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Motivation

A measure τ(PX ,Y ) captures how X influences Y .

Choices of τ(PX ,Y ):

I Linear: Pearson Correlation Coefficient: ρX ,Y = Cov(X ,Y )√
Var(X )Var(Y )

.

I Nonlinear: Mutual Information I (X ;Y ) = E
[
log

pxy
pxpy

]
.

Sometimes they don’t work well.
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Motivation

Let X ,Y be binary random variables; X denoting smoking and Y
denoting lung-cancer. X → Y .

Hypothetical city: PX is small but PY |X is large.

Mutual Information is very small.

Depends on joint distribution PX ,Y : Factual influence measure.

Depends only on conditional distribution PY |X : Potential influence
measure.
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Potential Influence Measures

Focus of this talk: Potential influence measures.

Let the channel from X to Y be given as PY |X .

A potential influence measure on the space of conditional
distributions.

τ : PY |X 7→ R+.
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UMI: Uniform Mutual Information

UMI , I (UXPY |X ).

X ∼ UX −→ PY |X −→ Y .

Pros: Potential influence measure.

Cons: Requires support of X to be discrete or compact.
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CMI: Capacitated Mutual Information

Shannon capacity CMI , maxQX
I (QXPY |X ).

X ∼ QX −→ PY |X −→ Y .
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Estimators

Question: How to estimate UMI and CMI from samples of (X ,Y )?

Real valued, high dimensional, (X ,Y ).

Key Issue: Samples are drawn from PXPY |X but need to estimate
MI for UXPY |X .

For CMI: need to do optimization and estimation jointly.
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Possible Approaches

Joint kernel density estimation for PX ,Y .

I Need numerical integration.

I May overkill.

Discretization based algorithms.

I May be sensitive.
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Mutual Information Estimators

Î (X ;Y ) = Ĥ(X ) + Ĥ(Y )− Ĥ(X ,Y ).

Pros: We have good entropy estimators.

I Nearest neighbor approach.

Cons: Not adaptable to UMI and CMI.

Want other MI estimators to be adaptable to UMI and CMI.
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Adapting to UMI and CMI

Inspired work by [Kraskov, Stögbauer and Grassberger, 2004]:

ÎKSG(X ;Y ) = log(k − 1

2
) + log(N)− 1

N

N∑
i=1

(
log(nx ,i ) + log(ny ,i )

)
.

nx ,i : number of samples within `∞ distance of k-nearest distance ρk,i
in X -dimension.

Importance sampling:

I Compute functional of QXPY |X whereas samples from PXPY |X .

I Weights: wi = QX (Xi )/PX (Xi ).
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Inspired work by [Kraskov, Stögbauer and Grassberger, 2004]:

Î
(w)
KSG(X ;Y ) = log(k − 1

2
) + log(N)− 1

N

N∑
i=1

wi

(
log(ñx ,i ) + log(ñy ,i )

)
.

ñx ,i : Weighted number of samples within `∞ distance of k-nearest
distance ρk,i in X -dimension.

Importance sampling:
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I Weights: wi = QX (Xi )/PX (Xi ).
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Adapting to UMI and CMI

UMI : Let QX = UX , weights are inversely proportional to density
estimate.

Optimize over weights for CMI:

ÎCMI(X ;Y ) = max
wi :

∑n
i=1 wi=1

Î
(w)
KSG(X ;Y ).
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Application

Single Cell Flow Cytometry [Krishnaswamy et al, Science 2014]:
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Single Cell Cytometry Application

Single Cell Flow Cytometry:
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Single Cell Cytometry Application

Single Cell Flow Cytometry:

Succeed if Peak(X → Y ) ≤ Peak(Y → Z ) ≤ Peak(Z →W ).

Pramod Viswanath (UIUC) Conditional Dependence Estimation September 23, 2016 16 / 21



Single Cell Cytometry Application

Significant reduction in sample complexity.

Figure: Figure 6(a,b) of [Krishnaswamy, et. al.]
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Axiomatic View of potential influence measure

Why choose UMI and CMI as potential influence measures?

(0) Independence.

(1) Data Processing.

(2) Additivity.

(3) Monotonicity: τ monotonic function of the range. Range = Convex
Hull (PY |X=x).

Sx: simplex of pdf on X Sy: simplex of pdf on X 

PY|X 

PX 

PY 
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Axiomatic View of influence measure τ

UMI satisfies independence, data-processing, additivity axioms.

UMI is NOT monotonic.

CMI satisfies all the axioms.

Other measures?
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Summary

Novel potential measures of influence of X on Y .

I UMI, CMI.

Estimators of UMI and CMI from sample.

I Nearest neighbor methods.
I KSG mutual information estimator.
I Importance sampling.

Pramod Viswanath (UIUC) Conditional Dependence Estimation September 23, 2016 20 / 21



Collaborators

Weihao Gao Sreeram Kannan Sewoong Oh

Pramod Viswanath (UIUC) Conditional Dependence Estimation September 23, 2016 21 / 21


