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Who am I?
 I am proud to be known as a “animal breeder” or 

“animal breeding scientist”
 That may conjure up some romantic images

 But really one of the first “big data” agricultural 
scientists.
 Also seminal users of mixed model analyses.
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Mixed models
Charles R. Henderson (1911-1989)

Helped developed mixed model analyses for animal 
breeders before they became more widely popular later.

With O. Kempthorne, S. R. Searle, and C. M. von Krosigk. The estimation of environmental and 
genetic trends from records subject to culling. 1959,  Biometric 15:192-218.

ynx1 =       Xβ +           Wuqx1 +           e
data fixed effects genetic (polygenic)      residual

(e.g. age herd)                    effects

u ~ N(0,Aσ2
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e ~ N(0,Iσ2
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A: genetic relationships
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Resource constrained computing 
(in the good old days)

 My Masters Thesis (University of Guelph) 1986-1988.
 Maximum memory request on Guelph IBM mainframe 

computer was (wait for it!): 8MB
 q > 2*13,722 (additive and dominance genetic effects for 

each of 13,722 Holstein cattle including ancestors,
 n = 8,329 cows with phenotypes
 >MME:  180 MB (Full-store) without fixed effects!

 Solution?.. sparse matrix storage techniques
 MME in animal breeding are > 99% zeroes (whew!)..so only 

save non-zeroes
 Thank you Karin Meyer! (DFREML)
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Mixed models and animal breeding

 Mixed Models on Steroids.

 A subtle “q > n” problem: (q = number of animal effects, n = 
number of records)

 Let’s go back in time (1988): 

 already both q and n > 10M cattle back then for USDA 
Holstein national genetic evaluation (Wiggans, 1988)
 Hmm… even sparse matrix software can’t save you there!
 Solution?  Save MME on hard disk; use Gauss-Seidel (now 

precondition conjugate gradient) iteration on data.
 Now (2015) q > 70M cattle, n > 130M or > 650M depending 

on definition of phenotypes. 
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From Brown and Kass (2009)

 “Physicists and engineers very often become immersed 
in the subject matter.  In particular, they work hand in 
hand with neuroscientists and often become 
experimentalists themselves.  Furthermore, engineers 
(and likewise computer scientists) are ambitious; when 
faced with problems, they tend to attack, sweeping 
aside impediments stemming from limited knowledge 
about the procedures that they apply”
 This has been the culture of animal breeding (for better 

or for worse)
 Field of study is important….passion even more so.
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It’s not always about obtaining the 
biggest servers!

 Algorithm development!
 Example 1: MME requires A-1…not A.

 Inverting A is not possible.
 Henderson (again!) developed rules for computing A-1

 computations linear in q! (numerically stable/sparse)

 Example 2: Estimating variance components
 REML. Standard algorithms in canned statistical packages 

unworkable
 AI(Average Information)-REML is based on hybrid Newton-

Raphson/Fisher scoring algorithm that exploits sparsity of MME.
 (Gilmour et al., 1985; Biometrics 51: 1440)

7

1
ˆ' ' '

'ˆ' ' λ−
    =    +     

X X X Z X yβ
Z yZ X Z Z A u

2

2
e

u

σλ
σ

=



Genetic improvement of livestock
 Has led to dramatic changes

 Since 1963, milk production / cow has 
doubled…>50% of that due to genetic trend 
(Garcia et al., 2016; PNAS 113:E3995)

 Historically: Artificial insemination with frozen 
semen, embryo transfer/ estrus synchronization
 Widespread global exchange of germplasm

 Whole genome prediction (WGP) based on the 
use of 10s/100s of thousands “high” density single 
nucleotide polymorphism (SNP) marker genotypes 
on each cow has further increased selection 
intensity
 Impact on higher accuracy of genetic merit and lower 

generation interval

 Selection response should accelerate….



Largest genomic databases
(courtesy, Paul Van Raden, USDA-AGIL; August, 2016)

Ancestry.com 23andMe CDCB/USDA
Genotypes >2 million >1 million 1.4 million
Species Human Human Cattle
Countries ? >55 53
Genotyping cost $99 $199 $37–135
Delivery (weeks) 6–8 6–8 1–2
DNA generations Few Few >10
EBV reliability NA Low High

Reference: http://genomemag.com/davies-23andme/#.VdY722zosY1
Web sites: https://www.23andme.com/

http://dna.ancestry.com/
https://www.cdcb.us/
http://aipl.arsusda.gov/Main/site_main.htm

http://genomemag.com/davies-23andme/#.VdY722zosY1
https://www.23andme.com/
http://dna.ancestry.com/
https://www.cdcb.us/
http://aipl.arsusda.gov/Main/site_main.htm


Genetic trend for Dairy Net Merit $
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Evolution of SNP marker panels in cattle breeding
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Whole Genome Prediction (WGP)

 Model:  
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Big Data keeps getting bigger!
 m > 50,000 SNP markers (some imputation from lower 

density panels)
 q > 70M animals 

 (>1.4 M of which are genotyped…so how do you deal 
with that?...see later)

 n > 130M records.
 Most research studies involve far smaller q and n.

 Greater recognition that if most SNP markers are NOT 
in tight LD with genes (QTL), then normality 
assumption is tenuous.

 With ↑ m and/or ↑ q for same n, “effective” sample size 
actually ↓….”big data” can be a misnomer.
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Some alternative candidate priors for g
(Meuwissen et al., 2001; de los Campos et al., 2013)
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Bayesian analyses
 More ambitious priors typically require use of MCMC

(Markov Chain Monte Carlo) methods.
 Sample from the posterior distribution of all unknowns.
 Don’t be at the “mercy of the prior!” (Dan 

Gianola)…estimate hyperparameters
 Research reproducibility issue:

 Many researchers (animal breeders and others) may not 
draw enough MCMC samples from the posterior density
 Autocorrelated draws
 Issue potentially more dramatic for computing Bayesian 

credible bounds than, say, posterior means.
 A much greater issue also for denser SNP chips (or m >> n).

 Ongoing research to improve “mixing” (↓ autocorrelation)
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“Exact” inference and computational 
efficiency
 MCMC: Real-time posterior densities (updates) very 

difficult to get with “big data”
 no “memory” from previous analyses…need to rerun

 Analytical approximations
 Expectation-maximization (EM) often referred to as “big 

data Bayes” (Allenby et al., 2014)
 However, extreme sensitive to starting values (Chen and 

Tempelman, 2015) especially with large m relative to n
(multimodal joint posterior densities more likely)

 Normal prior on g: Pragmatic alternative for large 
national genetic evaluations.
 Yet limited effectiveness for genome wide association 

studies relative to more flexible priors. 16



Reducing dimensionality with 
equivalent models (if q<<m)

Assume q = n (one record per animal)

G = ZZ’ is the genomic relationship matrix (need its 
inverse for MME for GBLUP).
Can easily backsolve for g from u in GBLUP (Stranden 
and Garrick, 2008). 17
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The latest and greatest
 Using biological information 

 having a disciplinary passion is useful for a data 
scientist!

 Assign higher prior probability to SNP in coding or 
regulatory genomic regions (BayesRC; McLeod et al., 
2016 BMC Genomics 17:144)

 Addressing industry concerns:  Combining data on 
genotyped and non-genotyped animals.
 “single” step procedures (Aguilar et al., 2010) based on 

blending G (on genotyped animals) with A (on non-
genotyped animals)

 APY (Mizstal, 2016 Genetics 202:401) based on 
“sparsifying” G-1…numerically stable!
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Worries keep coming

 # of SNP markers increasing (10s of millions in 
sequencing).
 Because of high LD, even greater multicollinearity 

creating instability, especially in MCMC inference.
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Big data and sustainability

 “management systems & environments are changing more 
rapidly than animal populations can adapt to such changes 
through natural selection” (Hohenboken et al., 2005)..e.g.
 Energy policy (corn distiller’s grain)
 More intensive management (larger farms)
 Climate change

 What are the implications for genetic improvement of 
livestock?
 How should we prepare as statistical geneticists? 
 What kind of direction should we provide?



Scope of inference and 
livestock breeding
 Scope of inference

 What is this in context of animal breeding?
 Broad scope:   Inferring upon average” additive genetic 

merit for animals across all environments. 
 Often is the primary focus

 Narrow scope: Inferring upon (eventually adapting) 
genetic merit for animals within a specific environment….

 To accommodate both objectives… need to create SNP*E 
terms
 Curse of dimensionality intensifies!



 Big Data in dairying.
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