
Identifying Student Misconceptions of Programming
 Lisa C. Kaczmarczyk Elizabeth R. Petrick
 University of California, San Diego University of California, San Diego
 Sixth College, MC0054 Department of History, MC0104
 lisak@acm.org erpetric@ucsd.edu
 J. Philip East Geoffrey L. Herman
 University of Northern Iowa University of Illinois at Urbana-Champaign
 Department of Computer Science Dept. of Electrical and Computer Engineering
 east@cs.uni.edu glherman@illinois.edu

ABSTRACT
Computing educators are often baffled by the misconceptions that
their CS1 students hold. We need to understand these
misconceptions more clearly in order to help students form correct
conceptions. This paper describes one stage in the development of
a concept inventory for Computing Fundamentals: investigation
of student misconceptions in a series of core CS1 topics
previously identified as both important and difficult. Formal
interviews with students revealed four distinct themes, each
containing many interesting misconceptions. Three of those
misconceptions are detailed in this paper: two misconceptions
about memory models, and data assignment when primitives are
declared. Individual misconceptions are related, but vary widely,
thus providing excellent material to use in the development of the
CI. In addition, CS1 instructors are provided immediate usable
material for helping their students understand some difficult
introductory concepts.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education – Computer science education.

General Terms
Human Factors.

Keywords
Curriculum, Concept Inventory, Programming, Misconceptions,
Pedagogy, CS1.

1. INTRODUCTION
Most Computer Science Educators will recall times when they
were completely baffled by how their students expressed their
understanding of a critical topic. Clearly, understanding a
student’s inaccurate conceptualization is a necessary prerequisite

for helping them move toward an accurate conceptualization.
Unfortunately we cannot read minds and we cannot speak in
depth with every struggling student. Thus, it would be very useful
to have a reliable method of rapidly gauging the most important
areas of conceptual difficulty, and to reveal in what form these
difficulties manifest themselves.

A promising assessment approach is the use of a concept
inventory (CI). The original CI was developed by physics
educators (Hestenes, et al.) and addressed concepts of Newtonian
Force as taught in introductory physics [10]. The authors had
previously discovered that many students did not develop correct
conceptions of critical topics. In response, the authors produced a
multiple-choice examination that could be used by all physics
instructors to determine whether their students appropriately
understood the concepts of Newtonian Force. Perhaps their most
critical contribution has been that instructors can use the
inventory results to gain “on the ground” insight into not only the
concepts their students are struggling with, but what specific
misconceptions they hold. This information can be immediately
leveraged to adjust instruction.

Prior to the project of which this paper is part, there was some
discussion and preliminary attempts to develop a CI for discrete
mathematics [1]. A digital logic CI is currently being developed
and is nearly complete [9]. No other CIs have been fully
developed for any area of introductory computing.

The results reported here are part of a multi-institutional project to
develop concept inventories for three introductory computing
topics: digital logic, programming fundamentals, and discrete
structures. The process is as follows: previously, Delphi studies
were conducted to identify concepts considered both important
and a source of difficulty for students [7]. The next step involves
interviewing students who have been instructed on each topic to
identify their misconceptions. Results for digital logic have been
published [8]; initial findings from interviews on programming
fundamentals are reported here. As will be discussed in Section 6,
these data and additional data currently being collected, will be
used to develop, test, and validate the CI instrument.

2. BACKGROUND
Student misconceptions of programming and closely related
topics have been studied for some time. Early studies, such as
Mayer’s work on mental models of the actions of programming
statements [16], were followed by Bayman and Mayer examining
misconceptions related to individual program statements in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE’10, March 10–13, 2010, Milwaukee, Wisconsin, USA.
Copyright 2010 ACM 978-1-60558-885-8/10/03...$10.00.
.

107

BASIC [2]. They found that many students had incorrect
understandings or outright misconceptions of “much” of even
very simple statements. Bonar and Soloway looked more
generally at groups of statements to examine student
understanding of programming [3]. They recognized that student
“step-by-step natural language programming knowledge”
interacted negatively with the programming knowledge of formal
instruction. These studies touched upon misconceptions, but their
primary focus was on larger mental models and theories of
cognitive representation, or in some cases discoveries of
misconceptions were not fully followed up pedagogically.

Spohrer and Soloway [20] examined the source of programming
errors or bugs to see if they result from “misconceptions about the
semantics of programming language constructs”. They concluded
that bugs are more likely to arise from student errors in reading
and analyzing specifications and failures to see negative
interactions between segments of code. Pea [18] looked beyond
language constructs altogether, seeking insight into
misconceptions. He found a “superbug”—students’ tendency to
expect computers to correctly interpret student actions and do the
right thing. Confrey [5] examined both theoretical and empirical
literature on misconceptions in mathematics, science, and
programming and noted that the primary focus of the research was
to avoid misconception development though changes in teaching.
These studies focus primarily on misconceptions and present
important results, however for a wider pedagogical use in CS1,
they provide insufficient breadth and depth.

More recent work has often been narrowly focused. Ma, et al. [14]
examined the correctness of mental models of assignment (of
values and references) that are held by students at the end of a
programming course and found a substantial number or erroneous
models for even simple assignment. Fluery [6] and Madison and
Gifford [15] focused specifically on parameters. Holland, et al.
[11] presented misconceptions related to Objects and
recommendations for addressing them, however their results were
anecdotal and not supported with data.

A variety of other work on misconceptions exists, but from the
perspective of providing data needed to develop a CI for CS1,
they either replicate the problematic issues above, or else focus on
other areas of program related conceptions (correctness and
grading) rather than programming conceptions (e.g. Kolikant and
Mussai [12] and Sanders and Thomas [19]). Thus there remains a
need to investigate student misconceptions across a wide variety
of CS1 topics. Conducting in-depth interviews with
methodological rigor is one way to provide the broad cognitive
understanding needed. In the following sections, we report a first
set of results to rectify this situation.

3. INTERVIEW & ANALYSIS PROTOCOL
Eleven students took part in interviews conducted at the
University of California, San Diego (UCSD) in spring 2009.
Students were recruited from the undergraduate student
population who were currently or recently enrolled in Computer
Science or Computer Engineering introductory courses CSE8a or
CSE11 (two versions of CS1). Participation was voluntary;
subjects were recruited through announcements made in courses
and via email to CSE lists. Students were compensated for
participation in the project.

The primary purpose of the interviews was to reveal
misconceptions held by students on an initial group of ten of the
thirty-two concepts identified by the Delphi experts [7]. There
were eighteen problems, covering the following concepts:
1. Memory Model, References, and Pointers (MMR)
2. Primitive and Reference Type Variables (PVR)
3. Control Flow (CF)
4. Iteration and Loops I (IT1)
5. Types (TYP)
6. Conditionals (COND)
7. Assignment Statements (AS)
8. Arrays I (AR1)
9. Iteration and Loops II (IT2)
10. Operator Precedence (OP)
A secondary purpose of the interviews was to validate the Delphi
experts' conclusions that these concepts were indeed difficult.

The interviews were semi-structured and used a modified think-
aloud protocol [4]. Choosing a language for code examples was
an unavoidable necessity in spite of an overarching goal to
develop as language neutral a CI as possible. We selected Java for
three reasons. First, Java is currently one of the most widely used
introductory programming languages. Second, our Delphi experts
explicitly identified a subset of troublesome concepts as Object
Oriented (OOP) based. Third, our student population had been
taught in Java. It is important to note that not all concepts
required that actual code be presented to students in order to
reveal misconceptions. A full list of the problems is available
from the authors and is expected to be published in a subsequent
longer article. In addition, we will address the language
dependence issue further in Sections 5 and 6.
There were multiple problems per concept, in order to guarantee
that results did not depend on a single question. The majority of
problems were covered in at least two distinct variations. Pilot
interviews revealed that some concepts were closely related (e.g.
Control Flow with other concepts). Thus, misconceptions
emerged for some concepts within discussion of problems
designed for another concept. Additional interviews and analysis
on several of these “overlap” concepts are underway.

Each student was given a subset of the problems. Each interview
lasted approximately one hour. With a few exceptions, every
student was provided questions for all ten concepts. The
exceptions occurred when students worked slowly and time
limitations prevented full coverage. To avoid order bias, the
problems were given in a semi-random order to each student. The
caveat to the randomness of problem ordering is that each student
was given one or two simple questions in the beginning to reduce
anxiety and acclimate them to the interview process. Students
were given the problems on paper, and provided scrap paper to
work on if they desired. At no time did the interviewer reveal
correct or expected answers to the problems. We collected audio
and video recordings of the interviews, along with any written
work the students produced. The audio tracks of the interview
recordings were transcribed verbatim. Video was used as a back-
up and as a visual resource if needed.
We analyzed transcripts and written work from ten of the
interviews. Due to equipment failure, one interview was lost. The
interviews were analyzed using the following steps of grounded
theory and qualitative data analysis as described by Kvale [13],
Strauss and Corbin [22], and Miles and Huberman [17]:

108

1. All of the survey responses were selected for coding in order
to avoid bias in selection.

2. All of the survey responses were read and analyzed
independently by three researchers: the first and second
authors, and a researcher from one of the project's partner
institutions (the fourth author).
a. Each researcher developed codes, operational definitions,

and themes grounded in the textual responses.
b. The three researchers compared their coding and thematic

decisions. When there were divergent findings, only those
encodings were retained in which all researchers agreed.
An inter-rater reliability rating of 96% was achieved.

3. Thirty-two codes with operational definitions were agreed
upon. Twenty-five codes addressed the ten targeted concepts.
a. The codes describe the misconceptions students held and

were grouped according to the important and difficult
concepts identified by the Delphi experts.

b. Additional codes addressed other concepts from the full
Delphi expert list have been specifically targeted in
further interviews during summer and fall 2009.

4. RESULTS
Four themes emerged from the students’ misconceptions (see
Table 1). Themes 1 and 4 are highly language independent and
cover general misunderstandings. Theme 2 involves a number of
misconceptions all related to an inability to properly understand
the process of while loop functioning. Though not truly language
independent, this theme and its misconceptions are applicable
across several commonly used contemporary and historic
languages. Finally, Theme 3 is a basic lack of understanding of
the most fundamental aspects of Object-Oriented Programming.

For the purpose of building a CI, misconceptions are the key data,
as they are used to create authentic distracter questions on the
instrument. In this paper, we focus on three of the six
misconceptions within Theme 1: “Semantics to semantics,”
(MMR1), “Primitive no default,” (PVR1) and “Uninstantiated
memory allocation” (MMR4) (see Table 2). Both of the Delphi
process concepts these misconceptions fall under (MMR, PVR)
were highly ranked overall for importance and difficulty. Of the
ten concepts addressed in this set of interviews (see Section 3),
these two concepts were ranked highest by the Delphi experts for
difficulty.

The first misconception, “Semantics to semantics,” (MMR1)
occurred when the student inappropriately assumed details about
the relationship and operation of code samples, although such
information was neither given nor implied. This misconception is
language independent although every language will manifest the
misconception differently. For example, when examining a list of
Java variable definitions and declarations whose inter-
relationships are unstated (see Appendix: Problem 1), Student2
explains: “And then have the names of the songs in here, which –
but this would be stored in library, I'm assuming, or in the library
class. I don't know how they're linked together exactly.”
In another example, with a different problem (see Appendix:
Problem 2b), Student3 makes incorrect assumptions about
connections between variables to the extent that the student makes
a mistake concerning the types of the variables. As a result, the
student places Objects of different types in an array whose type
matches none of them: “And so because there’s two arrays, cheese
and meats, uh, all those turkey and ham and roast beef are gonna
be sorted into the meats array.”

In a third example, Student8 completely and repeatedly ignores a
variable, because it does not fit with her/his assumptions of how
these variables must relate. In a lengthy discussion of the
supposed relationships between the variables (see Appendix:
Problem 2a), the sole reference (verbally or written) to
“sauceType” was the following statement at the very start of the
problem discussion: “Usually all the variables go to describing the
Object, but I don’t think it would describe a sauce.”

It should not be surprising that students bring their own
assumptions to problems. The Educational Psychology literature
has solidly established this basic function of human cognition
(e.g. [21]). However, we found it surprising where these
assumptions led in terms of confusion between syntax and
semantics. Even when an assumption based confusion led to
clearly contradictory beliefs and conclusions, the students still
could not recognize that their assumptions caused a problem. In
one example, a student realized that the syntax did not fit his/her
semantic assumptions and, instead of questioning those
assumptions, he/she assumed that the syntax must be logically
incorrect. Fortunately, this problematic cognitive behavior (for the
purposes of learning programming) has also been discussed in the
psychological literature and we should be able to draw upon that

Table 1. Themes Emerging From Student Misconceptions
T1: Students misunderstand the relationship between language elements and underlying memory usage.
T2: Students misunderstand the process of while loop operation.
T3: Students lack a basic understanding of the Object concept.
T4: Students cannot trace code linearly.

Table 2. Misconceptions About the Relationship Between Language Elements and Underlying Memory Usage

MMR1 Semantics to semantics Student applies real-world semantic understanding to variable declarations.
MMR2 All Objects same size Student thinks all Objects are allocated the same amount of memory regardless of

definition and instantiation.
MMR3 Instantiated no memory allocation Student thinks no memory is allocated for an instantiated Object.
MMR4 Uninstantiated memory allocation Student thinks memory is allocated for an uninstantiated Object.
MMR5 Off by 1 array construction Student thinks an array's construction goes from 0 to length, inclusive.
PVR1 Primitive no default Student thinks primitive types have no default value.
PVR2 Primitives don't have memory Student thinks primitives without a value have no memory allocated.

109

field’s expertise and resources to customize solutions for
computing education.

The second misconception, “Primitive no default,” (PVR1) relates
to lists of instance variables. This misconception is related to
OOP and is a Java specific misconception. Student3 discusses two
boolean variables without assigned values (see Appendix:
Problem 2b) and states: “I don't think any value is being created
for them because there's no assignment there. You know, it's just
being declared as a variable.” Student5 similarly discusses an
integer which is not assigned a value (see Appendix: Problem 2a):
“And then int is empty too and it’s just creating space to later
store an integer.”

The third misconception, “Uninstantiated memory allocation,”
(MMR4) reveals itself when students think that memory is
allocated for Objects which have been declared, but not
instantiated. This misconception is also related to OOP. For
example, Student5 explains how the computer handles memory
for the uninstantiated Object “turkey” (see Appendix: Problem
2a): “it’s just going to be this blank turkey because we’re not
setting it to be anything but we’re creating like free space to the
mater [sic] later on declare it.”

In another example, involving a similar problem, Student2
discusses the memory allocated for the uninstantiated Object
“artist” (see Appendix: Problem 1): “I'm thinking it goes to
wherever artist is defined and looks at that class. And I feel like
the class would set aside memory.

5. DISCUSSION
We found both unsurprising and surprising results in these
interview data. The primary unsurprising, but welcome, result is
that the misconceptions we uncovered confirmed the Delphi
experts’ choice of concepts as difficult for CS1 students.

Two surprising outcomes relate specifically to student
misunderstandings. First, the breadth of misconceptions about
memory models was unexpected. Memory models are very
difficult, but we did not expect such a high number and variety of
misconceptions. This finding has an important implication for
pedagogy. There are likely to be a diversity of strategies to
address memory model misconceptions, without any one quick or
universally applicable fix. This challenge is particularly apparent
regarding the misconception about students applying semantic
assumptions to syntax (MMR1). It will take creative thinking by
each instructor, as well as further research, in order to determine
the most effective way to leverage these results.

The second surprising outcome relates to Theme 3, not otherwise
discussed in this paper: a dearth of even basic conception of an
Object. Some students had not formulated misconceptions about
Objects, as they had no conceptions at all. During the interviews,
they either froze, admitted with some embarrassment to having no
idea what an Object was, even when prompted in several ways, or
simply changed the subject. This extreme difficulty is being
further investigated and results will be reported in a future
publication. Meanwhile, one important implication of a lack of
knowledge about Objects is that perhaps, within the context of
particular student populations, instructors can take a step back and
re-think how to introduce the concept of Objects, and focus
explicitly on what they consider most critical about Objects in
their particular incarnation of CS1.

6. FUTURE WORK
Our findings are representative of our participant population.
However, many of the misconceptions we found are generally
believed to be universal, but play out differently in different
languages, and as such will need to be dealt with in the inventory.
As we move forward in developing the inventory, we will further
address issues of language dependence. We are currently
evaluating options to address this concern. We will also need to
address issues of OOP. OOP was an important category of
concern to the Delphi experts, and thus must be included.
However, we also want to make the inventory as flexible as
possible, because at some point in time OOP may no longer be the
dominant paradigm. The tension between these competing needs
may be our most challenging task.

In following good grounded theory based protocols we have
already used the data gathered so far to inform our next steps.
First, we have completed a set of interviews conducted in
Summer, 2009 that address the remaining Delphi expert concepts
as well as the “overlap concepts”. We also conducted interviews
in the Fall, focusing on concepts which we determined needed
additional investigation. Additional interviews are currently
taking place at a partner institution to broaden the demographic of
student subjects. Next, we will build and test the inventory. Pilot
tests will take place at multiple institutions with diverse
populations and multiple languages. Many of the original Delphi
experts have expressed interest in taking part in initial field tests.
Pilot inventory test results will provide feedback about how to
improve the inventory questions so that the instrument will be
useful to the broadest population and demographic possible.

7. CONCLUSION
We have presented initial results describing three important
misconceptions held by CS1 students, along with four broad
themes encompassing a larger group of misconceptions. The
misconceptions detailed in this paper explore memory model
representation and default value assignment of primitive values.
These data provide immediately useful information for CS1
instructors to help them understand their students'
misconceptions. Finally, these results will be merged with
additional data being gathered, and used in the development and
validation of a CI for Programming Fundamentals.

8. ACKNOWLEDGMENTS
This work was supported by the National Science Foundation
under Grants DUE-0618589, DUE-0618598, DUE-0943318, and
CAREER CCR-03047260. The opinions, findings, and
conclusions do not necessarily reflect the views of the National
Science Foundation or the authors’ institutions.

9. APPENDIX
Problem 1. You are setting up a database of information about all
the songs you own. Each song has certain information associated
with it. Diagram (or use pseudo-code) how this information would
be stored in memory:

Library library = new Library();
SongList[] songList = new SongList[3];
Genre genre;
Artist artist;
Title title;
Album album;

110

int trackNumber = 2;
int year = 1961;
int rating = 5;

Problem 2a. You are setting up a database of information about
sandwich ingredients. There are a number of information items
associated with your database. Diagram (or use pseudo-code) how
this information would be stored in memory:

Cheese[] cheeses = new Cheese[4];
Meat[] meats = new Meat[2];
Turkey turkey;
Ham ham;
RoastBeef roastBeef;
boolean lettuce = true;
boolean tomato = true;
SauceType sauceType = new SauceType();
int numMeat;
int numCheese;

Problem 2b was identical to 2a except for the following two
declarations:

boolean lettuce;
boolean tomato;

10. REFERENCES
[1] Almstrum, V. L., Henderson, P. B., Harvey, V., Heeren, C.,

Marion, W., Riedesel, C., Soh, L., and Tew, A. E. 2006.
Concept inventories in computer science for the topic
discrete mathematics. In ACM SIGCSE Bulletin, 38, 4 (Dec.
2006), 132-145.

[2] Bayman, P. and Mayer, R. E. 1983. A diagnosis of beginning
programmers' misconceptions of BASIC programming
statements. Commun. ACM 26, 9 (Sep. 1983), 677-679.

[3] Bonar, J. and Soloway, E. 1985. Preprogramming
knowledge: a major source of misconceptions in novice
programmers. Hum.-Comput. Interact. 1, 2 (Jun. 1985), 133-
161.

[4] Bowen, C. W. 1994. Think-Aloud Methods in Chemistry
Education. In Journal of Chemical Education. 71, 3 (Mar.
1994), 184-190.

[5] Confrey, J. 1990. A review of the research on student
conceptions in mathematics, science, and programming.
Review of Research in Education, 16, 3 (1990), 3-56.

[6] Fleury, A. E. 1991. Parameter passing: the rules the students
construct. In Proceedings of the Twenty-Second SIGCSE
Technical Symposium on Computer Science Education (San
Antonio, Texas, United States, March 07 - 08, 1991).

[7] Goldman, K., Gross, P., Heeren, C., Herman, G.,
Kaczmarczyk, L., Loui, M. C. and Zilles, C. 2008.
Identifying important and difficult concepts in introductory
computing courses using a Delphi process. In Proceedings of
the Thirty-Ninth SIGCSE Technical Symposium on Computer
Science Education (Portland, OR, United States, March 12-
15, 2008).

[8] Herman, G. L., Kaczmarczyk, L., Loui, M. C., and Zilles, C.
2008. Proof by incomplete enumeration and other logical
misconceptions. In Proceedings of the Fourth International
Workshop on Computing Education Research (Sydney,
Australia, Sep. 06 - 07, 2008).

[9] Herman, G. L., Loui, M. C., and Zilles, C., Creating the
Digital Logic Concept Inventory. In Proceedings of the
Forty-First ACM Technical Symposium on Computer
Science Education, Milwaukee, WI, March 10-13, 2010.

[10] Hestenes, D., Wells, M., and Swackhamer, G. 1992. Force
concept inventory. The Physics Teacher, 30 (Mar. 1992),
141-158.

[11] Holland, S., Griffiths, R., and Woodman, M. 1997. Avoiding
Object misconceptions. In Proceedings of the Twenty-Eighth
SIGCSE Technical Symposium on Computer Science
Education (San Jose, California, United States, February 27 -
March 01, 1997).

[12] Kolikant, Y. B-D. and Mussai, M. 2008. “So my program
doesn't run!” Definition, origins, and practical expressions of
students' (mis)conceptions of correctness, Computer Science
Education, 18, 2 (Jun. 2008), 135-151.

[13] Kvale, S. 1996. Interviews: An Introduction to Qualitative
Research Inquiry. Sage Publications, Thousand Oaks, CA.

[14] Ma, L., Ferguson, J., Roper, M., and Wood, M. 2007.
Investigating the viability of mental models held by novice
programmers. In Proceedings of the Thirty-Eighth SIGCSE
Technical Symposium on Computer Science Education
(Covington, Kentucky, United States, March 07 - 11, 2007).
SIGCSE '07.

[15] Madison, A. and Gifford, J. 2003. Modular programming:
Novice misconceptions. Journal of Research on Technology
in Education, 34, 3 (Spr. 2003), 217-229.

[16] Mayer, R. E. 1981. The Psychology of How Novices Learn
Computer Programming. ACM Comput. Surv. 13, 1 (Mar.
1981), 121-141.

[17] Miles, M.B. and Huberman, A.M. 1994. Qualitative Data
Analysis: An Expanded Sourcebook, 2nd Edition. Sage
Publications, Thousand Oaks, CA.

[18] Pea, R. D. 1986. Language-independent conceptual “bugs”
in novice programming. Journal of Educational Computing
Research, 2, 1 (1986), 25-36.

[19] Sanders, K. and Thomas, L. 2007. Checklists for grading
Object-oriented CS1 programs: concepts and
misconceptions. In Proceedings of the Twelfth Annual
Conference on Innovation and Technology in Computer
Science Education (Dundee, Scotland, June 25 - 27, 2007).

[20] Spohrer, J. C. and Soloway, E. 1986. Alternatives to
construct-based programming misconceptions. In
Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (Boston, MA, United States, April 13
- 17, 1986).

[21] Stanovich, K. E. 2003. The Fundamental Computational
Biases of Human Cognition: Heuristics That (Sometimes)
Impair Decision Making and Problem Solving. In The
Psychology of Problem Solving, J. E. Davidson and R. J.
Sternberg, Eds. Cambridge University Press, Cambridge,
UK, 291-342.

[22] Strauss, A. and Corbin, J. 1998. Basics of Qualitative
Research. Sage Publications, Thousand Oaks, CA

111

	Computing educators are often baffled by the misconceptions that their CS1 students hold. We need to understand these misconceptions more clearly in order to help students form correct conceptions. This paper describes one stage in the development of ...
	1. INTRODUCTION
	4. RESULTS
	5. DISCUSSION
	6. FUTURE WORK
	7. CONCLUSION
	8. ACKNOWLEDGMENTS
	9. APPENDIX
	10. REFERENCES

