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1 Problem Session

These problems are related to the material from the mini-course lectures. Several
of them focus on the properties of the Schwarzian derivative and generalizations
thereof.

The more challenging or open-ended problems are marked with an asterisk (x).

1. (a) For what values of ¢ is the quadratic differential ¢ dz* € Q(A) the
Schwarzian derivative of a univalent map A — CP!?
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(b) For what values of ¢ is the quadratic differential € Q(H) the

52
Schwarzian derivative of a univalent map H — CP'?

(c¢) Generalize (a) and (b) to decompose the c-plane into sets where the
corresponding map is k-to-one, for each k£ € N.

2. Let I' C C denote the preimage of {|Re(z)| = 1} under the map z ~ z%/2.
Thus T" consists of three bi-infinite paths (as in Figure [1)) which we denote
by v1, 72, v3. Orient each ~; so that the origin lies to the left.

Show that for each ¢ € {1,2,3} the expression
L3
fi(z) = | exp(zu—+ U ) du
v

i

defines an entire function and that the Schwarzian derivative of any ratio
fi/f; 1s equal to 2zdz*.



Figure 1: Contours of integration in Problem 2.

3. (*) Can the method of the previous problem be generalized to give a similarly
explicit expression for a function whose Schwarzian derivative is a constant
multiple of 2"dz?, for n > 17

4. There are two natural ways to construct a projective structure on a torus:

e The quotient of C by a lattice acting by translations

e The quotient of C* by the cyclic group generated by a hyperbolic Mobius
transformation z — Az.

If the lattice and cyclic group are chosen correctly (how?) then the two
constructions may give isomorphic Riemann surfaces. In that case, deter-
mine the holomorphic quadratic differential representing the difference of the
projective structures.

5. (a) Show that the Schwarzian tensor of a conformal metric is holomorphic
if and only if the curvature of the metric is locally constant.

(b) Conclude that a conformal metric with holomorphic Schwarzian tensor
is always the pullback by a holomorphic map of one of the following
“standard” conformal metrics:

e A positive multiple of the spherical metric of S? ~ CP!,
e The Euclidean metric of C, or
e A positive multiple of the hyperbolic metric the unit disk A C C.

6. Show that the unit tangent bundle of hyperbolic space H?® can be naturally
identified with the space of pairs (p,c!)) where p € CP' and where o) is
the 1-jet of a conformal metric on a neighborhood of p. (Consider the way
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that PSLyC acts on both spaces.) How is this related to the Epstein surface
construction?

Explicitly determine the osculation map C — PSL,;C of the entire function
exp(z). Verify that its Darboux derivative gives the expected connection to
the Schwarzian derivative.

(*) The mini-course discussed limits of holonomy representations for projec-
tive structures on a compact Riemann surface of genus ¢ > 1. How much
of this picture can be developed analogously for projective structures on an
elliptic curve (i.e. a Riemann surface structure on the torus) and the limits
of their holonomy representations Z & Z — PSL,C?

(*) For t € RT let p; : Fy — PSLyR be a representation which takes the
generators to a pair of hyperbolic isometries of H? with orthogonal axes, each
having translation length ¢. For ¢ large enough, this is a discrete, faithful
representation. What is the Morgan-Shalen limit of this path (as t — co) in
the boundary of the Fy character variety? What action on a tree arises from
the Bestvina-Paulin geometric limit construction, using the intersection of
axes of the generators as a base point?

(*) When studying projective structures on punctured Riemann surfaces, a
natural condition that makes the theory analogous to the compact case is
to consider only bounded projective structures, which differ from a finite-area
hyperbolic structure by a holomorphic quadratic differential with at most
simple poles at the punctures.

(a) Consider a four-punctured sphere X, = C\ {0,1,A}. This Riemann
surface inherits a projective structure as a subset of C, which we call
the embedded projective structure. Is this projective structure bounded?

(b) Consider the difference between an arbitrary bounded projective struc-
ture on X, and the embedded projective structure. What family of
meromorphic quadratic differentials on X, arises in this way?

(Hint: It is not just the space of differentials with at most simple poles
at the punctures!)

(¢) Generalize (b) to spheres with n punctures and the differences between
their embedded and bounded projective structures.



2 Open Problem Session

Gunning’s survey [8] on projective structures identifies two key problems in the
theory:

A. Determine which representations arise as holonomy of projective structures.
(That is, determine the image of the holonomy map.)

B. Given a representation of a surface group in PSLy;C, determine which pro-
jective structures have this as their holonomy representation.
(That is, determine the fibers of the holonomy map.)

While there has been significant progress on these questions, variations and
extensions of them continue to guide a lot of ongoing work. Here are some related
open problems:

1. In [6], Gallo, Kapovich, and Marden answer question (A) for the space of all
projective structures on surfaces of a given topological type: A representation
arises as a projective holonomy if and only if it is nonelementary and can be
lifted to SL,C.

However, comparatively little is known about the corresponding fiberwise
question: Given a compact Riemann surface X, and a representation p :
mX — PSLyC (say, described by specifying images for a finite generating
set), decide whether or not there is a projective structure on X with holon-
omy p.

2. In [7], Goldman showed that for a quasi-Fuchsian representation, there is a
natural description of the fiber of the holonomy map in terms of the “wrap-
ping” of the developing map relative to the limit set. The fiber is in bijection

with the set of isotopy classes of multicurves (a countably infinite set).

Can this picture be extended to some points on the boundary of quasi-
Fuchsian space? For example, can one analogously classify the projective
structures with holonomy that is a cyclic cover of a fibered 3-manifold? (I
learned of this question from Frangois Labourie.)

3. The holonomy map from the space of projective structures to the character
variety is a local diffeomorphism but it is not a covering map (as shown
by Hejhal [9]). M. Kapovich has posed (in [10]) the problem of quantifying
the failure to be a covering by giving a criterion to identify when a path of
holonomy representations can be lifted to a path of projective structures.

Here are some additional open problems and topics of ongoing research related
to the mini-course material:



4. The characterization of holonomy limits of projective structures on a fixed
Riemann surface involves the possibility of “folding” of the dual tree of
the quadratic differential. Does nontrivial folding actually occur? That is,
does there exist a divergent sequence of projective structures whose Morgan-
Shalen limit point is not equal to the dual tree of the limit Schwarzian?

(It seems likely that this can happen. It would be natural to first study the
local problem—families of polynomial quadratic differentials with colliding
zeros, and the corresponding developing maps.)

5. After fixing a Riemann surface structure X, one can identify the SLyC char-
acter variety of the underlying topological surface with the moduli space of
rank-2 Higgs bundles with trivial determinant. The projective structures
on X determine a special locus within the character variety—what is the
corresponding set within the space of Higgs bundles?

(This question is essentially problem (1) above, but translated from charac-
ters to Higgs bundles. This set of Higgs bundles has been studied from other
perspectives and is known as the brane of Opers, e.g. in [14) Sec. 4.6]. How-
ever, an explicit description of the Higgs bundles and Higgs fields comprising
this set, such as is available for Teichmiiller space, remains elusive.)

6. Because the action of PSL,C on CP' preserves the set of round circles, there
is a well-defined notion of a “circular curve” on a surface with a projective
structure. Such curves can be seen as analogues of geodesics in this non-
metric geometry.

One can learn a lot about hyperbolic surfaces by cutting them along geodesics
into simpler surfaces, or by studying the geometry of embedded metric disks
(i.e. the injectivity radius function). Relatively little is known about the
corresponding picture for circular curves and circular disks in surfaces with
projective structures, and this seems like a fruitful direction for further ex-
ploration. Here are two concrete questions of this type:

(a) Given an isotopy class v of an essential simple closed curve on a surface
S, describe the subset of the moduli space of CP' structures on S in
which ~ can be realized by a circular curve.

This question has many natural variations: We could ask the same
for a collection of disjoint curves, or for a pants decomposition. The
condition of realization by a circular curve could be weakened to a
piecewise circular curve with k arcs, or a C'! piecewise circular curve,
etc.



(b) Kojima, Mizushima, and Tan have studied projective structures on com-
pact surfaces that are disk packings (see e.g. [12]). This means that the
surface can be decomposed into a finite collection of round disks with
disjoint interiors such that the each connected component of the com-
plement of the disks is triangular. Their survey article describes many
conjectures and open questions related to such structures. Among them
is the following “uniformization conjecture”:

Show that for each isotopy class 7 of triangulation of a surface S and for
each Riemann surface structure X € T(S), there is a unique projective
structure on X in which 7 is realized as the dual graph of a circle
packing.

7. A key step in the work of Gallo-Kapovich-Marden on holonomy of projective
structures (see [6]) is to show that for any nonelementary representation of
m.S into PSLyC, there exists a Schottky pants decomposition, i.e. a pants
decomposition of S in which the restriction of the representation to each
pair of pants is a classical Schottky group. It is then natural to ask for
a characterization of the set of Schottky pants decompositions that a given
representation admits, and how this set varies as the representation is moved
through the character variety.

More generally, one could start with a representation m.S — G into an a
Lie group G and ask what conditions on a representation of Fy — G can
be ensured for the restriction of p to each element of some pants decom-
position. (Perhaps this could be the starting point for a program to un-
derstand a generic representation of 715 into GG in the same way that the
Gallo-Kapovich-Marden theorem says that one can use CP' structures to
understand a generic representation of 7S into SLyC.)
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