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Data Analysis

Background

Big-data Era: In 2012, IBM reported that 2.5 quintillion (1018)
bytes of data are created everyday.

Internet acts as a rich data source, e.g., 2.9 million emails
sent every second, 20 hours video uploaded to Youtube
every minute.
Better sensor technology.
Widespread use of computer simulation.

Opportunities: transform raw data into useful knowledge to
support decision-making, e.g., in healthcare, national security,
energy and transportation etc.
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Optimization for data analysis

Machine Learning

Given a set of observed data S = {(ui , vi)}mi=1, drawn from a
certain unknown distribution D on U × V .

Goal: to describe the relation between ui and vi ’s for
prediction.
Applications: predicting strokes and seizures, identifying
heart failure, stopping credit card fraud, predicting machine
failure, identifying spam, ......
Classic models:

Lasso regression: minx E[(〈x ,u〉 − v)2] + ρ‖x‖1.
Support vector machine: minEu,v [max{0, v〈x ,u〉] + ρ‖x‖2

2.
Deep learning: minx Eu,v (F (u, x)− v)2 + ρ‖Ux‖1
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Optimization for data analysis

Inverse Problems

Given external observations b of a hidden black-box system, to
recover the unknown parameters x of the system.

The relation between b and x , e.g., Ax = b, is typically
given.

However, the system is underdetermined, and b is noisy.

Applications: medical imaging, locations of oil and mineral
deposits, cracks and interfaces within materials.
Classic models:

Total variation minimization: minx ‖Ax − b‖2 + λTV(x).
Compressed sensing: minx ‖Ax − b‖2 + λ‖x‖1.
Matrix completion: minx ‖Ax − b‖2 + λ

∑
i σi (x).
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Composite optimization problems

We consider composite problems which can be modeled as
Ψ∗ = minx∈X {Ψ(x) := f (x) + h(x)} .

Here, f : X → R is a smooth and expensive term (data fitting),
h : X → R is a nonsmooth regularization term (solution
structures), and X is a closed convex set.

Much of my previous research
f given as an expectation or finite-sum.
f is possibly nonconvex and stochastic.

e.g., mirror descent stochastic approximation (Nemirovski,
Juditsky, Lan and Shapiro 07), accelerated stochastic
approximation (Lan 08); Nonconvex stochastic gradient descent
(Ghadimi and Lan 12)
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Complexity for composite optimization

Problem: Ψ∗ := minx∈X {Ψ(x) := f (x) + h(x)}.

Focus of this talk: h is not necessarily simple
More solution structural properties, e.g., total variation,
group sparsity, and graph-based regularization ...
Extension: X is not necessarily simple.

First-order methods: iterative methods which operate with the
gradients (subgradients) of f and h.

Complexity: number of iterations to find an ε-solution, i.e., a
point x̄ ∈ X s.t. Ψ(x̄)−Ψ∗ ≤ ε.

Easy case: h simple, X simple

PX ,h(y) := argminx∈X‖y − x‖2 + h(x) is easy to compute (e.g.,
compressed sensing). Complexity: O(1/

√
ε) (Nesterov 07).
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More difficult cases

h general, X simple

h is a general nonsmooth function; PX := argminx∈X‖y − x‖2 is
easy to compute. Complexity: O(1/ε2).

h structured, X simple
h is structured, e.g., h(x) = maxy∈Y 〈Ax , y〉; PX is easy to
compute. Complexity: O(1/ε).

h simple, X complicated
LX ,h(y) := argminx∈X 〈y , x〉+ h(x) is easy to compute (e.g.,
matrix completion).Complexity: O(1/ε).
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Motivation

h simple, X simple O(1/
√
ε) 100

h general, X simple O(1/ε2) 108

h structured, X simple O(1/ε) 104

h simple, X complicated O(1/ε) 104

More general h or more complicated X
⇓

Slow convergence of first-order algorithms
⇓

A large number of gradient evaluations of ∇f
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Motivation

h simple, X simple O(1/
√
ε) 100

h general, X simple O(1/ε2) 108

h structured, X simple O(1/ε) 104

h simple, X complicated O(1/ε) 104

More general h or more complicated X
⇓

Slow convergence of first-order algorithms
⇓× ?

A large number of gradient evaluations of ∇f

Question: Can we skip the computation of ∇f?
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Our approach: gradient sliding algorithms

Gradient sliding: h general, X simple (Lan).
Accelerated gradient sliding: h structured, X simple (with
Yuyuan Ouyang).
Conditional gradient sliding: h simple, X complicated (with
Yi Zhou).
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Nonsmooth composite problems

Ψ∗ = minx∈X {Ψ(x) := f (x) + h(x)} .

f is smooth, i.e., ∃L > 0 s.t. ∀x , y ∈ X ,
‖∇f (y)−∇f (x)‖ ≤ L‖y − x‖.
h is nonsmooth, i.e., ∃M > 0 s.t. ∀x , y ∈ X ,
|h(x)− h(y)| ≤ M‖y − x‖.
PX is simple to compute.

Question
How many number of gradient evaluations of ∇f and
subgradient evaluations of h′ are needed to find an ε-solution?
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Existing Algorithms

Best-known complexity given by accelerated stochastic
approximation (Lan, 12):

O
{√

L
ε + M2

ε2

}
Issue:
Whenever the second term dominates, the number of gradient
evaluations ∇f is given by O(1/ε2).

The computation of ∇f , however, is often the bottleneck.
The computation of ∇f invovles a large data set, while that
of h′ only involves a very sparse matrix.

Can we reduce the number of gradient evaluations for ∇f
from O(1/ε2) to O(1/

√
ε), while still maintaining the

optimal O(1/ε2) bound on subgradient evaluations for h′?
11 / 41



beamer-tu-logo

Background Gradient Sliding Accelerated gradient sliding Numerical experiments Summary

Review of proximal gradient methods

The model function
Suppose h is relatively simple, e.g., h(x) = ‖x‖1.
For a given x ∈ X , let

mΨ(x ,u) := lf (x ,u) + h(u), ∀u ∈ X ,
lf (x ; y) := f (x) + 〈∇f (x), y − x〉.

Clearly, by the convexity of f ,
mΨ(x ,u) ≤ Ψ(u) ≤ mΨ(x ,u) + L

2‖u − x‖2, ∀u ∈ X .
for any u ∈ X

Bregman Distance
Let ω be a strongly convex function with modulus ν and define
the Bregman distance V (x ,u) = ω(u)− ω(x)− 〈∇ω(x),u − x〉.

mΨ(x ,u) ≤ Ψ(u) ≤ mΨ(x ,u) + L
νV (x ,u), ∀u ∈ X .
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Review of proximal gradient descent

mΨ(x ,u) = lf (x ,u) + h(u) is a good approximation of Ψ(u)
when u is “close” enough to x .

Proximal gradient iterations
xk = argminu∈X {lf (xk−1,u) + h(u) + βkV (xk−1,u)} .

Iteration complexity: O(1/ε).

Accelerated gradient iterations

xk = (1− γk )x̄k−1 + γkxk−1,
xk = argminu∈X {Φk (u) := lf (xk ,u) + h(u) + βkV (xk−1,u)} ,
x̄k = (1− γk )x̄k−1 + γkxk .

Iteration complexity: O(1/
√
ε).
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How about a general nonsmooth h?

Old approach: linearizing h (Lan 08, 12)

Iteration Complexity: O
{√

LV (x0,x∗)
ε + M2V (x0,x∗)

ε2

}
.

New approach: gradient sliding
Key idea: keep h in the subproblem, and apply an iterative
method to solve the subproblem.
Observation: the subproblem is strongly convex, but
nonsmooth, and the strong convexity modulus vanishes.

Challenges
How accurately to solve the subproblem?
Do we need to modify the accelerated gradient iterations?
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The gradient sliding algorithm

Algorithm 1 The gradient sliding (GS) algorithm
Input: Initial point x0 ∈ X and iteration limit N.
Let βk ≥ 0, γk ≥ 0, and Tk ≥ 0 be given and set x̄0 = x0.
for k = 1,2, . . . ,N do

Set xk = (1− γk )x̄k−1 + γkxk−1 and gk = ∇f (xk ).
Set (xk , x̃k ) = PS(gk , xk−1, βk ,Tk ).
Set x̄k = (1− γk )x̄k−1 + γk x̃k .

end for
Output: x̄N .

PS: the prox-sliding procedure.

15 / 41



beamer-tu-logo

Background Gradient Sliding Accelerated gradient sliding Numerical experiments Summary

The PS procedure

Procedure (x+, x̃+) = PS(g, x , β,T )

Let the parameters pt > 0 and θt ∈ [0,1], t = 1, . . ., be given.
Set u0 = ũ0 = x .
for t = 1,2, . . . ,T do
ut = argminu∈X 〈g + h′(ut−1),u〉+ β[V (x ,u) + ptV (ut−1,u)],
ũt = (1− θt )ũt−1 + θtut .

end for
Set x+ = uT and x̃+ = ũT .

Note:
V (x ,u) + ptV (ut−1,u) = (1 + pt )ω(u)
−[ω(x) + 〈ω′(x),u − x〉]
−pt [ω(ut−1) + 〈ω′(ut−1),u − ut−1〉].
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Remarks

When supplied with g(·), x ∈ X , β, and T , the PS procedure
computes a pair of approximate solutions (x+, x̃+) ∈ X × X for
the problem of:

argminu∈X

{
Φ(u) := 〈g,u〉+ h(u) +

β

2
‖u − x‖2

}
.

In each iteration, the subproblem is given by

argminu∈X

{
Φk (u) := 〈∇f (xk ),u〉+ h(u) +

βk

2
‖u − xk‖2

}
.
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Convergence of the GS algorithm

Theorem
Suppose that {pt} and {θt} in the PS procedure are set to

pt = t
2 and θt = 2(t+1)

t(t+3) ,

and that for N given a priori
βk = 2L

k , γk = 2
k+1 , and Tk =

⌈
M2Nk2

D̃L2

⌉
for some D̃ > 0, then

Ψ(x̄N)−Ψ(x∗) ≤ L
νN(N+1)

(
3V (x0, x∗) + 2D̃

)
.

Complexity bounds

Gradient computation of ∇f : O(
√

L/ε).
Sugradient computation of h′:

∑
k Tk = O(M2/ε2).

Remark: Do NOT need N given a priori if X is bounded.
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Structured convex optimization

Observation: most nonsmooth terms h have certain structures.

Motivating problem: saddle point problem (SPP)

ψ∗ ≡ minx∈X
{
ψ(x) := f (x) + maxy∈Y 〈Kx , y〉 − J(y)

}
.

X ⊆ Rn and Y ⊆ Rn are closed convex sets
0 ≤ f (x)− lf (u, x) ≤ L

2‖x − u‖2, ∀x ,u ∈ X , where
lf (u, x) := f (u) + 〈∇f (u), x − u〉
J(·) is convex “simple”: the subproblem related to J(·) can
be solved efficiently.
A special case: Y = dom J, i.e.,
minx∈X ψ(x) := f (x) + J∗(Kx)
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Review of Nesterov’s Smoothing Scheme (05)

Approximate ψ by a smooth convex function
ψ∗ρ := minx∈X {ψρ(x) := f (x) + hρ(x)} ,

with
hρ(x) := maxy∈Y 〈Kx , y〉 − J(y)− ρW (y0, y)

for some ρ > 0, where y0 ∈ Y and W (y0, ·) is a strongly
convex function.
By properly choosing ρ and applying the optimal gradient
method, one can compute an ε-solution of SPP in at most

O
(√

L
ε + ‖K‖

ε

)
iterations.
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Other related methods for SPP

Nesterov’s work has inspired much research to utilize the
saddle-point structure.

Smoothing technique: Auslender and Teboulle (06); Lan,
Lu and Monteiro (06); Tseng (08).
Mirror-prox methods: Nemirovski (04); He, Juditsky and
Nemirovski (13); Chen, Lan and Ouyang (14).
Acclerated prox-level methods: Lan (13); Chen, Lan,
Ouyang, and Zhang (14).
Primal-dual or ADMM: Monteiro and Svaiter (10), He and
Yuan (11); Chambolle and Pork (11); Chen, Lan and
Ouyang (13); Sun, Luo and Ye (15)...

Some of these methods can achieve exactly the same
complexity bound as Nesterov (05).
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Significant issues

Bottleneck
The computation of ∇f is often much more expensive than the
evaluation of the linear operators K and K T .

Nesterov’s smoothing scheme or related methods

Gradient evaluations of ∇f : O
(√

L/ε+ ‖K‖/ε
)

.

Operator evaluations of K and K T : O
(√

L/ε+ ‖K‖/ε
)

.

The gradient sliding method

Gradient evaluations of ∇f : O
(√

L/ε
)

.

Operator evaluations of K and K T : O
(√

L/ε+ ‖K‖2/ε2
)

.
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Open problems and our research

Question
Can we still preserve the optimal O(1/ε) complexity bound by
utilizing only O(1/

√
ε) gradient computations of ∇f to find an

ε-solution of SPP?

Our approach:
Develop new algorithms and complexity bounds for
minimizing the summation of two smooth convex functions.
Apply these results to the smooth approximation of SPP.
Demonstrate significant savings on gradient computation
for both smooth and saddle point problems.
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Smooth composite optimization

Problem: φ∗ := minx∈X {φ(x) := f (x) + h(x)}.
0 ≤ f (x)− lf (u, x) ≤ L‖x − u‖2/2, ∀x ,u ∈ X
0 ≤ h(x)− lh(u, x) ≤ L‖x − u‖2/2, ∀x ,u ∈ X

Assumption: M ≥ L.

Traditional methods assume one can only compute ∇φ.
Iteration complexity: O(

√
(L + M)/ε).

This bound is optimal in the black-box setting.

Question
Can we gain anything by accessing ∇f and ∇h separately?
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Basic ideas of accelerated gradient sliding (AGS)

Idea 1
Inspired by gradient sliding, keep h inside projection (or
prox-mapping).

Idea 2
Using a few modified accelerated gradient iterations to solve
the prox-mapping

minu∈X gk (u) + h(u) + βV (xk−1,u).

Challenges
How to modify standard accelerated gradient iterations?
How to analyze these nested accelerated gradient
iterations?
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The AGS method

Algorithm 2 The accelerated gradient sliding method

Choose x0 ∈ X . Set x0 = x0.
for k = 1, . . . ,N do

Update (xk , xk , xk ) by
xk = (1− γk )xk−1 + γkxk−1,
gk (·) = lf (xk , ·),
(xk , x̃k ) = ProxAG(gk , xk−1, xk−1, λk , βk ,Tk ),
xk = (1− λk )xk−1 + λk x̃k .

end for
Output xN .
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The ProxAG procedure

(x+, x̃+) = ProxAG(g, x , x , λ, β, γ,T )

Set ũ0 = x and u0 = x .
for t = 1, . . . ,T do

Update (ut ,ut , ũt ) by
ut = (1− λ)x + λ(1− αt )ũt−1 + λαtut−1,
ut = argminu∈X g(u) + lh(ut ,u) + βV (x ,u)

+(βpt + qt )V (ut−1,u),
ũt = (1− αt )ũt−1 + αtut ,

end for
Output x+ = uT and x̃+ = ũT .
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Complexity of AGS
Theorem
Suppose that the parameters of AGS are set to

γk = 2
k+1 ,Tk ≡ T :=

⌈√
M
L

⌉
, λk =

{
1 k = 1,
γk (T +1)(T +2)

T (T +3) k > 1,

βk = 3Lγk
νkλk

, αt = 2
t+2 , pt = t

2 and qt = 6M
νk(t+1) .

Then
φ(xk )− φ∗ ≤ 30L

νk(k+1)VX (x0, x∗).

# computations of ∇f : N = O
(√

L/ε
)

# computations of ∇h: NT = O
(√

M/ε
)

For traditional methods, both were O
(√

(L + M)/ε
)

More savings on ∇f if M/L is large.
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Application to the saddle point problem

ψ∗ ≡ minx∈X
{
ψ(x) := f (x) + maxy∈Y 〈Kx , y〉 − J(y)

}
SPP-A
Let W (·, ·) be the prox-function associated with Y with modulus
σ and assume Ω := maxv∈Y W (y0, v). Define

ψ∗ρ := minx∈X {ψρ(x) := f (x) + hρ(x)} ,
hρ(x) := maxy∈Y 〈Kx , y〉 − J(y)− ρW (y0, y).

Then
ψρ(x) ≤ ψ(x) ≤ ψρ(x) + ρΩ, ∀x ∈ X .

If ρ = ε/(2Ω), then an (ε/2)-solution to SPP-A is also an
ε-solution to SPP.
SPP-A is a smooth composite problem with h(x) = hρ(x)
and M = ‖K‖2/(ρσ).
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New complexity for saddle point optimization

Theorem

Let ε > 0 be given and assume that 2‖K‖2Ω > εωL. If we apply
the AGS method SPP-A (with h = hρ and ρ = ε/(2σ)), then the
total number of gradient evaluations of ∇f and linear operator
evaluations of K (and K T ) in order to find an ε-solution of SPP can
be bounded by

O
(√

LV (x0,x∗)
νε

)
and

O
(
‖K‖
√

V (x0,x∗)Ω√
νσε

)
,

respectively.
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Strongly convex problems

Now suppose that
µ
2‖x − u‖2 ≤ f (x)− lf (u, x) ≤ L

2‖x − u‖2, ∀x ,u ∈ X .

Algorithm 3 The multi-stage AGS algorithm with dynamic
smoothing

Choose v0 ∈ X , accuracy ε, smoothing parameter ρ0, iteration
limit N0, and initial estimate ∆0 of SPP s.t. ψ(v0)− ψ∗ ≤ ∆0.
for s = 1, . . . ,S do

Run the AGS algorithm to problem SPP-A with ρ = 2−s/2ρ0
(where h = hρ, x0 = vs−1, and N = N0), and let vs = xN .

end for
Output vS.
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New complexity for strongly convex saddle point
problems

Theorem

Suppose that Ω‖K‖2 max
{√

15∆0/ε,1
}
≥ 2σ∆0L for some given

ε > 0. If
N0 = 3

√
2L
νµ , S = log2 max

{
15∆0
ε ,1

}
, and ρ0 = 4∆0

Ω2S/2 ,

then the total number of gradient evaluations of ∇f and operator
evaluations involving K and K T can be bounded by

O
{√

L
νµ log ∆0

ε

}
and

O
{ √

Ω‖K‖√
µ∆0νσ

√
∆0
ε

}
,

respectively.
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Portfolio optimization

Markowitz mean-variance optimal portfolio:
minx∈∆n φ(x) := xT (ATFA +D)x s. t. bT x ≥ η,

where ∆n := {x ∈ Rn|
∑n

i=1 xi = 1, xi ≥ 0, i = 1, . . . ,n}.

A market return model (e.g., Goldfarb and Iyengar 03):
q = b + AT f + ε.

q ∈ Rn: random return with mean b ∈ Rn

f ∈ Rm: factors driving the market (e.g., f ∼ N(0,F))
A ∈ Rm×n: matrix of factor loadings of the n assets
ε ∼ N(0,D): random vector of residual returns
The return of portfolio x now follows the distribution
qT x ∼ N(bT x , xT (ATFA +D)x)
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Experimental settings with portfolio optimization

A special case of smooth composite optimization with
f (x) = xTDx ,h(x) = xT (ATFA)x ,
X = {x ∈ ∆n|bT x ≥ η},
M = λmax (ATFA), and L = λmax (D).

In practice we have m < n
Consequently, the computational cost for gradient
evaluation of ∇f is more expensive than that of ∇h
The eigenvalues of D are much smaller than that of ATFA
The Lipschitz constants L and M satisfy L < M.
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Numerical results for portfolio optimization

Figure: Ratio of objective values of AGS and NEST in terms of
different choices of dimension m and ratio M/L, after running the
same amount of CPU time.
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Savings on gradient computation

Table: Numbers of gradient evaluations of ∇f and ∇h performed by
the AGS method with M/L = 1024, after running the same amount of
CPU time as 300 iterations of NEST.

m # ∇f # ∇h φNEST/φAGS
16 104 3743 382.5%
32 100 3599 278.6%
64 95 3419 183.3%

128 65 2339 152.8%
256 42 1499 120.1%
512 27 936 104.8%
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Savings on gradient computation

Table: Numbers of gradient evaluations of ∇f and ∇h performed by
the AGS method with m = 64.

M/L # ∇f # ∇h φNEST/φAGS
215 23 4471 212.5%
214 31 4327 210.5%
213 41 4097 206.5%
212 57 4038 201.6%
211 72 3648 192.4%
210 95 3419 183.3%
29 114 2961 173.3%
28 143 2698 161.7%
27 164 2132 150.5%
26 186 1859 140.1%
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Image reconstruction

Total variation (TV) image reconstruction:
minx∈Rn

{
ψ(x) := 1

2‖Ax − b‖2 + η‖Dx‖2,1
}
.

x ∈ Rn: image to be reconstructed
‖Dx‖2,1: TV semi-norm
D being the finite difference operator
A: measurement matrix
b: observed data

Equivalent to:
minx∈Rn

1
2‖Ax − b‖2 + maxy∈Y η〈Dx , y〉,

Y := {y ∈ R2n : ‖y‖2,∞ := maxi=1,...,n ‖(y (2i−1), y (2i))T‖2 ≤ 1}.

A special case of SPP

f (x) := 1
2‖Ax − b‖2,K := ηD, and J(y) ≡ 0,

L = λmax (AT A) and ‖K‖ = η
√

8.
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Numerical results for image reconstruction

Table: Numbers of gradient evaluations of ∇f and ∇h performed by
the AGS method with ground truth image “Cameraman”.

η, ρ # ∇f # K φAGS φNEST

η = 1, ρ = 10−5 52 37416 723.8 8803.1
η = 10−1, ρ = 10−5 173 12728 183.2 2033.5
η = 10−2, ρ = 10−5 198 1970 27.2 38.3

η = 10−1, ρ = 10−7 51 36514 190.2 8582.1
η = 10−1, ρ = 10−6 118 27100 183.2 6255.6
η = 10−1, ρ = 10−5 173 12728 183.2 2033.5
η = 10−1, ρ = 10−4 192 4586 183.8 267.2
η = 10−1, ρ = 10−3 201 2000 190.4 191.2
η = 10−1, ρ = 10−2 199 794 254.2 254.2
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Summary

minX {ψ(x) := f (x) + h(x)}

Classes # iteration # ∇f
f smooth, h nonsmooth O(1/ε2) O(

√
L/ε)

f smooth, h smooth O(
√

M/ε) O(
√

L/ε)
f smooth, h saddle O(1/ε) O(

√
L/ε)

f strongly convex, h saddle O(
√

1/ε) O(
√

L
µ log(1/ε))

Numerical experiments further confirm these theoretical
results.
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