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Background
[ ]

Data Analysis

Background

Big-data Era: In 2012, IBM reported that 2.5 quintillion (10'8)
bytes of data are created everyday.

@ Internet acts as a rich data source, e.g., 2.9 million emails
sent every second, 20 hours video uploaded to Youtube
every minute.

@ Better sensor technology.
@ Widespread use of computer simulation.

Opportunities: transform raw data into useful knowledge to
support decision-making, e.g., in healthcare, national security,
energy and transportation etc.
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Background
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Optimization for data analysis

Machine Learning

Given a set of observed data S = {(u;, v;)}7”,, drawn from a
certain unknown distribution D on U x V.

@ Goal: to describe the relation between u; and v;’s for
prediction.

@ Applications: predicting strokes and seizures, identifying
heart failure, stopping credit card fraud, predicting machine
failure, identifying spam, ......

@ Classic models:

o Lasso regression: min, E[((x, u) — v)?] + pl|x]|;.
@ Support vector machine: min[E, , [max{0, v(x, u)] + p||x]/3.
e Deep learning: miny £, ,(F(u, x) — v)? + p||Ux||1
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Optimization for data analysis

Inverse Problems

Given external observations b of a hidden black-box system, to
recover the unknown parameters x of the system.
@ The relation between b and x, e.g., Ax = b, is typically
given.
o However, the system is underdetermined, and b is noisy.
@ Applications: medical imaging, locations of oil and mineral
deposits, cracks and interfaces within materials.
@ Classic models:

e Total variation minimization: min, ||Ax — b||> + ATV(x).
e Compressed sensing: min, [|Ax — bl|? + \|[x]1.
e Matrix completion: min, [|[Ax — b||? + A 3", oi(x).
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Composite optimization problems

We consider composite problems which can be modeled as
U* = mingcx {V(x) := f(x) + h(x)} .

Here, 7 : X — R is a smooth and expensive term (data fitting),

h: X — R is a nonsmooth regularization term (solution

structures), and X is a closed convex set.

Much of my previous research
@ f given as an expectation or finite-sum.

@ fis possibly nonconvex and stochastic.

e.g., mirror descent stochastic approximation (Nemirovski,
Juditsky, Lan and Shapiro 07), accelerated stochastic
approximation (Lan 08); Nonconvex stochastic gradient descent
(Ghadimi and Lan 12)
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Complexity for composite optimization

Problem: W* := miny,cx {W(x) := f(x) + h(x)}.

Focus of this talk: ' is not necessarily simple

@ More solution structural properties, e.g., total variation,
group sparsity, and graph-based regularization ...

@ Extension: X is not necessarily simple.

First-order methods: iterative methods which operate with the
gradients (subgradients) of f and h.

Complexity: number of iterations to find an e-solution, i.e., a
point x € X s.t. W(x) — V* <e.
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Complexity for composite optimization

Problem: W* := miny,cx {W(x) := f(x) + h(x)}.

Focus of this talk: ' is not necessarily simple

@ More solution structural properties, e.g., total variation,
group sparsity, and graph-based regularization ...

@ Extension: X is not necessarily simple.

First-order methods: iterative methods which operate with the
gradients (subgradients) of f and h.

Complexity: number of iterations to find an e-solution, i.e., a
point x € X s.t. W(x) — V* <e.

Easy case: /' simple, « simple

Px n(y) := argmin, .||y — x||? + h(x) is easy to compute (e.g.,
compressed sensing). Complexity: O(1/./¢) (Nesterov 07).
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More difficult cases

general, = simple

his a general nonsmooth function; Py := argmin,_ ||y — x| is
easy to compute. Complexity: O(1/¢?).
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his a general nonsmooth function; Py := argmin,_ ||y — x| is
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v

structured, = simple

his structured, e.g., h(x) = max,cy(Ax,y); Px is easy to
compute. Complexity: O(1/¢).
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More difficult cases

general, = simple

his a general nonsmooth function; Py := argmin,_ ||y — x| is
easy to compute. Complexity: O(1/¢?).

| \

structured, = simple

his structured, e.g., h(x) = max,cy(Ax,y); Px is easy to
compute. Complexity: O(1/¢).

simple, = complicated

Lx p(y) := argmin,x(y, X) + h(x) is easy to compute (e.g.,
matrix completion).Complexity: O(1/¢).
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Motivation
h simple, X simple O(1/4/€) 100 ®
h general, X simple 0(1/) 108 @
hstructured, X simple  O(1/¢)  10* ©
h simple, X complicated O(1/¢)  10* ©

\ More general h or more complicated X ‘

J

\ Slow convergence of first-order algorithms ‘

J

‘ A large number of gradient evaluations of Vf ‘
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Background
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Motivation
h simple, X simple O(1/+/€) 100 ©
h general, X simple O(1/e8) 108 @
hstructured, X simple ~ O(1/¢) 104 ©
h simple, X complicated O(1/¢) 104 ©

‘ More general h or more complicated X ‘

¢

‘ Slow convergence of first-order algorithms ‘

¥ ?

‘ A large number of gradient evaluations of Vf ‘

Question: Can we skip the computation of V1?
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Our approach: gradient sliding algorithms

@ Gradient sliding: h general, X simple (Lan).

@ Accelerated gradient sliding: h structured, X simple (with
Yuyuan Ouyang).

@ Conditional gradient sliding: h simple, X complicated (with
Yi Zhou).



Gradient Sliding
[ ]

Nonsmooth composite problems

U* = minycx {V(x) := f(x) + h(x)} .

@ fis smooth,i.e., 9L > 0s.t. Vx,y € X,
IVi(y) = VExX)| < Llly — x|l.

@ his nonsmooth, i.e., IM > 0 s.t. Vx,y € X,
[h(x) — h(y)| < Mlly — x]|.

@ Py is simple to compute.

How many number of gradient evaluations of Vf and
subgradient evaluations of /" are needed to find an e-solution?
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Gradient Sliding
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Existing Algorithms

Best-known complexity given by accelerated stochastic
approximation (Lan, 12):

ofvi ]

Whenever the second term dominates, the number of gradient
evaluations V1 is given by O(1/¢).

@ The computation of V{, however, is often the bottleneck.
e The computation of Vf invovles a large data set, while that
of / only involves a very sparse matrix.
@ Can we reduce the number of gradient evaluations for Vf
from O(1/¢%) to O(1/+/¢), while still maintaining the
optimal O(1/¢%) bound on subgradient evaluations for /'?
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Gradient Sliding
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Review of proximal gradient methods

The model function
Suppose h is relatively simple, e.g., h(x) = || x||+.
For a given x € X, let
my(x, u) == l(x,u) + h(u), Yue X,
li(x;y) = f(x) + (VH(x),y — x).

Clearly, by the convexity of f,
my(x, u) < W(u) < my(x,u) + 5llu— x|, YueX.
forany u e X

Bregman Distance

Let w be a strongly convex function with modulus » and define
the Bregman distance V(x, u) = w(u) — w(x) — (Vw(x),u — X).
my(x, u) < W(u) < my(x,u) + LV(x,u), Yue X.
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Gradient Sliding
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Review of proximal gradient descent

my(x, u) = lf(x,u) + h(u) is a good approximation of W(u)
when u is “close” enough to x.

Proximal gradient iterations

Xi = argmin ¢y {l(Xk_1, U) + h(u) + Bk V(Xxk_1, U)} .
lteration complexity: O(1/¢).

| \

Accelerated gradient iterations

X = (1 =) Xk—1 + Yk Xk—1,
Xk = argmin,cy {®x(U) = l(Xx, u) + h(u) + Bk V(Xk—_1,U)},
Xk = (1= vk)Xk—1 + YrXk-

lteration complexity: O(1/./¢).
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Gradient Sliding
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How about a general nonsmooth ?

Old approach: linearizing ' (Lan 08, 12)
lteration Complexity: O {\/W 4 M2 VE)gO?x*) }

New approach: gradient sliding

Key idea: keep h in the subproblem, and apply an iterative
method to solve the subproblem.

Observation: the subproblem is strongly convex, but
nonsmooth, and the strong convexity modulus vanishes.

| A

Challenges
@ How accurately to solve the subproblem?
@ Do we need to modify the accelerated gradient iterations?

v
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Gradient Sliding
[ le]

The gradient sliding algorithm

Algorithm 1 The gradient sliding (GS) algorithm

Input: Initial point xo € X and iteration limit N.
Let 5x > 0,7 > 0, and T, > 0 be given and set Xy = Xo.
fork =1,2,....N do
Set Xk = (1 — "/k))_(k—1 + Yk Xk—1 and gk = Vf(lk).
Set (xk, Xx) = PS(Qk Xk—1, B, Tk)-
Set X = (1 — i) Xk—1 + Vi Xk
end for
Output: X.

PS: the prox-sliding procedure.
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Gradient Sliding
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The  procedure

Procedure (x" x") =PS(g,x,3, T)

Let the parameters p; > 0 and 0; € [0,1], { = 1,..., be given.
Set uy = Elo = X.
fort=1,2,...,Tdo
Up = argmin,c x (g + W (Ur—1), uy + BV (x, u) + pt V(ui—1, U],
EI[ = (1 — @t)l?lt,1 + Ouy.
end for
Set x" = ur and Xt = EIT.

Note:
V(x,0) + PV (U1, u) = (1 + p(u)
—[w(X) + (W'(x), u — x)]
—Pilw(Ur—1) + (W' (Ut—1), U — Ur-1)].
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Gradient Sliding
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Remarks

When supplied with g(-), x € X, 3, and T, the PS procedure
computes a pair of approximate solutions (x*, x") € X x X for
the problem of:

argmingcx { (U) = (9,0) + h(w) + §lu—xI2}.
In each iteration, the subproblem is given by

. I}
argmin e { 04(0) = (V0. U) + ) + 5 a2 .
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Gradient Sliding
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Convergence of the GS algorithm

Suppose that {p;} and {0;} in the PS procedure are set to
pt=4 and 911%7
and that for N given a priori
Br =% w=rxs and Ty = {Mkaﬂ
for some D > 0, then
V() = V(X") < sy (3V(0,x) +2D).

Complexity bounds

@ Gradient computation of Vf: O(y/L/e).
@ Sugradient computation of /: >°, Ty = O(M?/¢?).

Remark: Do NOT need N given a priori if X is bounded.
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Accelerated gradient sliding
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Structured convex optimization

Observation: most nonsmooth terms h have certain structures.

Motivating problem: saddle point problem (SPP)

P* = Mingex {U}(X) = f(x) + max,cy(Kx,y) — J(y)}~

@ X CR"and Y C R" are closed convex sets

@ 0 < f(x) — lf(u,x) < 5|Ix — u||2, ¥x,u € X, where
lr(u, x) = f(u) + (VFf(u),x — u)

@ J(-) is convex “simple”: the subproblem related to J(-) can
be solved efficiently.

@ A special case: Y =domdJ, i.e.,
minyex ¥(x) := f(x) + J*(Kx)
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Accelerated gradient sliding
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Review of Nesterov’s Smoothing Scheme (05)

@ Approximate ) by a smooth convex function
Y= mingex {¥,(x) = f(x) + hy(x)},
with
hy(x) := maxyey(Kx,y) — J(¥) — pW(¥0.Y)
for some p > 0, where yp € Y and W(yy,-) is a strongly
convex function.

@ By properly choosing p and applying the optimal gradient
method, one can compute an e-solution of SPP in at most

ST

iterations.
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Accelerated gradient sliding
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Other related methods for SPP

Nesterov’s work has inspired much research to utilize the
saddle-point structure.

@ Smoothing technique: Auslender and Teboulle (06); Lan,
Lu and Monteiro (06); Tseng (08).

@ Mirror-prox methods: Nemirovski (04); He, Juditsky and
Nemirovski (13); Chen, Lan and Ouyang (14).

@ Acclerated prox-level methods: Lan (13); Chen, Lan,
Ouyang, and Zhang (14).

@ Primal-dual or ADMM: Monteiro and Svaiter (10), He and
Yuan (11); Chambolle and Pork (11); Chen, Lan and
Ouyang (13); Sun, Luo and Ye (15)...

Some of these methods can achieve exactly the same
complexity bound as Nesterov (05).
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Accelerated gradient sliding
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Significant issues

Bottleneck

The computation of Vf is often much more expensive than the
evaluation of the linear operators K and K.

Nesterov’s smoothing scheme or related methods

@ Gradient evaluations of Vf: O («/L/s + HKH/5>-

@ Operator evaluations of K and K: O (\/L/s + HKH/&:).

v

The gradient sliding method

@ Gradient evaluations of Vf: O (\/L/s).

@ Operator evaluations of K and KT: © (\/L/e - ||KH2/52).

<
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Accelerated gradient sliding
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Open problems and our research

Can we still preserve the optimal O(1/¢) complexity bound by
utilizing only O(1/,/¢) gradient computations of V to find an
e-solution of SPP?

Our approach:

@ Develop new algorithms and complexity bounds for
minimizing the summation of two smooth convex functions.

@ Apply these results to the smooth approximation of SPP.

@ Demonstrate significant savings on gradient computation
for both smooth and saddle point problems.
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Accelerated gradient sliding
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Smooth composite optimization

Problem: ¢* := min,.x {¢(x) := f(x) + h(x)}.
0 < f(x) — I(u, x) < L||x — ul?/2, Vx,u e X
0 < h(x) — In(u,x) < L||x — ul?/2, Vx,u € X
Assumption: M/ > L.

@ Traditional methods assume one can only compute V.

@ lteration complexity: O(\/(L + M)/e).

@ This bound is optimal in the black-box setting.

Can we gain anything by accessing Vf and Vh separately?
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Accelerated gradient sliding
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Basic ideas of accelerated gradient sliding (AGS)

Inspired by gradient sliding, keep h inside projection (or
prox-mapping).

Using a few modified accelerated gradient iterations to solve
the prox-mapping
minyex gk(u) + h(u) + BV(Xk-1, U).

Challenges
@ How to modify standard accelerated gradient iterations?

@ How to analyze these nested accelerated gradient
iterations?

| \
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Accelerated gradient sliding
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The AGS method

Algorithm 2 The accelerated gradient sliding method

Choose xg € X. Set Xy = xg.
fork=1,..., N do

Update (x,, xx, Xx) by

Xk = (1 = )Xk—1 + YkXk—1,
gk() = (X, ),
(XK, Xx) ProxAG(gk, Xk—1, Xk—1, Mk, Bk Tk),
Xk = (1 = M)Xk—1 + MKk
end for

Output X .
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Accelerated gradient sliding
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The ProxAG procedure

(xT,x") = ProxAG(g, X, x,\, 3,7, T)

Set iy = x and vy = x.
fort=1,...,Tdo

Update (u;, ut, U) by

u; = (1 =X+ X1 —ap)ls_1 + Aapup_1,
ur = argming xg(u) + Ih(u;, u) + BV(x, u)
+(Bpt + qr) V(Ui-1, u),
Elt = (1 — Oéf)ljlt,1 + o,
end for

Output x™ = ur and X* = 7.
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Accelerated gradient sliding
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Complexity of AGS

Suppose that the parameters of AGS are set to
1 k=1
2 _ M )
Y=g k=T = %/J s Ak = {7 T+1)(T+2
i 4K(T(T)+(37) k>,
_ 3L _ 2 _ _ &M
/3k*l,kj\l;a Ot = £, Pt*%anth*m~

$(Xk) — " < ooy k+1) Vx (X0, X*).

@ # computations of Vf: N = O (\/L/s)
@ # computations of Vh: NT = O ( M/e)

@ For traditional methods, both were © ( (L+ M)/5>
@ More savings on V{ if M/L is large.
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Accelerated gradient sliding
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Application to the saddle point problem

Y* = mingex {¥(X) := f(x) + maxyey (Kx,y) — J(y)}

Let W(-,-) be the prox-function associated with Y with modulus
o and assume Q := max,cy W(yo, v). Define
Y 1= Minyex {p(x) :=1(x) + hy(x)},
hp(x) := maxycy (KX, y) = J(y) — pW(y0, y)-

Then

Pp(X) < P(x) < Pp(x) + pQ, Vx € X.

@ If p=¢/(2Q), then an (¢/2)-solution to SPP-A is also an
e-solution to SPP.

@ SPP-A is a smooth composite problem with A(x) = h,(x)
and M = ||K|[?/(po).
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Accelerated gradient sliding
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New complexity for saddle point optimization

Theorem

Let= > 0 be given and assume that 2||K||°Q > cwL. If we apply
the AGS method SPP-A (with h = h, and p = </(20)), then the
total number of gradient evaluations of V' and linear operator
evaluations of K (and K ) in order to find an =-solution of SPP can

be bounded by
O < LV(xo,x*)>

0 (K\/V(XO,X*)Q>

and

voe

respectively.
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Accelerated gradient sliding
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Strongly convex problems

Now suppose that
Blx — ull? < F(x) — (u, x) < 5lIx — ul?, x,u € X

Algorithm 3 The multi-stage AGS algorithm with dynamic
smoothing

Choose vy € X, accuracy ¢, smoothing parameter p, iteration
limit Np, and initial estimate A of SPP s.t. ¢/(vg) — " < Ay.
fors=1,..., Sdo
Run the AGS algorithm to problem SPP-A with » — 2-5/2,
(where h = h,, xg = vs_1,and N = Np), and let vs = Xp.
end for
Output vs.
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Accelerated gradient sliding
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New complexity for strongly convex saddle point

problems

Theorem
Suppose that Q|| K ||> max {\/15A0/5, 1 } > 20/AgL for some given
e>0.If

No=3,/2, §= Iomeax{%J}, and pg = o,

then the total number of gradient evaluations of V' f and operator
evaluations involving K and K can be bounded by

O{mx Ao}
Vibgro V e (7

and

respectively.
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Numerical experiments
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Portfolio optimization

Markowitz mean-variance optimal portfolio:
Minycan #(x) := xT(ATFA+D)x s.t. bTx >,
where A7 = {x e R"| Y. x; =1, >0,i=1,...,n}.

A market return model (e.g., Goldfarb and lyengar 03):
g=b+ATf+e.
@ g € R": random return with mean b € R”
@ f € R™: factors driving the market (e.g., f ~ N(0, F))
@ A e R™": matrix of factor loadings of the n assets
@ = ~ N(0,D): random vector of residual returns

@ The return of portfolio x now follows the distribution
q"x ~ N(b"x,xT(ATFA+ D)x)
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Numerical experiments
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Experimental settings with portfolio optimization

A special case of smooth composite optimization with
f(x) = x"Dx, h(x) = xT (AT FA)x,
X={xeA"b x >n},

@ In practice we have m < n

@ Consequently, the computational cost for gradient
evaluation of Vf is more expensive than that of Vh

@ The eigenvalues of D are much smaller than that of A" FA
@ The Lipschitz constants L and M satisfy L < M.
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Numerical experiments
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Numerical results for portfolio optimization
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Figure: Ratio of objective values of AGS and NEST in terms of
different choices of dimension m and ratio M/L, after running the

same amount of CPU time.
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Numerical experiments
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Savings on gradient computation

Table: Numbers of gradient evaluations of Vf and V h performed by
the AGS method with M/L = 1024, after running the same amount of
CPU time as 300 iterations of NEST.

m | #Vf | #Vh | ¢nesT/oAcs
16 104 | 3743 382.5%

32 | 100 | 3599 278.6%
64 | 95 | 3419 183.3%
128 | 65 | 2339 152.8%
256 | 42 | 1499 120.1%
512 | 27 936 104.8%
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Numerical experiments
Qo0e

Savings on gradient computation

Table: Numbers of gradient evaluations of Vi and Vh performed by
the AGS method with m = 64.

M/L | #Nf | #Vh | ¢nesT/dAGs
215 23 | 4471 212.5%
214 31 4327 210.5%
213 41 4097 206.5%
212 57 | 4038 201.6%
211 72 | 3648 192.4%
210 95 | 3419 183.3%
29 114 | 2961 173.3%
28 143 | 2698 161.7%
27 164 | 2132 150.5%
26 186 | 1859 140.1%
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Numerical experiments
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Image reconstruction

Total variation (TV) image reconstruction:
Minxern {$/(x) := §|[Ax — bl|* +n|[Dx||2,1 } -
@ x € R™: image to be reconstructed
@ |[Dx|[2.1: TV semi-norm
@ D being the finite difference operator
@ A: measurement matrix
@ b: observed data

Equivalent to:
Minyern 3[|AX — bl + max,ey 7(Dx, y),
Yi={y € R?": |[yll200 := maxi—,_ o (Y1, yE) T2 < 1}

A special case of SPP

f(x) := 1| Ax — b||2, K := nD, and J(y) = 0,
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Numerical experiments
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Numerical results for image reconstruction

Table: Numbers of gradient evaluations of Vf and V h performed by
the AGS method with ground truth image “Cameraman”.

n,p #VIi| #K | dags | ¢nesT
1—1.p—105 | 52 | 37416 | 723.8 | 8803.1
n=10"",p=10"°| 173 | 12728 | 183.2 | 2033.5
=102 ,-10 5| 198 | 1970 | 272 | 383
1—10 '.p—10 7| 51 | 36514 | 190.2 | 8582.1
=10 1,,—10°| 118 | 27100 | 183.2 | 6255.6
n=10"",p=10"°| 173 | 12728 | 183.2 | 2033.5
=10 1. ,—10 % | 192 | 4586 | 183.8 | 267.2
/=10 1.p—10 3| 201 | 2000 | 190.4 | 191.2
1—101,,—10 2| 199 | 794 | 254.2 | 254.2
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Summary

miny {1(x) := f(x) + h(x)}

Classes # iteration # Vf

f smooth, h nonsmooth 0(1/e3)  O(\/L/e) ®©
f smooth, h smooth O(/MJe) O(\/LJe) ©
f smooth, h saddle 0(1/e)  O(/L/e) ©
f strongly convex, h saddle O(/1/¢) O(\/%Iogm/e)) ©

@ Numerical experiments further confirm these theoretical
results.
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