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1 Problem Session

The following problems flesh out some of the examples and assertions made in the
lecture. Some of them assume a bit of background on the classification of mapping
classes.

1. Let Mf be the fibered manifold with monodromy f : S → S. Explain why
f being pseudo-Anosov is a necessary condition for Mf being hyperbolic.

2. With Mf as above, if τ : S → S is a Dehn twist, describe Mfτn as a Dehn
surgery on Mf .

3. Let f : S → S be pseudo-Anosov and let τ : S → S be a Dehn twist. Show
that, for n large enough, f ◦ τn is pseudo-Anosov.

4. As a special case to the problem above, repeat with S a torus, f a hyperbolic
matrix in SL(2,Z), and τ = [ 1 1

0 1 ] .

5. Let A ∈ PSL(2,C) be hyperbolic, with complex translation length λ = `+iθ.

If ` = θ2 << 1, estimate the radius of the Margulis tube of A and show that
its boundary is a torus with area bounded above.

6. Given a curve c in a closed hyperbolic surface S, let T be a triangulation
of S containing c in its 1-skeleton with a single vertex that lies on c. How
many triangles does T have?

Apply to T a sequence of Dehn twists around c and show that the resulting
sequence of triangulations tends to a lamination in an appropriate sense.
How many leaves does the lamination have?

1



7. Let S ⊂ N where N is hyperbolic and let α be a simple curve in S which is
homotopic in N to a geodesic α∗. If γ ⊂ S is another simple curve crossing α
and τ is a Dehn-twist around α, describe the geodesic representatives of the
curves τnγ (the answer may depend on properties of the embedding S ⊂ N).

8. Let f : S → N be a π1-injective map. For a simple closed curve α ⊂ S
let α∗ be the geodesic representative in N of f(α). Let dC denote distance
in the complex of curves of S, and let dεN denote “electrocuted” distance in
N , meaning distance where each component of the ε-thin part is declared
to have size 0. Show that dεN(α∗, β∗) < AdC(α, β), where C depends on the
genus of S.
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