Understanding Non-convex Optimization for Matrix Completion

Ruoyu Sun
Facebook AI Research

Joint work with Zhi-Quan Luo (U of Minnesota and CUHK-SZ)
Sep 23, 2016.
What I Will Talk About

We will prove: a non-convex factorization formulation can be solved to global optima.

Matrix factorization has a certain geometrical property:
Introduction
Motivation: Recommendation System

- Recommendation systems (personalized)

<table>
<thead>
<tr>
<th></th>
<th>Richard</th>
<th>Mary</th>
<th>Steve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spider-Man 3</td>
<td>5</td>
<td>?</td>
<td>4</td>
</tr>
<tr>
<td>The Dark Knight</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Iron Man</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

- Question: predict missing ratings?
- Assumption: low-rank.
- **Matrix Completion** (MC): recover a low-rank matrix M from partial data [Candes, Recht-09].
MC and big data

- Low-rank models are ubiquitous
 - “small” information from “big” data

- **Idea of MC**: To extract “small” information, a few samples enough

- **Other applications**:
 - Structure-from-motion in **computer vision**
 [Tomasi,Kanade-92], [Chen,Suter-04]
 - System identification in **control** [Liu,Vandenberghe-08]
 - Collaborative ranking (search, advertisements, marketing, etc.) [Yi et al.-11],[Lu,Neghaban-14]
 - Genomic data integration [Cai-Cai-Zhang-14]
• Matrix factorization (non-convex): $M = UV^T$.

• Interestingly, always global-min for MC, if M low-rank.

• Long been used in recommendation systems [Funk’06], [Koren’09]

• **Question**: any theory?
Theorem 1 (local geometry) For a properly regularized non-convex formulation, there is no bad stationary point in a certain neighborhood of the global optima.

Theorem 2 (global convergence) Starting from certain initial point, most standard algorithms converge to global optima.
Background and Formulation
Brief History of Matrix Completion

Convex (08-10): Theory for convex formulation [Candes-Tao’08] [Candes-Recht’09], [Gross’09], [Recht’09], [Chen’14].

Non-convex Grassman manifold: [Keshavan-Montanari-Oh’09]

Non-convex Resampling AltMin (12-14): [Jain et al.’12], [Keshavan’12], [Hardt’13], [Hardt-Wooters’14].

- Subtle issue: Theory does not match algorithm.

Our work: *Geometry of Matrix Factorization* [Sun-Luo’14].
Factorization is Fundamental

Previous understanding: extension of CS/LASSO

Current: “factorization” is crucial.

Recent “trend”: Matrix factorization.

- **Industry**: embedding at, say, Facebook
- **Theory**: PCA [Musco,Musco-15], Laplacian linear system [Kyng,Sacheva’16]
- **Non-convex optimization**: tensor decomposition, phase retrieval, dictionary learning, etc.
Factorization for Matrix Completion

- Notations:
 - $M \in \mathbb{R}^{n \times n}$, rank $r \ll n$ \(^1\)
 - Ω: set of sampled positions.

- Matrix factorization formulation (non-convex):

 \[
 P_0 : \min_{X \in \mathbb{R}^{n \times r}, Y \in \mathbb{R}^{n \times r}} \frac{1}{2} \| \mathcal{P}_\Omega(M - XY^T) \|_F^2.
 \]

 where \mathcal{P}_Ω is a sampling operator

 \[
 \mathcal{P}_\Omega(Z)_{ij} = \begin{cases}
 Z_{ij} & (i, j) \in \Omega, \\
 0 & (i, j) \notin \Omega.
 \end{cases}
 \]

\(^1\) M can be rectangular; assume square just for simplicity.
Algorithms to solve MF

- Recall: \(\min_{X,Y} \| \mathcal{P}_\Omega (M - XY^T) \|_F^2 \).

- Algorithmic idea: solve smaller sub-problems
 - Coordinate Descent for MC [Koren-09],[Wen-Yin-Zhang-12],[Yu et al. 12][Hastie et al. 14]
 - SGD for MC [Koren-09], [Funk-06], [Gemulla et al. 11], [Recht-Re-13], [Zhuang et al. 13].

- SGD solves Netflix problem (500k \(\times \) 20k) in \(\leq 3 \) mins! [Recht-Re-13]
Local Geometry
Matrix factorization formulation (non-convex):

$$\min_{X,Y \in \mathbb{R}^{n \times r}} \frac{1}{2} \| M - XY^T \|_F^2.$$ \hfill (2)

Claim: Optimal solution = best rank-\(r\) approximation.

Is this problem hard? Why?

AltMin equivalent to power method [Szlam, Tulloch, Tygert’16] What about other algorithms?
Consider \(n = r = 1 \), i.e.

\[
\min_{x,y} (xy - 1)^2.
\]

Nice geometry: locally no other critical points.
Lemma\(^2\): In a neighborhood of \(M\), \(\forall x = (X, Y)\), \(\exists\) optimal \(x^*\) s.t.
\[
\langle \nabla f(x), x - x^* \rangle \geq c \|x - x^*\|^2.
\]

Interpretation: local direction aligns with global direction \(x^* - x\).

Corollary: Locally no bad critical point!

\(^2\)Related to Polyak inequality, Lojaswicz inequality, error bound, etc.
Step 2: Geometry of $\|P_\Omega (M - XY^T)\|_F^2$

Question: why $f(x, y) = (xy - 1)^2$ has nice geometry?

- **“Answer”:** strong convexity of $(z - 1)^2$ preserved after $z \rightarrow xy$

3 Techniques: new perturbation analysis + probability tools
Step 2: Geometry of $\|\mathcal{P}_\Omega(M - XY^T)\|_F^2$

Question: why $f(x, y) = (xy - 1)^2$ has nice geometry?

- **"Answer":** strong convexity of $(z - 1)^2$ preserved after $z \rightarrow xy$

Challenge: $\|\mathcal{P}_\Omega(M - Z)\|_F^2$ not strongly convex!

Lemma 2 [S-L’14] (RIP): In a local “incoherent” region,3

$$\|\mathcal{P}_\Omega(M - Z)\|_F^2 \geq c\|M - Z\|^2.$$

“Incoherent’ means $Z = XY^T$ where X, Y have bounded row norms.

3Techniques: new perturbation analysis + probability tools
Need to add regularizer G_1 to force incoherence.

- Issue: ∇G_1 not aligned with global direction $x^* - x$.

Need to add one more regularizer G_2 to correct G_1 \(^4\).

Theorem [S-Luo]: Any stationary point of $F + G_1 + G_2$ in a local incoherent region is a global-min, i.e., the original matrix, under standard assumptions on M, Ω.

\(^4\)Technique: Perturbation analysis for “pre-conditioning”, rather involved.
Formulation with Regularizers

- Our formulation

\[
\min F(X, Y) + G_1(X, Y) + G_2(X, Y),
\]

\(G_1, G_2\) guarantee \((X, Y)\) close to

\[(X, Y) \in K_1 = \{\|X^{(i)}\| \leq \beta_1, \|Y^{(i)}\| \leq \beta_1, \forall \ i.\}\]

\[(X, Y) \in K_2 = \{\|X\|_F \leq \beta_T, \|Y\|_F \leq \beta_T\},\]

- \(K_1\): incoherence (row-norm)

- \(K_2\): boundedness

Simulation: push \# of samples to fundamental limit \(\approx 2nr\).
Summary

- **Goal**: Understand why MF works
- **Result**: guarantee for non-convex matrix completion
- **Fundamental question**: Why low-rank approximation is “easy”? Go beyond power method!
- **Take-away**: MF has nice geometry
 - with missing entries, regularization needed
References

- [Sun-Luo-14] Ruoyu Sun and Zhi-Quan Luo, “Guaranteed Matrix Completion via Non-convex Factorization,”
 - 2015 INFORMS Optimization Society Student Paper Competition, Honorable Mention.
 - FOCS (Foudation of Computer Science) 2015.

Thank You!