Understanding Non-convex Optimization for Matrix Completion

Ruoyu Sun
Facebook AI Research

Joint work with Zhi-Quan Luo (U of Minnesota and CUHK-SZ) Sep 23, 2016.

What I Will Talk About

We will prove: a non-convex factorization formulation can be solved to global optima.

Matrix factorization has a certain geometrical property:

Introduction

Motivation: Recommendation System

- Recommendation systems (personalized)

- Question: predict missing ratings?
- Assumption: low-rank.
- Matrix Completion (MC): recover a low-rank matrix M from partial data [Candes,Recht-09].

MC and big data

- Low-rank models are ubiquitous
- "small" information from "big" data
- Idea of MC: To extract "small" information, a few samples enough
- Other applications:
- Structure-from-motion in computer vision
[Tomasi,Kanade-92],[Chen,Suter-04]
- System identification in control [Liu,Vandenberghe-08]
- Collaborative ranking (search, advertisements, marketing, etc.) [Yi et al.-11],[Lu,Neghaban-14]
- Genomic data integration [Cai-Cai-Zhang-14]

FIII in the gap?

- Matrix factorization (non-convex): $M=U V^{\top}$.

- Interestingly, always global-min for MC, if M low-rank.
- Long been used in recommendation systems [Funk'06], [Koren'09]
- Question: any theory?

Summary of Results

Theorem 1 (local geometry) For a properly regularized non-convex formulation, there is no bad stationary point in a certain neighborhood of the global optima.

Theorem 2 (global convergence) Starting from certain initial point, most standard algorithms converge to global optima.

Background and Formulation

Brief History of Matrix Completion

Convex (08-10): Theory for convex formulation [Candes-Tao'08] [Candes-Recht'09], [Gross'09], [Recht'09], [Chen'14].

Non-convex Grassman manifold: [Keshavan-Montanari-Oh'09]

Non-convex Resampling AltMin (12-14): [Jain et al.'12],
[Keshavan'12], [Hardt'13], [Hardt-Wooters'14].

- Subtle issue: Theory does not match algorithm.

Our work: Geometry of Matrix Factorization [Sun-Luo'14].

Factorization is Fundamental

Previous understanding: extension of CS/LASSO

Current: "factorization" is crucial.
Recent "trend": Matrix factorization.

- Industry: embedding at, say, facebook
- Theory: PCA [Musco,Musco-15], Laplacian linear system [Kyng,Sacheva'16]
- Non-convex optimization: tensor decomposition, phase retrieval, dictionary learning, etc.

Factorization for Matrix Completion

- Notations:
- $M \in \mathbb{R}^{n \times n}$, rank $r \ll n^{1}$
- Ω : set of sampled positions.
- Matrix factorization formulation (non-convex):

$$
\begin{equation*}
\mathrm{P}_{0}: \min _{X \in \mathbb{R}^{n \times r}, Y \in \mathbb{R}^{n \times r}} \frac{1}{2}\left\|\mathcal{P}_{\Omega}\left(M-X Y^{T}\right)\right\|_{F}^{2} . \tag{1}
\end{equation*}
$$

where \mathcal{P}_{Ω} is a sampling operator

$$
\mathcal{P}_{\Omega}(Z)_{i j}= \begin{cases}Z_{i j} & (i, j) \in \Omega, \\ 0 & (i, j) \notin \Omega\end{cases}
$$

${ }^{1} M$ can be rectangular; assume square just for simplicity.

Algorithms to solve MF

- Recall: $\min _{X, Y}\left\|\mathcal{P}_{\Omega}\left(M-X Y^{\top}\right)\right\|_{F}^{2}$.
- Algorithmic idea: solve smaller sub-problems
- Coordinate Descent for MC [Koren-09],[Wen-Yin-Zhang-12],[Yu et al. 12][Hastie et al. 14]
- SGD for MC [Koren-09], [Funk-06], [Gemulla et al. 11], [Recht-Re-13], [Zhuang et al. 13].
- SGD solves Netflix problem (500k $\times 20 \mathrm{k}$) in ≤ 3 mins! [Recht-Re-13]

Local Geometry

Full-Observation Case: Low-rank Approximation

- Matrix factorization formulation (non-convex):

$$
\begin{equation*}
\min _{X, Y \in \mathbb{R}^{\times \times r}} \frac{1}{2}\left\|M-X Y^{\top}\right\|_{F}^{2} . \tag{2}
\end{equation*}
$$

- Claim: Optimal solution = best rank-r approximation.
- Is this problem hard? Why?
- AltMin equivalent to power method [Szlam,Tulloch,Tygert'16] What about other algorithms?

Simplest Case

Consider $n=r=1$, i.e.

$$
\min _{x, y}(x y-1)^{2}
$$

Nice geometry: locally no other critical points.

Step 1: Local Geometry of $\left\|M-X Y^{\top}\right\|_{F}^{2}$

Lemma ${ }^{2}$: In a neighborhood of $M, \forall x=(X, Y), \exists$ optimal x^{*} s.t.

$$
\left\langle\nabla f(x), x-x^{*}\right\rangle \geq c\left\|x-x^{*}\right\|^{2} .
$$

Interpretation: local direction aligns with global direction $x^{*}-x$.

Corollary: Locally no bad critical point!

[^0]
Step 2: Geometry of $\left\|\mathcal{P}_{\Omega}\left(M-X Y^{\top}\right)\right\|_{F}^{2}$

Question: why $f(x, y)=(x y-1)^{2}$ has nice geometry?

- "Answer": strong convexity of $(z-1)^{2}$ preserved after $z \rightarrow x y$
${ }^{3}$ Techniques: new perturbation analysis + probability tools

Step 2: Geometry of $\left\|\mathcal{P}_{\Omega}\left(M-X Y^{\top}\right)\right\|_{F}^{2}$

Question: why $f(x, y)=(x y-1)^{2}$ has nice geometry?

- "Answer": strong convexity of $(z-1)^{2}$ preserved after $z \rightarrow x y$

Challenge: $\left\|\mathcal{P}_{\Omega}(M-Z)\right\|_{F}^{2}$ not strongly convex!

Lemma 2[S-L'14] (RIP): In a local "incoherent" region, ${ }^{3}$

$$
\left\|\mathcal{P}_{\Omega}(M-Z)\right\|_{F}^{2} \geq c\|M-Z\|^{2} .
$$

"Incoherent' means $Z=X Y^{\top}$ where X, Y have bounded row norms.
${ }^{3}$ Techniques: new perturbation analysis + probability tools

Step 3: Geometry with Constraints/Regularizers

Need to add regularizer G_{1} to force incoherence.

- Issue: ∇G_{1} not aligned with global direction $x^{*}-x$.

Need to add one more regularizer G_{2} to correct $G_{1}{ }^{4}$.
Theorem [S-Luo]: Any stationary point of $F+G_{1}+G_{2}$ in a local incoherent region is a global-min, i.e., the original matrix, under standard assumptions on M, Ω.
${ }^{4}$ Technique: Perturbation analysis for "pre-conditioning", rather involved.

Formulation with Regularizers

- Our formulation

$$
\min F(X, Y)+G_{1}(X, Y)+G_{2}(X, Y)
$$

G_{1}, G_{2} guarantee (X, Y) close to

$$
\begin{aligned}
& (X, Y) \in K_{1}=\left\{\left\|X^{(i)}\right\| \leq \beta_{1}, \quad\left\|Y^{(i)}\right\| \leq \beta_{1}, \forall i .\right\} \\
& \quad(X, Y) \in K_{2}=\left\{\|X\|_{F} \leq \beta_{T}, \quad\|Y\|_{F} \leq \beta_{T}\right\}
\end{aligned}
$$

- K_{1} : incoherence (row-norm)
- K_{2} : boundedness

Simulation: push \# of samples to fundamental limit $\approx 2 n r$.

Summary

- Goal: Understand why MF works
- Result: guarantee for non-convex matrix completion
- Fundamental question: Why low-rank approximation is "easy"? Go beyond power method!
- Take-away: MF has nice geometry
- with missing entries, regularization needed

References

- [Sun-Luo-14] Ruoyu Sun and Zhi-Quan Luo, "Guaranteed Matrix Completion via Non-convex Factorization,"
-2015 INFORMS Optimization Society Student Paper Competition, Honorable Mention.
-FOCS (Foudation of Computer Science) 2015.
-To appear in IEEE Transaction on Information Theory,2016.
- [Sun-15] Ruoyu Sun, "Matrix Completion via Non-convex Factorization: Algorithms and Theory," Ph.D. Dissertation, University of Minnesota, 2015.
- Remark: [Sun-Luo-14] focuses on theory; My thesis [Sun-15] presents new numerical findings supporting theory.

Thank You!

[^0]: ${ }^{2}$ Related to Polyak inequality, Lojaswicz inequality, error bound, etc.

