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Motivation

o A measure 7(Px,y) captures how X influences Y.

@ Choices of 7(Px,y):

» Linear: Pearson Correlation Coefficient: px y = _ Cov(X,Y)
’ v/ Var(X)Var(Y)
» Nonlinear: Mutual Information /(X;Y)=E {Iogp’%]

@ Sometimes they don't work well.
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Motivation

@ Let X, Y be binary random variables; X denoting smoking and Y
denoting lung-cancer. X — Y.

o Hypothetical city: Px is small but Py x is large.

@ Mutual Information is very small.
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Motivation
@ Let X, Y be binary random variables; X denoting smoking and Y
denoting lung-cancer. X — Y.
o Hypothetical city: Px is small but Py x is large.
@ Mutual Information is very small.
@ Depends on joint distribution Px y: Factual influence measure.

@ Depends only on conditional distribution Py x: Potential influence
measure.
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Potential Influence Measures

@ Focus of this talk: Potential influence measures.
o Let the channel from X to Y be given as Py|x.

@ A potential influence measure on the space of conditional
distributions.

T Py|X — RT.
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UMI: Uniform Mutual Information

o UMI = I(pry‘x).

XNUX—>Py|X—>Y.
@ Pros: Potential influence measure.

o Cons: Requires support of X to be discrete or compact.
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CMI: Capacitated Mutual Information

e Shannon capacity CMI £ maxgq, /(QxPy|x).

XNQ)(—>Py|X—>Y.
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Estimators

@ Question: How to estimate UMI and CMI from samples of (X, Y)?
@ Real valued, high dimensional, (X, Y).

o Key Issue: Samples are drawn from Px Py x but need to estimate
MI for UX'DY\X-

@ For CMI: need to do optimization and estimation jointly.
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Possible Approaches

@ Joint kernel density estimation for Px y.

> Need numerical integration.

» May overkill.
@ Discretization based algorithms.

» May be sensitive.

Pramod Viswanath (UIUC) Conditional Dependence Estimation September 23, 2016 8/21



Mutual Information Estimators

o 1(X;Y)=H(X)+H(Y)—H(X,Y).
@ Pros: We have good entropy estimators.

> Nearest neighbor approach.

@ Cons: Not adaptable to UMI and CMI.

@ Want other MI estimators to be adaptable to UMI and CMI.
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Adapting to UMI and CMI
o Inspired work by [Kraskov, Stogbauer and Grassberger, 2004]:

~ 1
IKSG(X; Y) = |Og(k — 5) + Iog

= I

N
Z log(ny.i) + log(ny.)).

@ n, ;: number of samples within /., distance of k-nearest distance py ;
in X-dimension.
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Adapting to UMI and CMI

o Inspired work by [Kraskov, Stogbauer and Grassberger, 2004]:

N

Tesa(X; ¥) = log(k — 2) + log(N) — > (log(n.) + log(n.).
i=1

@ n, ;: number of samples within /., distance of k-nearest distance py ;
in X-dimension.

o Importance sampling:

» Compute functional of QxPy|x whereas samples from Px Py x.

» Weights: w; = Qx(X:)/Px(X;).

Pramod Viswanath (UIUC) Conditional Dependence Estimation September 23, 2016 10 / 21



Adapting to UMI and CMI

o Inspired work by [Kraskov, Stogbauer and Grassberger, 2004]:

N

L0 ) = log(k = 5) +108(N) = 3 Y~ v (log(ncs) + (. ).
i=1

@ n, ;: number of samples within /., distance of k-nearest distance py ;
in X-dimension.

o Importance sampling:

» Compute functional of QxPy|x whereas samples from Px Py x.

» Weights: w; = Qx(X:)/Px(X;).
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Adapting to UMI and CMI
e Inspired work by [Kraskov, Stogbauer and Grassberger, 2004]:

w 1
(X Y) = log(k — 5) + log(N

N
Z (log(7x;) + log(ny.))-

= \

e 7 ;: Weighted number of samples within /., distance of k-nearest
distance py ; in X-dimension.

o Importance sampling:

» Compute functional of QxPy|x whereas samples from Px Py x.

» Weights: w; = Qx(Xi)/Px(Xi).
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Adapting to UMI and CMI

e UMI : Let Qx = Ux, weights are inversely proportional to density
estimate.

@ Optimize over weights for CMI:

T(}MI(X; Y)= ernlax 17§<"S")G(X; Y).

Wii) g Wi=
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Application

@ Single Cell Flow Cytometry [Krishnaswamy et al, Science 2014]:
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Single Cell Cytometry Application

@ Single Cell Flow Cytometry:
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Single Cell Cytometry Application

@ Single Cell Flow Cytometry:

)Im Xln X]m Peak(X - ¥) = t0
eai il =t
Yo Yeq Yim
Flow l 1 l Peak(¥ — Z) = t1
Zrg  Zn Ztm
l 1 Peak(Z - W) =1tm
Weo Wi Wem
Time

@ Succeed if Peak(X — Y) < Peak(Y — Z) < Peak(Z — W).
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Single Cell Cytometry Application

@ Significant reduction in sample complexity.
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Figure: Figure 6(a,b) of [Krishnaswamy, et. al.]
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Axiomatic View of potential influence measure
@ Why choose UMI and CMI as potential influence measures?

(0) Independence.
(1) Data Processing.
(2) Additivity.

(3) Monotonicity: 7 monotonic function of the range. Range = Convex

Hull (Pyx=x)- .
/ )

S, simp]ex of pdf on X S, S|mplex of pdfon X
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Axiomatic View of influence measure 7

@ UMI satisfies independence, data-processing, additivity axioms.
e UMl is NOT monotonic.
@ CMI satisfies all the axioms.

@ Other measures?
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Summary

@ Novel potential measures of influence of X on Y.
» UMI, CMI.
o Estimators of UMI and CMI from sample.

> Nearest neighbor methods.
» KSG mutual information estimator.
» Importance sampling.
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