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• IDEaS is a new “Interdisciplinary Research Institute”
• Launched July 1, 2016
• Executive Directors:   Srinivas Aluru and  Dana Randall

• http://ideas.gatech.edu

Foundations:
• Machine Learning
• Cyber-infrastructure
• Algorithms & Optimization
• Signal Processing
• Policy 
• Security

Domains:
• Medicine & Health
• Energy
• Materials
• Smart Cities
• Business Analytics
• Social Computing



Big Data Sharing 
and Infrastructure

Healthcare Coastal Hazards

Materials and 
Manufacturing

Habitat 
Planning

Economics, Privacy 
and Policy Issues

Industrial 
Big Data



Introducing CODA 
• Midtown Atlanta
• 750K sq ft mixed use
• 80K sq ft data center
• $375 million investment
• GT will occupy half of the 

office space; rest industry
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Demographic Data
• http://demographics.coopercenter.org/DotMap/



Ants and Swarm Robotics
Ants build bridges to shorten distance other ants must travel:

Bridge length is a function of angle: 
optimize tradeoff between shorter 
path and more ants to traverse path

Reid, Lutz, Powell, Kao, Couzin, and Garnier. Army ants 
dynamically adjust living bridges in response to a cost-
benefit trade-off. Proceedings of the National Academy of 
Sciences, 112(49):15113-15118, 2015.

Many systems proposed and realized recently:

- Modular robotics

- Swarm robotics

- DNA computing

- Smart materials
kilobots



Understanding Data

Real World

Model

Analysis / Algorithms

Model

Real World

Algorithms

Statistical Physics

+

Goals:  Identify emergent behaviors occurring in data
Provide mechanisms to explain emergent behavior.



Randomized Algorithms & Large Data
I. Demographics: The Schelling Segregation Model  ‘71

“Micro-Motives determine Macro-Behavior”

• Houses are colored red or blue
• People move if they have too many neighbors of the 

opposite color



II. Physics:   Phase transitions 

Macroscopic changes to the system due to a microscopic 
change to some parameter.

e.g.:    gas/liquid/solid,   spontaneous magnetization

High temperature                       Criticality                           Low temperature

Simulations of the Ising model

Randomized Algorithms & Large Data



Randomized Algorithms & Large Data
III. Colloids:  mixtures of two types of molecules.

Binary mixtures of molecules;   Must not overlap. 

Low density                       High density

*  purely entropic  *
Above some density increases, large particles cluster together.



Randomized Algorithms & Large Data
IV. Sampling Algorithms: learn by sampling

Colorings (Potts Model)

MatchingsIndependent Sets

The Ising Model



How Do We Sample?
• “Push” the squares out of the way to increase density.

• Scramble the squares by moving one at a time to 
available places.

Fast, but wrong distribution.

Right distribution, but slow.

Goal:    Fast and  Correct

Main Questions
• Is the problem efficiently computable (in polynomial time)?

Which problems are “intractable”?  

• Does the “natural” sampling method work?



Outline
• Basics of Sampling

- Independent Sets on Z2

• Applications
- Physics
- Colloids

• Harnessing Phase Transitions
- Self-Organizing Particle Systems



Markov chains

 Connect the state space;

 Define transition probabilities so that the chain will
converge to π (e.g., the Metropolis Algorithm)

 Show the chain is “rapidly mixing” – i.e., distribution
will be close to π in polynomial time.

To design a useful Markov chain:

✔

✔

?

Perform a random walk among 
valid configurations



Eg:  Independent Sets
Given λ, let    π(I) = λ|I|/Z,    

where Z = ∑J λ|J|.

MCIND (“Glauber Dynamics”)
Starting at I0, Repeat:

- Pick v ∈ V and b ∈ {0,1};
- If v ∈ I, b=0, remove v  w.p.  min (1,λ-1)
- If v ∉ I, b=1, add v  w.p. min (1,λ) if possible;
- O.w. do nothing.

This chain connects the state space and converges to π.        

How long?



To Upper Bound the Mixing Time

 Spectral gap (1 – λ1 > 1/poly,    λ1,…,λ|Ω|-1 eigenvalues)

 Coupling

 Conductance (Cheeger’s Inequality)

 Isoperimetric Inequalities   (Dirichlet form, log Sobolev,…)

Mostly from physics

Ex:  For Independent sets,  Coupling gives fast mixing 
when λ ≤ ½.  
Many other improvements…  



Sampling Independent Sets
Independent sets on Z2:

π(I) = λ|I|/Z,    where Z = ∑J λ|J|.

 λ ≤ 1         [Luby, Vigoda]

 λ ≤ 1.68    [Weitz]

MCIND is fast on Z2 when:

 λ ≤ 2.48    [VVY ‘13] 

 λ > 80       [BCFKTVV]

 λ > 50.6    [R.]

 λ > 5.396  [Blanca, Galvin
R., Tetali ‘13]

MCIND is slow on Z2 when:

Conjecture: Fast for  λ < λc and slow for  λ > λc  for  λc Η 3.79.



Slow mixing of MCIND (large λ)
(Even) (Odd)

λ
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S SC

#E/#O

(n2/2−n/2)
λλ

n2/2n2/2

Si

π(Si) = ∑ λi / Z
I∈Si

Partition by ratio 
of even/odd



Slow mixing of MCIND (large λ)

λ large → there is a “bad cut,”  
. . . so  MCIND is slowly mixing.     

λ

10 ∞

S SC

#E/#O

(n2/2−n/2)
λλ

n2/2n2/2

(Even) (Odd)

Si

π(Si) = ∑ λi / Z
I∈Si

Partition by ratio 
of even/odd



Mixing times for local algorithms
1.  Independent sets on Z2:
Conj: λc = 3.79: fast for λ < λc;    slow for λ > λc.

Thms:   Fast for  λ < 2.48;    slow for λ > 5.396

2.  Ising model on Z2:
Thms: Fast for λ < λc; slow for λ > λc.     

Fast for λ = λc.                                       [Lubetzky, Sly ’10]

3.  3-colorings on Zd:
Thms:  Fast in Z2.       [Luby, R., Sinclair;  Goldberg, Martin, Patterson]

Slow in Zd for large d.        [Galvin, Kahn, R., Sorkin;  Peled]

…Sometimes suggests new (fast) approaches.



Outline
• Basics of Sampling

- Independent Sets on Z2

• Applications
- Physics
- Colloids

• Harnessing Phase Transitions
- Self-Organizing Particle Systems



Physics  
Phase transitions: 

Macroscopic changes to the system due to a microscopic 
change to some parameter.

e.g.:    gas/liquid/solid,   spontaneous magnetization

High temperature                       Criticality                           Low temperature

Simulations of the Ising model



Physics

 Independent sets: H(σ) = -|I|

Given: A physical system  Ω = {σ}
Define: A Gibbs measure as follows:

π(σ) = e-βH(σ)/ Z,

H(σ)  (the Hamiltonian),

β = 1/kT (inverse temperature,

where       Z = ∑τ e-β H(τ) (the partition function)

 Ising model: H(σ) = - ∑ σu σv
(u,v) ∈ E

If  λ = eβ then       π(σ) = λ|I| /Z.

If  ν = e2β then     π(σ) = ν|E | /Z.
=

and k is Boltzmann’s constant)



Physics perspective (cont.)

Low temperature: long range effects

High temperature: boundary effects die out

…
…

T∞

T0

Tc
(TC indicates a

“phase transition.”)               

For the “hard core model” the best rigorous results are 
2.48 < λc < 5.396.                   (same as mixing results!)

T0

TC



Other Models: Colloids

Independent SetsIsing Model

Clustering for a class of interfering binary mixtures      
[Miracle, R., Streib]

Including:

Thm: Low density: models won’t cluster.
High density: models will cluster.  



The “Clustering Property”
What does it mean for a configuration to “cluster”?

• There is a region with large area and small perimeter
• that is dense with one kind of tile
• and the complement of the region is sparse

Clustering No Clustering



Outline
• Basics of Sampling

- Independent Sets on Z2

• Applications
- Physics
- Colloids

• Harnessing Phase Transitions
- Self-Organizing Particle Systems



Geometric Amoebot Model

Assumptions/Requirements:

- Particles have constant size memory

- Particles can communicate only with adjacent particles

- Particles have no common orientation, only common chirality

- Require that particles stay connected

Particles on the 
Triangular Lattice

Particles move by expanding and contracting



Previous Work in Amoebot Model
Algorithms exist for:
- Leader election
- Shape formation (triangle, hexagon)
- Infinite object coating
(Rida A. Bazzi, Zahra Derakhshandeh, Shlomi Dolev, 
Robert Gmyr, Andréa W. Richa, Christian Scheideler, 
Thim Strothmann, Shimrit Tzur-David)

We were interested in the compression problem: to gather the particles 
together as tightly as possible.
- Often found in natural systems
- Our approach is decentralized, self-stabilizing, and oblivious   

(no leader necessary)
- Use a Markov chain that rewards internal edges for the local algorithm

Π(σ) = λe(σ) / Z,  where e(σ) is # internal edges.MC converges to: 



Proof TechniquesResults for Compression
[Cannon, Daymude, R., Richa ‘16]

Thm: (compression) For any λ > 2 + 21/2, there is a constant α > 1 s.t.
particles will be α-compressed almost surely.

Thm: (non-compression) For any λ < 2.17, for any α > 1, the 
probability that particles are α-compessed is exp. small.

Defn:  A particle configuration is α-compressed if its perimeter is at most α
times the minimum perimeter (i.e., Ο(n1/2)).

Pf. idea: * “Peierls arguments” based on information theory
*  Use of combinatorial identities:

e.g.,   λ = 2 + 21/2  is the “connective constant” for 
self-avoiding walks on the hexagonal lattice



Simulations: λ = 4

1 million steps 2 million steps

3 million steps 5 million steps4 million steps

Start:  100 particles in a line



Simulations: λ = 2
Start:  100 particles in a line

10 million steps 20 million steps



pmax
=

1
2

pmax
pmin

=Θ( 𝑛𝑛)

perimeter

Exponentially 
small probability

Why not compression for all λ > 1?

A graph of perimeter vs. stationary probability when all 
configurations have equal weight. 

λ = 1

Π(σ) = λe(σ) / Z



1
8

pmax

perimeter

Exponentially 
small probability

pmax
=2𝑛𝑛 − 2

pmin
=Θ( 𝑛𝑛)

Why not compression for all λ > 1?

λ = 2

Π(σ) = λe(σ) / Z

Perimeter vs. stationary probability when configurations with 
more internal edges have higher probability



9pmin

perimeter

Exponentially 
small probability

Perimeter vs. stationary probability when configurations with 
more internal edges have higher probability

pmax
=2𝑛𝑛 − 2

pmin
=Θ( 𝑛𝑛)

Why not compression for all λ > 1?

λ = 4

Π(σ) = λe(σ) / Z



Challenges and Opportunities

• Applications: Can we develop better methods to 
confirm phase changes without rigorous proofs?

• Data: Does stat. phys. play an increasing role as     
“n” becomes huge and algs are forced to be simpler?

• Algorithms: How an we use knowledge of phase 
trans to design efficient algorithms at all temps?



Thank you!
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