Junior GEAR Retreat Curves, surfaces and hyperbolic 3-manifolds

Yair Minsky

May 28, 2014

1 Problem Session

The following problems flesh out some of the examples and assertions made in the lecture. Some of them assume a bit of background on the classification of mapping classes.

- 1. Let M_f be the fibered manifold with monodromy $f: S \to S$. Explain why f being pseudo-Anosov is a necessary condition for M_f being hyperbolic.
- 2. With M_f as above, if $\tau: S \to S$ is a Dehn twist, describe $M_{f\tau^n}$ as a Dehn surgery on M_f .
- 3. Let $f: S \to S$ be pseudo-Anosov and let $\tau: S \to S$ be a Dehn twist. Show that, for n large enough, $f \circ \tau^n$ is pseudo-Anosov.
- 4. As a special case to the problem above, repeat with S a torus, f a hyperbolic matrix in $SL(2,\mathbb{Z})$, and $\tau = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.
- 5. Let $A \in PSL(2, \mathbb{C})$ be hyperbolic, with complex translation length $\lambda = \ell + i\theta$. If $\ell = \theta^2 << 1$, estimate the radius of the Margulis tube of A and show that its boundary is a torus with area bounded above.
- 6. Given a curve c in a closed hyperbolic surface S, let T be a triangulation of S containing c in its 1-skeleton with a single vertex that lies on c. How many triangles does T have?
 - Apply to T a sequence of Dehn twists around c and show that the resulting sequence of triangulations tends to a lamination in an appropriate sense. How many leaves does the lamination have?

- 7. Let $S \subset N$ where N is hyperbolic and let α be a simple curve in S which is homotopic in N to a geodesic α^* . If $\gamma \subset S$ is another simple curve crossing α and τ is a Dehn-twist around α , describe the geodesic representatives of the curves $\tau^n \gamma$ (the answer may depend on properties of the embedding $S \subset N$).
- 8. Let $f: S \to N$ be a π_1 -injective map. For a simple closed curve $\alpha \subset S$ let α^* be the geodesic representative in N of $f(\alpha)$. Let d_C denote distance in the complex of curves of S, and let d_N^{ϵ} denote "electrocuted" distance in N, meaning distance where each component of the ϵ -thin part is declared to have size 0. Show that $d_N^{\epsilon}(\alpha^*, \beta^*) < Ad_C(\alpha, \beta)$, where C depends on the genus of S.

2 Bibliography

For a brief expository account see [6]. Thurston's original paper [8] is still a rich rewarding read.

- 1. F. Bonahon and J.-P. Otal, Variétés hyperboliques à géodésiques arbitrairement courtes [Hyperbolic manifolds with arbitrarily short geodesics]. Bull. London Math. Soc. 20 (1988), no. 3, 255–261.
- 2. J. Brock, Iteration of mapping classes and limits of hyperbolic 3-manifolds. Invent. Math. 143 (2001), no. 3, 523–570.
- 3. J. Brock, R. Canary and Y. Minsky, *The classification of Kleinian surface groups II: the ending lamination conjecture*, Ann. of Math. (2) **176** (2012), 1–149.
- 4. D. Futer and S. Schleimer, Cusp geometry of fibered 3-manifolds, American Journal of Mathematics 136 (2014), Issue 2, 309–356
- 5. Y. Minsky, Kleinian groups and the complex of curves, Geom. Topol. 4 (2000), 117–148.
- Y. Minsky, Combinatorial and Geometrical Aspects of Hyperbolic 3-Manifolds, Kleinian Groups and Hyperbolic 3-Manifolds (Y. Komori, V. Markovic and C. Series, Eds.) London Math. Soc. Lec. Notes, 299 (2003), 3–40.
- 7. Y. Minsky, The classification of Kleinian surface groups I: models and bounds, Ann. of Math. (2) **171** (2010), 1–107.
- 8. W. P. Thurston, Hyperbolic Structures on 3-manifolds, II: Surface groups and 3-manifolds which fiber over the circle, Arxiv math/9801045 (1986).