Conditional Dependence Estimation via Shannon Capacity: Axioms, Estimators and Applications

Pramod Viswanath

University of Illinois at Urbana-Champaign

09/23/2016

Motivation

- A measure $\tau(P_{X,Y})$ captures how X influences Y.
- Choices of $\tau(P_{X,Y})$:
 - Linear: Pearson Correlation Coefficient: $\rho_{X,Y} = \frac{\text{Cov}(X,Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}}$.
 - ► Nonlinear: Mutual Information $I(X; Y) = \mathbb{E}\left[\log \frac{p_{xy}}{p_{x}p_{y}}\right]$.
- Sometimes they don't work well.

Motivation

- Let X, Y be binary random variables; X denoting smoking and Y denoting lung-cancer. X → Y.
- Hypothetical city: P_X is small but $P_{Y|X}$ is large.
- Mutual Information is very small.

Motivation

- Let X, Y be binary random variables; X denoting smoking and Y denoting lung-cancer. X → Y.
- Hypothetical city: P_X is small but $P_{Y|X}$ is large.
- Mutual Information is very small.
- Depends on joint distribution $P_{X,Y}$: Factual influence measure.
- Depends only on conditional distribution P_{Y|X}: Potential influence measure.

Potential Influence Measures

- Focus of this talk: Potential influence measures.
- Let the channel from X to Y be given as $P_{Y|X}$.
- A potential influence measure on the space of conditional distributions.

$$\tau: P_{Y|X} \mapsto \mathbb{R}^+$$

UMI: Uniform Mutual Information

•
$$UMI \triangleq I(U_X P_{Y|X}).$$

$$X \sim U_X \longrightarrow P_{Y|X} \longrightarrow Y.$$

- Pros: Potential influence measure.
- Cons: Requires support of X to be discrete or compact.

CMI: Capacitated Mutual Information

• Shannon capacity $CMI \triangleq \max_{Q_X} I(Q_X P_{Y|X}).$

$$X \sim Q_X \longrightarrow P_{Y|X} \longrightarrow Y.$$

Estimators

- Question: How to estimate UMI and CMI from samples of (X, Y)?
- Real valued, high dimensional, (X, Y).
- Key Issue: Samples are drawn from $P_X P_{Y|X}$ but need to estimate MI for $U_X P_{Y|X}$.
- For CMI: need to do optimization and estimation jointly.

Possible Approaches

- Joint kernel density estimation for $P_{X,Y}$.
 - Need numerical integration.
 - May overkill.
- Discretization based algorithms.
 - May be sensitive.

Mutual Information Estimators

•
$$\widehat{I}(X;Y) = \widehat{H}(X) + \widehat{H}(Y) - \widehat{H}(X,Y).$$

- Pros: We have good entropy estimators.
 - Nearest neighbor approach.
- Cons: Not adaptable to UMI and CMI.
- Want other MI estimators to be adaptable to UMI and CMI.

• Inspired work by [Kraskov, Stögbauer and Grassberger, 2004]:

$$\widehat{I}_{\mathrm{KSG}}(X;Y) = \log(k-\frac{1}{2}) + \log(N) - \frac{1}{N}\sum_{i=1}^{N} \left(\log(n_{x,i}) + \log(n_{y,i})\right).$$

n_{x,i}: number of samples within ℓ_∞ distance of *k*-nearest distance ρ_{k,i} in *X*-dimension.

• Inspired work by [Kraskov, Stögbauer and Grassberger, 2004]:

$$\widehat{J}_{\mathrm{KSG}}(X;Y) = \log(k-rac{1}{2}) + \log(N) - rac{1}{N}\sum_{i=1}^{N} \left(\log(n_{x,i}) + \log(n_{y,i})
ight).$$

- *n_{x,i}*: number of samples within ℓ_∞ distance of *k*-nearest distance ρ_{k,i} in *X*-dimension.
- Importance sampling:
 - Compute functional of $Q_X P_{Y|X}$ whereas samples from $P_X P_{Y|X}$.

• Weights:
$$w_i = Q_X(X_i)/P_X(X_i)$$
.

• Inspired work by [Kraskov, Stögbauer and Grassberger, 2004]:

$$\widehat{I}_{ ext{KSG}}^{(w)}(X;Y) = \log(k - rac{1}{2}) + \log(N) - rac{1}{N} \sum_{i=1}^{N} w_i (\log(n_{x,i}) + \log(n_{y,i})).$$

- *n_{x,i}*: number of samples within ℓ_∞ distance of *k*-nearest distance ρ_{k,i} in *X*-dimension.
- Importance sampling:
 - Compute functional of $Q_X P_{Y|X}$ whereas samples from $P_X P_{Y|X}$.

• Weights:
$$w_i = Q_X(X_i)/P_X(X_i)$$
.

• Inspired work by [Kraskov, Stögbauer and Grassberger, 2004]:

$$\widehat{N}_{ ext{KSG}}^{(w)}(X;Y) = \log(k-rac{1}{2}) + \log(N) - rac{1}{N}\sum_{i=1}^{N} w_i \big(\log(\widetilde{n}_{\mathsf{x},i}) + \log(\widetilde{n}_{\mathsf{y},i})\big).$$

- $\tilde{n}_{x,i}$: Weighted number of samples within ℓ_{∞} distance of *k*-nearest distance $\rho_{k,i}$ in *X*-dimension.
- Importance sampling:
 - Compute functional of $Q_X P_{Y|X}$ whereas samples from $P_X P_{Y|X}$.

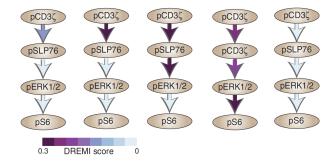
• Weights:
$$w_i = Q_X(X_i)/P_X(X_i)$$
.

- UMI : Let $Q_X = U_X$, weights are **inversely proportional** to density estimate.
- **Optimize** over weights for CMI:

$$\widehat{l}_{\mathrm{CMI}}(X;Y) = \max_{w_i:\sum_{i=1}^n w_i=1} \widehat{l}_{\mathrm{KSG}}^{(w)}(X;Y).$$

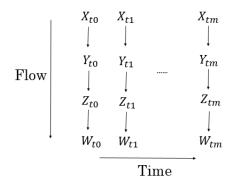
Application

• Single Cell Flow Cytometry [Krishnaswamy et al, Science 2014]:



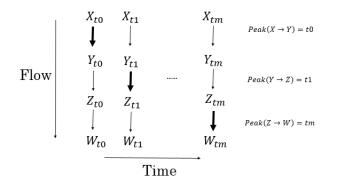
Single Cell Cytometry Application

• Single Cell Flow Cytometry:



Single Cell Cytometry Application

• Single Cell Flow Cytometry:



• Succeed if $\operatorname{Peak}(X \to Y) \leq \operatorname{Peak}(Y \to Z) \leq \operatorname{Peak}(Z \to W)$.

Pramod Viswanath (UIUC)

Single Cell Cytometry Application

• Significant reduction in sample complexity.

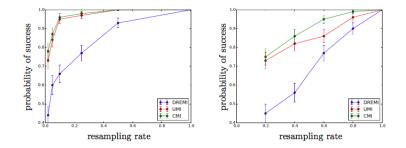
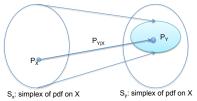


Figure: Figure 6(a,b) of [Krishnaswamy, et. al.]

Axiomatic View of potential influence measure

- Why choose UMI and CMI as potential influence measures?
 - (0) Independence.
 - (1) Data Processing.
 - (2) Additivity.
 - (3) **Monotonicity**: τ monotonic function of the range. Range = Convex Hull ($P_{Y|X=x}$).



Axiomatic View of influence measure au

- UMI satisfies independence, data-processing, additivity axioms.
- UMI is **NOT** monotonic.
- CMI satisfies all the axioms.
- Other measures?

- Novel potential measures of influence of X on Y.
 - ► UMI, CMI.
- Estimators of UMI and CMI from sample.
 - Nearest neighbor methods.
 - KSG mutual information estimator.
 - Importance sampling.

Collaborators

