essential to our curricula and what topics and skills are peripheral. Assessments should then

focus on the core skills to create short, but meaningful assessments. Core conceptual

frameworks can provide this clarity and meaning to assessments. We believe that this initial

effort can begin a conversation to bring greater clarity to the instruction in digital logic.

5.3 Future research directions

This paper documented an initial effort to establish a core conceptual framework for

digital logic. It relied upon a Delphi poll and misconceptions research data. Future research

could further validate this core by better understanding how experts organize their knowledge of

digital logic. For example, we could interview several digital logic instructors and ask them to

create their own concept maps of the subject. Alternatively, we could replicate previous

knowledge organizations studies and ask faculty and students to organize problems based on

their similarity of solutions17. This problem organization can help reveal experts’ tacit

knowledge structures. As we learn more about how experts of digital logic organize their

knowledge, we can build a stronger case for the core conceptual framework of digital logic.

P
age 25.712.12

References

1. Litzinger, T., Lattuca, L. R., Hadgraft, R., & Newstetter, W. (2011) Engineering education and the development
of expertise, Journal of Engineering Education, 100 (1), 123–150.

2. Goldman, K., Gross, P., Heeren, C., Herman, G. L., Kaczmarczyk, L., Loui, M. C., & Zilles, C. (2010). Setting
the scope of concept inventories for introductory computing subject. ACM Transactions on Computing
Education, 10 (2), 5:1–29.

3. Herman, G. L., & Loui, M. C. (2011). Administering a digital logic concept inventory at multiple institutions.
Proceedings of the 2011 American Society for Engineering Education Annual Conference and Exposition, (pp.
AC2011-1800). Vancouver, BC. June 26-29.

4. Irwin, J. D. & Kerns Jr., D. V. (1995). Introduction to Electrical Engineering. Prentice Hall.
5. Vahid, F. (2006). Digital Design. Hoboken, NJ: Wiley, John & Sons, Incorporated.
6. Brown, S. & Vranesic, Z. (2009). Fundamentals of Digital Logic with VHDL Design. McGraw Hill Higher

Education.
7. Wakerly, J. F. (2006). Digital Design: Principles and Practices. Upper Saddle River, NJ: Pearson Prentice Hall.
8. Givone, D. D. (2003). Digital Principles and Design. McGraw Hill.
9. Marcovitz, A. B. (2008). Introduction to Logic and Computer Design. McGraw Hill Higher Education.
10. Hwang, E. O. Digital Logic and Microprocessor Design with VHDL. Toronto: Thomson, 2006.
11. Herman, G. L., Zilles, C., & Loui, M. C. (2011). Flip-flops in students' conceptions of state. IEEE Transactions

in Education, In Press. DOI: 10.1109/TE.2011.2140372
12. Shinners-Kennedy, D. (2008). The everydayness of threshold concept: State as an example from computer

science. In Threshold Concepts within the Disciplines. Sense Publishers, 119–128.
13. Herman, G. L. & Handzik, J. (2010). A preliminary pedagogical comparison study using the Digital Logic

Concept Inventory. Proceedings of the Fortieth ASEE/IEEE Frontiers in Education Conference, (pp. F1G-1 to
F1G-6). Arlington, VA, October 27-30.

14. Longino, J. T., Loui, M. C., & Zilles, C. (2006). Student misconceptions in an introductory logic design course.
In Proceedings of the 2006 American Society for Engineering Education Annual Conference and Exposition.

15. [Insert citation from Ambrose]
16. Herman, G. L., Goldberg, D. E., & Somerville, M. (2012). Promoting students’ intrinsic motivation in the

lecture/discussion classroom, In Proceedings of the 2012 American Society for Engineering Education Annual
Conference and Exposition. In press.

17. Chi, M. T. H., Feltovich, P. J. & Glaser, R. (1981). Categorization and representation of physics problems by
experts and novices, Cognitive Science, 5, 121–152.

P
age 25.712.13

