
Large-scale data analysis at cloud scale
johnwilkes@google.com
2016-09

Based on slides from Eric Schmidt, Greg
DeMichillie, Frances Perry, Tyler Akidau,
Dan Halperin.

Data & Analytics

Infrastructure & Operations

Application Development

3

GCP Big Data reference architecture

4

Application
logs

One possible flow

Impression
Start stream

Add to playlist
Share

....

Cloud Pub/Sub
Ingest and
propagate

Cloud Dataflow
Processing and

 imperative
analysis

BigQuery
Durable storage
and interactive

analysis

Questions you might ask
- Which application sections are receiving the most impressions?
- Who is the top artist by stream starts in the last minute?
- What is the average session length for users in Seattle?

5

10+ years of tackling Big Data problems

2002 2004 2005 2006 2008 2010 2012 2014 2015

GFS Map Reduce BigTable Dremel PubSub Flume Java Millwheel Tensorflow

Google Papers

Dataflow

6

10+ years of tackling Big Data problems

2002 2004 2005 2006 2008 2010 2012 2014 2015

GFS Map Reduce BigTable PubSub Flume Java Millwheel Tensorflow

Google Papers

DataflowDremel

7

The Dremel paper
In: Proc. 36th VLDB, Sept 2010. Link.

http://research.google.com/pubs/pub36632.html

8

Dremel in 2016

Dremel is mission critical for Google

In production for 10+ years, in every Google datacenter

Internal usage every month:

● O(Exabytes) analyzed
● O(Quadrillions) of rows scanned
● 80% of Googlers use it

9

BigQuery ≃ Dremel + cloud

Our idea of highly available, managed analytics:

● no indexing, no resharding, no storage resizing
● just ...

RUN QUERY

10

BigQuery ≃ Dremel + cloud

Encrypted, durable and highly available

Streaming ingest for unbounded data sets

Fast, petabyte-scale with SQL interface

Full-managed data warehouse

Near-unlimited resources, only pay for what you use

– General Availability in 2012
– Same engineering team
– Same code base

1111

But what have we done lately?

12

BigQuery: 5+ years of innovation
2010 2011 2012 2013 2014

Public launch

Large query results

2015 2016

900

300

0

1,200

code submits

Beta Release at Google I/O

Dremel X

Big JOIN support

Dynamic Execution

Capacitor

Faster shuffle

100k qps streaming

User-defined functions

13

● Long-lived Serving Tree

Dremel architecture: 2006–2015

Distributed Storage

Leaf Leaf LeafLeaf

Mixer 1Mixer 1

● Partial Reduction

● Columnar Storage

● Diskless data flow

Mixer 0

14

Dremel X architecture (2015–now)

Master

Distributed Storage

Shard Shard ShardShard

● Columnar Storage

● Dynamic Serving Tree
Shard Shard

Shard Shard Shard Shard

Shard Shard

15

xc*

c8!

8ec

7h!

a7c

c-%

{Hey Jude, 5375}

{My Michelle, 2188}

{My Michelle, 9363}

{Hey Jude, 9502}

{Here Comes The Sun, 7383}

{My Michelle, 3912}

Decompress Filter

SELECT play_count FROM songs WHERE name CONTAINS “Sun”;

Storage engine: ColumnIO (2006–2015)

F$#h5

rm7y5

rm7y5

F$#h5

4t#@h

rm7y5

Data

CONTAINS(“Sun”)

CONTAINS(“Sun”)

CONTAINS(“Sun”)

CONTAINS(“Sun”)

CONTAINS(“Sun”)

CONTAINS(“Sun”)

Emit

{7833}

16

Dictionary

SELECT play_count FROM songs WHERE name CONTAINS “Sun”;

Storage engine: Capacitor (2016–now)

2

1

1

2

0

1

CONTAINS(“Sun”)

CONTAINS(“Sun”)

CONTAINS(“Sun”)

0

1

2

F

F

T

Data Emit

{7833}

Filter Lookup

xc*

c8!

8ec

7h!

a7c

c-%

Hey Jude

My Michelle

Here Comes the Sun

Performance improvement:

● 2x faster average over all queries
● 10–1000x faster for selective filters

1717

Cloud Dataflow

18

Application
logs

One possible flow

Impression
Start stream

Add to playlist
Share

....

Cloud Pub/Sub
Ingest and
propagate

Cloud Dataflow
Processing and

 imperative
analysis

BigQuery
Durable storage
and interactive

analysis

Questions you might ask
- Which application sections are receiving the most impressions?
- Who is the top artist by stream starts in the last minute?
- What is the average session length for users in Seattle?

19

Time-to-answers matters

Process point of sale
transaction logs

Who is the best at
collecting Poké Balls?

Who/what is trending?Sequence a human
genome

20

Data boundedness

Bounded Unbounded

Finite data set
Fixed schema

Complete
Typically at rest

Infinite data set
Potentially changing schema

Never complete
Typically not at rest

Time

21

Latency happens

Transmit Ingest Process

Network
delay or

unavailable

Ingest delay
(write

latency)

Ingest failure

Throughput
(read

latency)

Backlog

Hardware
failure

Poor engine
design

Starved
resources

Internal
backlog

Confused
heuristics

22

The evolution of Apache Beam

MapReduce

BigTable DremelColossus

FlumeMegastoreSpanner

PubSub

Millwheel
Apache
Beam

Google Cloud
Dataflow

Apache Beam (incubating)
is a unified programming
model designed to provide
efficient and portable data
processing pipelines

1.Classic batch 2. Batch with fixed
windows

3. Streaming

5. Streaming with
retractions

4. Streaming with
speculative + late data

6. Sessions

Formalizing Event-Time Skew

Watermarks describe event time
progress in the processing time
space:

"No timestamp earlier than the
watermark will be seen"

Often based on heuristics
● Too slow? Results are delayed :-(
● Too fast? Some data is late :-(

● What are you computing?

● Where in event time?

● When in processing time?

● How do refinements relate?

What Where When How

What are you computing?

Per-element Aggregations Compositions
(subgraphs)

What Where When How

What: computing integer sums
What Where When How

What: computing integer sums
What Where When How

Windowing divides data into event-time-based finite chunks.

Often required when doing aggregations over unbounded data.

Where in event time?

Fixed Sliding
1 2 3

54

Sessions

2

431

Key
2

Key
1

Key
3

Time

1 2 3 4

What Where When How

Where: Fixed 2-minute Windows
What Where When How

When in processing time?

• Triggers control
when results are
emitted.

• Triggers are often
relative to the
watermark.

What Where When How

When: triggering at the watermark
What Where When How

When: early and late firings
What Where When How

Q: if there are multiple panes per window … what should
be emitted?

• discard – emit the delta over the pane
• accumulate – emit running total
• accumulate + retract* – retract last sum & emit

new running total

A: drive by needs of the downstream consumer

How do refinements relate?

*Accumulating & Retracting not yet implemented in Apache Beam.

What Where When How

How: add newest, remove previous
What Where When How

1.Classic batch 2. Batch with fixed
windows

3. Streaming 5. Streaming with
retractions

4. Streaming with
speculative + late data

Customizing What When Where How
What Where When How

W
or

ke
r

Time

Work is unevenly distributed across tasks
•Underlying data size
•Processing differences
•Runtime effects

Effects are cumulative per stage

The straggler problem

Beam readers provide simple progress signals, enable runners to take
action based on execution-time characteristics.

APIs for how much work is pending:
•Bounded: double getFractionConsumed()
•Unbounded: long getBacklogBytes()

Work-stealing:

•Bounded: Source splitAtFraction(double)
 int getParallelismRemaining()

Beam readers enable dynamic adaptation

Now

Done work Active work Predicted completion

Ta
sk

s

Time

Predicted
mean time

Dynamic work rebalancing

Time

Now

Ta
sk

s

Now

Dynamic work rebalancing

Done work Active work Predicted completion

Time

2-stage pipeline,
split “evenly” but uneven in practice

Same pipeline
with dynamic work rebalancing

Savings

Dynamic work rebalancing: a real example
Beam pipeline on the Google Cloud Dataflow runner

Initially allocate ~80 workers
based on input size

Multiple rounds of
upsizing enabled
by dynamic
splitting

Long-running
tasks aborted
without causing
stragglers

Scale up to 1000 workers
* tasks stay well-balanced
* without initial oversplitting

Dynamic work rebalancing + Autoscaling
Beam pipeline on the Google Cloud Dataflow runner

44

Cloud Dataflow execution runner

Compute and Storage

Unbounded

Bounded

Resource management

Resource auto-scaler

Dynamic work
rebalancer

Work scheduler

Monitoring

Log collection

Graph optimization

Auto-healing

Intelligent watermarking S
O
U
R
C
E

S
I
N
K

The Dataflow Model & Cloud Dataflow

Dataflow Model & SDKs

a unified model for
batch and stream processing

no-ops, fully managed service

Google Cloud Dataflow

a unified model for
batch and stream processing
 supporting multiple runtimes

a great place to run Beam

Apache Beam Google Cloud Dataflow

The Dataflow Model & Cloud Dataflow Beam

1. The Beam Model: What / Where / When / How

2. SDKs for writing Beam pipelines – starting with Java

3. Runners for existing distributed processing backends
• Apache Flink (thanks to data Artisans)
• Apache Spark (thanks to Cloudera)
• Google Cloud Dataflow (fully managed service)
• Local (in-process) runner for testing

What is in Apache Beam?

Categorizing runner capabilities

http://beam.incubator.apache.org/capability-matrix/

1H 2016
Refactoring

(slight chaos)

Apache Beam roadmap

02/01/2016
Enter Apache

Incubator

2H 2016
Portability basics +
Multiple runners +
Community growth

⇒ towards a
Top-Level Project

1H 2017
Stable APIs

02/25/2016
1st commit to
ASF repository

Collaborate – a community-driven effort
across many organizations and contributors

Grow – the Beam ecosystem and community
with active, open involvement

Growing the Beam community

Now

1st Wave
Colocation

2nd Wave
Virtualized

Datacenters

User Managed
User Configured
User Maintained

Next

Intelligent Services
Auto Everything

Big Data
with Google

Understanding

Focus on insights, not
infrastructure

From batch to real-time

Apache Beam offers a
common model across
execution engines:
please contribute!

johnwilkes@google.com

Programming

