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Exploratory and Predictive Models for Neuroimaging Data

Functional Magnetic Resonance Imaging (fMRI) measures
blood flow correlated with neuronal activity
Main technique for non-invasive measurements of human brain
structure and function.



Key Challenge
With millions of simultaneous measurements from relatively few
(10’s to 1000’s) participants, how do we learn interpretable models
that can generalize from limited samples?

Towards a solution
Structured Probabilistic Machine Learning
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Key Challenge
With millions of simultaneous measurements from relatively few
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Incorporate domain knowledge to enable learning from limited
samples.



Key Challenge
With millions of simultaneous measurements from relatively few
(10’s to 1000’s) participants, how do we learn interpretable models
that can generalize from limited samples?

Towards a solution
Structured Probabilistic Machine Learning

Capture uncertainty in model parameters



Probabilistic Models
Bayesian Models

p(w)

w

data {x}
p(w|x) ∝ p(x|w)p(w)

w

p(x|w) likelihood: model for brain images given model
parameters

p(w) prior: incorporating expert knowledge
p(w|x) posterior: estimated model parameters



Structure in Large Scale Neuroimaging DataMul$%scale*Models* Perturb*single*genes*
OR*single*phenotypes**

Measure*outcomes*
Demonstrate*causality*

Figure 4: Multi-scale models will be used to identify hub genes of gene modules that are 
associated with a particular neural or behavioral trait of interest. We will perturb the expression 
of single genes (or phenes)and then measure the outcomes (i.e. changes in the neural network 
structure, gene module stucture, etc) to determine causal relationships. 

hypothesis: fMRI signal is
spatially smooth, due to
anatomy, preprocessing . . .

“soft” constraints e.g. shrinkage, smoothness easily
incorporated using priors



Structure in Large Scale Neuroimaging Data - II

hypothesis: mental
processes are spatially
localized (Cohen and
Bookheimer, 1994)

“hard” constraints i.e. structure are much more challenging

Construct models that jointly incorporate spatial sparsity and
spatially smoothness



Structure in Large Scale Neuroimaging Data - II

hypothesis: mental
processes are spatially
localized (Cohen and
Bookheimer, 1994)

“hard” constraints i.e. structure are much more challenging

Construct models that jointly incorporate spatial sparsity and
spatially smoothness



Structured Distributions via Information Projection
Key Idea: Information projection of the model p(x,w) to the
structured set S

P

Sq∗

p

q∗ = argmin
q∈S

KL(q‖p(x,w))

general purpose, easily
applied to new structured
sets
state of the art performance
in many cases
often significantly more
scalable than equiv.
conventional model
particularly effective in
several cases where sampling
inference fails

Koyejo and Ghosh (2013); Koyejo et al. (2014)
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Human Connectome Project Data (Essen et al., 2013)

Investigating association between human brain function and
human behavior
Joint exploratory analysis of task brain images and behavioral
variables
n = 497 adult subjects. Each subject has d1 = 380 behavioral
variables, d2 = 27000 voxels
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2 Back vs 0 Back contrast (measures working memory)

Neural support is seen in a number of frontal and parietal regions and
cerebellum, consistent with cognitive control systems usually engaged by
the task. Behavioral correlates including both reaction time and accuracy
on the task, showing greater neural engagement associated with slower
and less accurate performance.

(Khanna, Ghosh, Poldrack, and Koyejo, 2016)



REL vs MATCH contrast (measures relational processing)

Neural support is observed in frontal, parietal, and occipital cortex.
Behavioral correlates captured both performance on this particular task,
as well as independent measures related to higher cognitive functions
including working memory capacity, vocabulary, and reading.

(Khanna, Ghosh, Poldrack, and Koyejo, 2016)



Summary

Effective exploratory and predictive modeling of biological data
requires incorporating domain knowledge.

Proposed structured probabilistic models via information
projection as a promising framework.

Neuroimaging Data Analysis:
Incorporate the domain knowledge of structured spatial
sparsity.
State of the art performance in exploratory and predictive
analysis of neuroimaging data
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Collaborators

Russell A. Poldrack (Stanford)
Joydeep Ghosh (UT Austin)
Rajiv Khanna (UT Austin)
Michael Riis Andersen (TU Berlin)



Thank You



Backup Slides



Simulated Data Results: Support Recovery
k=20, d=10,000, SNR = 20dB , n = 100, . . . , 400
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FMRI stop signal task (White et al., 2014)

stop signal task: designed to measure impulse control

z = 2 z = 5 z = 12

n = 126, d = 10, 000, k∗ = 300

recovered regions correlated with stop signal reaction time e.g.
include orbitofrontal cortex, dorsolateral prefrontal cortex,
putamen, anterior cingulate, parietal cortex

(Koyejo et al., 2014)



Time varying brain networks from HCP

Gordon atlas, Motor task

(Andersen, Koyejo, and Poldrack, 2016)
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