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GCP Big Data reference architecture
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Application 
logs

One possible flow

Impression
Start stream

Add to playlist 
Share

....

Cloud Pub/Sub
Ingest and 
propagate

Cloud Dataflow
Processing and

 imperative 
analysis

BigQuery
Durable storage 
and interactive 

analysis

Questions you might ask
- Which application sections are receiving the most impressions?
- Who is the top artist by stream starts in the last minute?
- What is the average session length for users in Seattle?
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10+ years of tackling Big Data problems

2002 2004 2005 2006 2008 2010 2012 2014 2015

GFS Map Reduce BigTable Dremel PubSub Flume Java Millwheel Tensorflow

Google Papers

Dataflow
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10+ years of tackling Big Data problems

2002 2004 2005 2006 2008 2010 2012 2014 2015

GFS Map Reduce BigTable PubSub Flume Java Millwheel Tensorflow
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DataflowDremel
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The Dremel paper
In: Proc. 36th VLDB, Sept 2010.  Link.

http://research.google.com/pubs/pub36632.html
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Dremel in 2016

Dremel is mission critical for Google

In production for 10+ years, in every Google datacenter

Internal usage every month:

● O(Exabytes) analyzed
● O(Quadrillions) of rows scanned
● 80% of Googlers use it
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BigQuery ≃ Dremel + cloud

Our idea of highly available, managed analytics:

● no indexing, no resharding, no storage resizing
● just ...

RUN QUERY
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BigQuery ≃ Dremel + cloud

Encrypted, durable and highly available

Streaming ingest for unbounded data sets

Fast, petabyte-scale with SQL interface

Full-managed data warehouse

Near-unlimited resources, only pay for what you use

– General Availability in 2012
– Same engineering team
– Same code base
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But what have we done lately?
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BigQuery: 5+ years of innovation
2010 2011 2012 2013 2014

Public launch

Large query results

2015 2016

900

300

0

1,200

code submits

Beta Release at Google I/O

Dremel X

Big JOIN support

Dynamic Execution

Capacitor

Faster shuffle

100k qps streaming

User-defined functions
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● Long-lived Serving Tree

Dremel architecture: 2006–2015

Distributed Storage

Leaf Leaf LeafLeaf

Mixer 1Mixer 1

● Partial Reduction

● Columnar Storage

● Diskless data flow

Mixer 0
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Dremel X architecture (2015–now)

Master

Distributed Storage

Shard Shard ShardShard

● Columnar Storage

● Dynamic Serving Tree
Shard Shard

Shard Shard Shard Shard

Shard Shard
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xc*
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{Hey Jude, 5375}

{My Michelle, 2188}

{My Michelle, 9363}

{Hey Jude, 9502}

{Here Comes The Sun, 7383}

{My Michelle, 3912}

Decompress Filter

SELECT play_count FROM songs WHERE name CONTAINS “Sun”;

Storage engine: ColumnIO (2006–2015)
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rm7y5
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rm7y5

Data

CONTAINS(“Sun”)

CONTAINS(“Sun”)

CONTAINS(“Sun”)

CONTAINS(“Sun”)
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CONTAINS(“Sun”)

Emit

{7833}
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Dictionary

SELECT play_count FROM songs WHERE name CONTAINS “Sun”;

Storage engine: Capacitor (2016–now)

2

1

1

2

0

1

CONTAINS(“Sun”)

CONTAINS(“Sun”)

CONTAINS(“Sun”)

0

1

2

F

F

T
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Filter Lookup

xc*
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8ec

7h!
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c-%

Hey Jude

My Michelle

Here Comes the Sun

Performance improvement:

● 2x faster average over all queries
● 10–1000x faster for selective filters
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Cloud Dataflow
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Application 
logs

One possible flow

Impression
Start stream

Add to playlist 
Share

....

Cloud Pub/Sub
Ingest and 
propagate

Cloud Dataflow
Processing and

 imperative 
analysis

BigQuery
Durable storage 
and interactive 

analysis

Questions you might ask
- Which application sections are receiving the most impressions?
- Who is the top artist by stream starts in the last minute?
- What is the average session length for users in Seattle?
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Time-to-answers matters

Process point of sale 
transaction logs

Who is the best at 
collecting Poké Balls?

Who/what is trending?Sequence a human 
genome
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Data boundedness

Bounded Unbounded

Finite data set
Fixed schema

Complete
Typically at rest

Infinite data set
Potentially changing schema

Never complete
Typically not at rest

Time
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Latency happens

Transmit Ingest Process

Network 
delay  or 

unavailable

Ingest delay 
(write 

latency)

Ingest failure

Throughput 
(read 

latency)

Backlog

Hardware 
failure

Poor engine 
design

Starved 
resources

Internal 
backlog

Confused 
heuristics
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The evolution of Apache Beam

MapReduce

BigTable DremelColossus

FlumeMegastoreSpanner

PubSub

Millwheel
Apache 
Beam

Google Cloud 
Dataflow



 

Apache Beam (incubating) 
is a unified programming 
model designed to provide 
efficient and portable data 
processing pipelines



  

1.Classic batch 2. Batch with fixed 
windows

3. Streaming 

5. Streaming with 
retractions

4. Streaming with 
speculative + late data

6. Sessions



 

Formalizing Event-Time Skew

Watermarks describe event time 
progress in the processing time 
space:

"No timestamp earlier than the 
watermark will be seen"

Often based on heuristics
● Too slow? Results are delayed :-(
● Too fast? Some data is late :-(



 

● What are you computing?

● Where in event time?

● When in processing time?

● How do refinements relate?

What Where When How



 

What are you computing? 

Per-element Aggregations Compositions
(subgraphs)

What Where When How



 

What: computing integer sums
What Where When How



 

What: computing integer sums
What Where When How



 

Windowing divides data into event-time-based finite chunks.

Often required when doing aggregations over unbounded data.

Where in event time?

Fixed Sliding
1 2 3

54

Sessions

2

431

Key 
2

Key 
1

Key 
3

Time

1 2 3 4

What Where When How



 

Where: Fixed 2-minute Windows
What Where When How



 

When in processing time?

• Triggers control 
when results are 
emitted.

• Triggers are often 
relative to the 
watermark.

What Where When How



 

When: triggering at the watermark
What Where When How



 

When: early and late firings
What Where When How



 

Q: if there are multiple panes per window … what should 
be emitted?

• discard – emit the delta over the pane
• accumulate – emit running total
• accumulate + retract* – retract last sum & emit 

new running total

A: drive by needs of the downstream consumer

How do refinements relate?

*Accumulating & Retracting not yet implemented in Apache Beam.

What Where When How



 

How: add newest, remove previous
What Where When How



 

1.Classic batch 2. Batch with fixed 
windows

3. Streaming 5. Streaming with 
retractions

4. Streaming with 
speculative + late data

Customizing What When Where How
What Where When How
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Work is unevenly distributed across tasks
•Underlying data size
•Processing differences
•Runtime effects

Effects are cumulative per stage

The straggler problem



Beam readers provide simple progress signals, enable runners to take 
action based on execution-time characteristics.

APIs for how much work is pending:
•Bounded:       double getFractionConsumed()
•Unbounded:   long getBacklogBytes()

Work-stealing:

•Bounded: Source splitAtFraction(double)
        int getParallelismRemaining()

Beam readers enable dynamic adaptation



Now

Done work Active work Predicted completion

Ta
sk

s

Time

Predicted 
mean time

Dynamic work rebalancing
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Now

Ta
sk

s

Now

Dynamic work rebalancing

Done work Active work Predicted completion

Time



2-stage pipeline,
split “evenly” but uneven in practice

Same pipeline
with dynamic work rebalancing

Savings

Dynamic work rebalancing: a real example
Beam pipeline on the Google Cloud Dataflow runner



Initially allocate ~80 workers
based on input size

Multiple rounds of 
upsizing enabled
by dynamic 
splitting

Long-running 
tasks aborted 
without causing 
stragglers

Scale up to 1000 workers
* tasks stay well-balanced
* without initial oversplitting

Dynamic work rebalancing + Autoscaling
Beam pipeline on the Google Cloud Dataflow runner
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Cloud Dataflow execution runner

Compute and Storage

Unbounded

Bounded

Resource management

Resource auto-scaler

Dynamic work 
rebalancer

Work scheduler

Monitoring

Log collection

Graph optimization

Auto-healing

Intelligent watermarking S
O
U
R
C
E

S
I
N
K



 

The Dataflow Model & Cloud Dataflow 

Dataflow Model & SDKs

a unified model for 
batch and stream processing

no-ops, fully managed service

Google Cloud Dataflow



 

a unified model for 
batch and stream processing
 supporting multiple runtimes

a great place to run Beam 

Apache Beam Google Cloud Dataflow

The Dataflow Model & Cloud Dataflow Beam



 

1. The Beam Model: What / Where / When / How

2. SDKs for writing Beam pipelines – starting with Java

3. Runners for existing distributed processing backends
• Apache Flink (thanks to data Artisans)
• Apache Spark (thanks to Cloudera)
• Google Cloud Dataflow (fully managed service)
• Local (in-process) runner for testing

What is in Apache Beam?



 

Categorizing runner capabilities

http://beam.incubator.apache.org/capability-matrix/



 

1H 2016
Refactoring

(slight chaos)

Apache Beam roadmap

02/01/2016
Enter Apache 

Incubator

2H 2016
Portability basics +
Multiple runners + 
Community growth

⇒ towards a 
Top-Level Project

1H 2017
Stable APIs

02/25/2016
1st commit to 
ASF repository



 

Collaborate – a community-driven effort 
across many organizations and contributors

Grow – the Beam ecosystem and community 
with active, open involvement

Growing the Beam community



Now

1st Wave
Colocation

2nd Wave
Virtualized 

Datacenters

User Managed
User Configured
User Maintained

Next

Intelligent Services
Auto Everything



Big Data 
with Google

Understanding

Focus on insights, not 
infrastructure

From batch to real-time

Apache Beam offers a 
common model across 
execution engines: 
please contribute!

johnwilkes@google.com

Programming


