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What I Will Talk About

We will prove: a non-convex factorization formulation can be
solved to global optima.

Matrix factorization has a certain geometrical property:
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Introduction



Motivation: Recommendation System

• Recommendation systems (personalized)

• Question: predict missing ratings?

• Assumption: low-rank.

• Matrix Completion (MC): recover a low-rank matrix M
from partial data [Candes,Recht-09].
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MC and big data

• Low-rank models are ubiquitous

• “small” information from “big” data

• Idea of MC: To extract “small” information, a few samples
enough

• Other applications:

• Structure-from-motion in computer vision
[Tomasi,Kanade-92],[Chen,Suter-04]

• System identification in control [Liu,Vandenberghe-08]

• Collaborative ranking (search, advertisements, marketing,
etc.) [Yi et al.-11],[Lu,Neghaban-14]

• Genomic data integration [Cai-Cai-Zhang-14]
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Fill in the gap?

• Matrix factorization (non-convex): M = UV T .

• Interestingly, always global-min for MC, if M low-rank.

• Long been used in recommendation systems [Funk’06],
[Koren’09]

• Question: any theory?
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Summary of Results

Theorem 1 (local geometry) For a properly regularized
non-convex formulation, there is no bad stationary point in a
certain neighborhood of the global optima.

Theorem 2 (global convergence) Starting from certain initial
point, most standard algorithms converge to global optima.
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Background and Formulation



Brief History of Matrix Completion

Convex (08-10): Theory for convex formulation [Candes-Tao’08]

[Candes-Recht’09], [Gross’09], [Recht’09], [Chen’14].

Non-convex Grassman manifold: [Keshavan-Montanari-Oh’09]

Non-convex Resampling AltMin (12-14): [Jain et al.’12],

[Keshavan’12], [Hardt’13], [Hardt-Wooters’14].

• Subtle issue: Theory does not match algorithm.

Our work: Geometry of Matrix Factorization [Sun-Luo’14].
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Factorization is Fundamental

Previous understanding: extension of CS/LASSO

Current: “factorization” is crucial.

Recent “trend”: Matrix factorization.

• Industry: embedding at, say, facebook

• Theory: PCA [Musco,Musco-15] , Laplacian linear system
[Kyng,Sacheva’16]

• Non-convex optimization: tensor decomposition, phase retrieval,
dictionary learning, etc.
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Factorization for Matrix Completion

• Notations:

• M ∈ Rn×n, rank r � n 1

• Ω: set of sampled positions.

• Matrix factorization formulation (non-convex):

P0 : min
X∈Rn×r ,Y∈Rn×r

1
2
‖PΩ(M − XY T )‖2

F . (1)

where PΩ is a sampling operator

PΩ(Z )ij =

{
Zij (i , j) ∈ Ω,

0 (i , j) /∈ Ω.

1M can be rectangular; assume square just for simplicity.
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Algorithms to solve MF

• Recall: minX ,Y ‖PΩ(M − XY T )‖2F .

• Algorithmic idea: solve smaller sub-problems

• Coordinate Descent for MC [Koren-09],[Wen-Yin-Zhang-12],[Yu et al. 12][Hastie et
al. 14]

• SGD for MC [Koren-09], [Funk-06], [Gemulla et al. 11], [Recht-Re-13], [Zhuang et al. 13] .

• SGD solves Netflix problem (500k × 20k) in ≤ 3 mins! [Recht-Re-13]
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Local Geometry



Full-Observation Case: Low-rank Approximation

• Matrix factorization formulation (non-convex):

min
X ,Y∈Rn×r

1
2
‖M − XY T‖2

F . (2)

• Claim: Optimal solution = best rank-r approximation.

• Is this problem hard? Why?

• AltMin equivalent to power method [Szlam,Tulloch,Tygert’16]

What about other algorithms?
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Simplest Case

Consider n = r = 1, i.e.

min
x ,y

(xy − 1)2.

Nice geometry: locally no other critical points.
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Step 1: Local Geometry of ‖M − XY T‖2
F

Lemma2: In a neighborhood of M, ∀x = (X ,Y ), ∃ optimal x∗ s.t.

〈∇f (x), x − x∗〉 ≥ c‖x − x∗‖2.

Interpretation: local direction aligns with global direction x∗ − x .

Corollary: Locally no bad critical point!

2Related to Polyak inequality, Lojaswicz inequality, error bound, etc.
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Step 2: Geometry of ‖PΩ(M − XY T )‖2
F

Question: why f (x , y) = (xy − 1)2 has nice geometry?

• “Answer”: strong convexity of (z − 1)2 preserved after z → xy

Challenge: ‖PΩ(M − Z )‖2
F not strongly convex!

Lemma 2[S-L’14] (RIP): In a local “incoherent” region,3

‖PΩ(M − Z )‖2
F ≥ c‖M − Z‖2.

“Incoherent’ means Z = XY T where X ,Y have bounded row norms.

3Techniques: new perturbation analysis + probability tools
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Step 3: Geometry with Constraints/Regularizers

Need to add regularizer G1 to force incoherence.

• Issue: ∇G1 not aligned with global direction x∗ − x .

Need to add one more regularizer G2 to correct G1
4.

Theorem [S-Luo]: Any stationary point of F + G1 + G2 in a
local incoherent region is a global-min, i.e., the original matrix,
under standard assumptions on M,Ω.

4Technique: Perturbation analysis for “pre-conditioning”, rather involved.
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Formulation with Regularizers

• Our formulation

min F (X ,Y ) + G1(X ,Y ) + G2(X ,Y ),

G1,G2 guarantee (X ,Y ) close to

(X ,Y ) ∈ K1 = {‖X (i)‖ ≤ β1, ‖Y (i)‖ ≤ β1, ∀ i .}
(X ,Y ) ∈ K2 = {‖X‖F ≤ βT , ‖Y‖F ≤ βT},

• K1: incoherence (row-norm)

• K2: boundedness

Simulation: push # of samples to fundamental limit ≈ 2nr .
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Summary

• Goal: Understand why MF works

• Result: guarantee for non-convex matrix completion

• Fundamental question: Why low-rank approximation is
“easy”? Go beyond power method!

• Take-away: MF has nice geometry
• with missing entries, regularization needed
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Thank You!
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