STANDING ON THE SHOULDERS OF GIANTS

HOW MASSIVE KNOWLEDGE-BASES ARE TRANSFORMING DATA ANALYTICS IN BIOLOGY

SAURABH SINHA

PROFESSOR OF COMPUTER SCIENCE
AND THE CARL R. WOESE INSTITUTE FOR GENOMIC BIOLOGY
CO-DIRECTOR & RESEARCH PI, NIH BD2K CENTER OF EXCELLENCE, UIUC & MAYO CLINIC
IT’S, UH, “GENOMICAL”
PERSPECTIVE

Big Data: Are We Genomical?

Zachary D. Stephens¹, Skyler L. Edgington², Miles J. Efron³, Ravishankarra⁴, E. Robinson⁵

Roy H. Campbell⁶, Chengxiang Zhai⁷, Saurabh Sinha⁸, Gene

Growth of DNA Sequencing

Worldwide Annual Sequencing Capacity

IN THE BEGINNING THERE WAS THE GENOME
YOUR GENOME = YOUR CELL’S SOFTWARE

main()
ACGGACG
GATTGGA
CGAAGAACool
GAMES)
else
se
“MACHINE” CODE IS NOT VERY USEFUL
SO PEOPLE STARTED PROFILING THE CODE
ALL ROADS LEAD TO A SPREADSHEET
<table>
<thead>
<tr>
<th>Genes</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tissue 1</td>
</tr>
<tr>
<td>Gene 1</td>
<td>20</td>
</tr>
<tr>
<td>Gene 2</td>
<td>10</td>
</tr>
<tr>
<td>...</td>
<td>100</td>
</tr>
<tr>
<td>Gene 20000</td>
<td>20</td>
</tr>
<tr>
<td>Genes</td>
<td>Conditions</td>
</tr>
<tr>
<td>----------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>Patient 1</td>
</tr>
<tr>
<td>Gene 1</td>
<td>20</td>
</tr>
<tr>
<td>Gene 2</td>
<td>10</td>
</tr>
<tr>
<td>...</td>
<td>100</td>
</tr>
<tr>
<td>Gene 20000</td>
<td>20</td>
</tr>
</tbody>
</table>
SPREADSHEET ANALYTICS (A.K.A. BIOINFORMATICS)

Table

<table>
<thead>
<tr>
<th></th>
<th>Patient 1</th>
<th>Patient 2</th>
<th>...</th>
<th>Patient 400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gene 1</td>
<td>20</td>
<td>5</td>
<td>23</td>
<td>37</td>
</tr>
<tr>
<td>Gene 2</td>
<td>10</td>
<td>17</td>
<td>201</td>
<td>29</td>
</tr>
<tr>
<td>...</td>
<td>100</td>
<td>102</td>
<td>99</td>
<td>84</td>
</tr>
<tr>
<td>Gene 20000</td>
<td>20</td>
<td>45</td>
<td>74</td>
<td>62</td>
</tr>
</tbody>
</table>

Diagrams
- **Regression**
- **Classification**
- **Clustering**
“A GOOD DECISION IS BASED ON KNOWLEDGE AND NOT ON NUMBERS”
- PLATO
THE GWAS STORY

I1: AACGAGCTAGCGATCGATCGACTACGACTACGAGGT
I2: AACGAGCTAGCGATCGATCGACTACGACTACGAGGT
I3: AACGAGCTAGCGATCGATCGACTACGACTACGAGGT
I4: AACGAGCTAGCGATCGATCGACTACGACTACGAGGT
I5: AACGAGCTAGCGATCGATCGACACGACTACGAGGT +
I6: AACGAGCTAGCGATCGATCGACTACGACTACGAGGT
I7: AACGAGCTAGCGATCGATCGACTACGACTACGAGGT
I8: AACGAGCTAGCGATCGATCGACACGACTACGAGGT +

Disease?

Doesn’t work as well as we’d like it to
SEEK MODULES, NOT INDIVIDUAL GENES

Many ways to ‘break’ the code
BIOLOGICAL NETWORKS GALORE
BIOLOGICAL NETWORKS GALORE

‘Knowledge Network’:
3M nodes
80M edges
82 edge types
GIANT NETWORK GUIDES BIOLOGICAL ANALYSIS

Knowledge network + user spreadsheet
EXAMPLE: FINDING GENES INFLUENCING DRUG RESPONSE

- Individuals
- Drug Response
- Correlation
- Drug Related Genes
- Random Walk w/ Restart
- Ranking of genes by relevance to drug response
EXAMPLE: FINDING GENES INFLUENCING DRUG RESPONSE

Validated 17 genes for several cancer drugs
CYBERINFRASTRUCTURE
HOW BIOLOGISTS DO BIOINFORMATICS TODAY

• HIRE BIOINFORMATICIAN OR SEEK BIOINFORMATICS COLLABORATOR.

• DELEGATE THE FOLLOWING:
 • DOWNLOAD AND INSTALL CODE.
 • BUY COMPUTE CLUSTERS
 • RUN CODE ON CLUSTER

IN SHORT, PAINFUL.
A RANDOM WALK in the CLOUDS
CLOUD-BASED KNOWLEDGE ENGINE FOR GENOMICS

User Spreadsheet

Knowledge Network

Analytics

Classification

Clustering

Regression

Decision-tree
Meta-paths
PCA
Graph-mining
Elastic-net
Network-smoothing
Support-Vector-Machine
Lasso
Hierarchical-clustering
NMF
Lars
Dimensionality-reduction
Feature-selection
Random-walk
Linear-regression
Compressed-sensing
COMPLEX WORKFLOWS ON THE CLOUD

Network-based stratification of tumor mutations
Hofree et al. *Nature Methods* 2013

Spreadsheets

Knowledge Network

Network Smoothing

Random Walk with Restart

Aggregate Subtypes

Hierarchical Clustering

Network NMF

Clustering Algorithm

Docker Containers

Easy, parallel exploration of workflow variants
SOFTWARE IS ONLY AS GOOD AS ITS FRONT END
CARL R. WOESE INSTITUTE FOR GENOMIC BIOLOGY

NIH

CS @ ILLINOIS