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What Is the Big Data Phenomenon? 

•  Science in confirmatory mode (e.g., particle physics) 
–  inferential issue: massive number of nuisance variables 

•  Science in exploratory mode (e.g., astronomy, genomics) 
–  inferential issue: massive number of hypotheses 

•  Measurement of human activity, particularly online 
activity, is generating massive datasets that can be used 
(e.g.) for personalization and for creating markets 
–  inferential issues: many, including heterogeneity, unknown 

sampling frames, compound loss function 
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•  Your Boss:  “I need a Big Data system that will 
replace our classic service with a personalized 
service” 

•  “It should work reasonably well for anyone and 
everyone; I can tolerate a few errors but not too 
many dumb ones that will embarrass us” 

•  “It should run just as fast as our classic service” 
•  “It should only improve as we collect more data; in 

particular it shouldn’t slow down” 
•  “There are serious privacy concerns of course, and 

they vary across the clients” 
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Some Challenges Driven by Big Data 

•  Big Data analysis requires a thorough blending of 
computational thinking and inferential thinking 

•  What I mean by computational thinking 
–  abstraction, modularity, scalability, robustness, etc. 

•  Inferential thinking means (1) considering the real-
world phenomenon behind the data, (2) considering 
the sampling pattern that gave rise to the data, and 
(3) developing procedures that will go “backwards” 
from the data to the underlying phenomenon 



The Challenges are Daunting 

•  The core theories in computer science and statistics 
developed separately and there is an oil and water 
problem 

•  Core statistical theory doesn’t have a place for 
runtime and other computational resources 

•  Core computational theory doesn’t have a place for 
statistical risk 



•  Inference under privacy constraints 
•  Inference under communication constraints 
•  The variational perspective 

Outline 



Part I: Inference and Privacy 

with John Duchi and Martin Wainwright 
 
 



•  Individuals are not generally willing to allow their 
personal data to be used without control on how it will be 
used and now much privacy loss they will incur 

•  “Privacy loss” can be quantified via differential privacy 
•  We want to trade privacy loss against the value we 

obtain from “data analysis” 
•  The question becomes that of quantifying such value 

and juxtaposing it with privacy loss 

Privacy and Data Analysis 
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•  In the 1930’s, Wald laid the foundations of statistical 
decision theory 

•  Given a family of distributions   , a parameter         for 
each         , an estimator   , and a loss                 , define 
the risk: 
 

Background on Inference 

P ✓(P )
P 2 P ✓̂ l(✓̂, ✓(P ))

RP (✓̂) := EP

h
l(✓̂, ✓(P ))

i



•  In the 1930’s, Wald laid the foundations of statistical 
decision theory 

•  Given a family of distributions   , a parameter         for 
each         , an estimator   , and a loss                 , define 
the risk: 

 
•  Minimax principle [Wald, ‘39, ‘43]: choose estimator 

minimizing worst-case risk: 

Background on Inference 

sup
P2P
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h
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Local Privacy 
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Channel

 Individuals                           with private data
 
Estimator



Differential Privacy 

Definition: channel    is   -differentially 
private if

[Dwork, McSherry, Nissim, Smith 06]

Given Z, cannot reliably discriminate
between x and x’



   -private Minimax risk

Private Minimax Risk 

Best   -private channel

Minimax risk under privacy constraint

• Parameter         of distribution
• Family of distributions
• Loss   measuring error
• Family      of private channels



Proportions           =

Vignette: Private Mean Estimation 

Example: estimate reasons for hospital visits
  Patients admitted to hospital for substance abuse
  Estimate prevalence of different substances

 1  Alcohol
 1  Cocaine
 0  Heroin
 0  Cannabis
 0  LSD
 0  Amphetamines

= .45
= .32
= .16
= .20
= .00
= .02



Proposition: 

Vignette: Mean Estimation 

Consider estimation of mean                                     , with
errors measured in     -norm, for

Minimax rate

(achieved by sample mean)
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Proposition: 

Private minimax rate for

Vignette: Mean Estimation 

Consider estimation of mean                                    , with
errors measured in     -norm, for

Effective sample sizeNote: 



Optimal mechanism?

Non-private
observation

Idea 1: add independent noise
(e.g. Laplace mechanism)

Problem: magnitude much too large
(this is unavoidable: provably sub-optimal)

[Dwork et al. 06]
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Optimal mechanism

Non-private
observation

View 1 View 2

• Draw    uniformly in

• With probability               

     choose closer of     and            to

(closer : 3 overlap) (farther : 2 overlap)

At end:
Compute sample average 

and
de-bias

• otherwise, choose farther



Empirical evidence

Estimate proportion of emergency room visits 
involving different substances

Data source: 
Drug Abuse 

Warning 
NetworkSample size n



•  Fixed-design regression 
•  Convex risk minimization 
•  Multinomial estimation 
•  Nonparametric density estimation 

•  Almost always, the effective sample size reduction is: 

Additional Examples 



Part III: Inference and 
Compression 

with Yuchen Zhang, John Duchi and Martin Wainwright 
 
 



Communication Constraints 
• Large data necessitates distributed storage
•  Independent data collection (e.g., hospitals)
• Privacy

Setting: each of     agents has sample 
of size

Messages      to fusion center

Question: tradeoffs between 
communication and statistical 

utility?

[Yao 79; Abelson 80;Tsitsiklis and Luo 87; Han & Amari 98; Tatikonda & Mitter 04; ...]



Minimax Communication 

Central object of study: 
•  Parameter         of distribution
•  Family of distributions 
•  Loss 

Constrained to be          bits



Minimax risk with    -bounded communication

Minimax Communication 

Central object of study: 
•  Parameter         of distribution
•  Family of distributions 

Best protocol                      with     smaller than     bits

•  Loss 

Constrained to be          bits



Vignette: Mean Estimation 
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Consider estimation in normal
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Minimax rate
Theorem: when each agent has sample of size
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Minimax rate with B-bounded communication

Vignette: Mean Estimation 

Theorem: when each agent has sample of size

bits

Consequence: each sends        bits for optimal estimation

Consider estimation in normal
location family,



Computation and Inference 

•  How does inferential quality trade off against 
classical computational resources such as time and 
space? 

 



Computation and Inference 

•  How does inferential quality trade off against 
classical computational resources such as time and 
space? 

•  Hard! 
 



Computation and Inference: 
Mechanisms and Bounds 

•  Tradeoffs via convex relaxations 
–  linking runtime to convex geometry and risk to convex 

geometry 
•  Tradeoffs via concurrency control 

–  optimistic concurrency control  
•  Bounds via optimization oracles 

–  number of accesses to a gradient as a surrogate for 
computation 

•  Bounds via communication complexity 
•  Tradeoffs via subsampling 

–  bag of little bootstraps, variational consensus Monte Carlo 



A Variational Framework for
Accelerated Methods in Optimization

with Andre Wibisono and Ashia Wilson

July 12, 2016



Accelerated gradient descent

Setting: Unconstrained convex optimization

min
x∈Rd

f (x)

I Classical gradient descent:

xk+1 = xk − β∇f (xk)

obtains a convergence rate of O(1/k)

I Accelerated gradient descent:

yk+1 = xk − β∇f (xk)

xk+1 = (1− λk)yk+1 + λkyk

obtains the (optimal) convergence rate of O(1/k2)
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The acceleration phenomenon

Two classes of algorithms:

I Gradient methods
• Gradient descent, mirror descent, cubic-regularized Newton’s

method (Nesterov and Polyak ’06), etc.

• Greedy descent methods, relatively well-understood

I Accelerated methods
• Nesterov’s accelerated gradient descent, accelerated mirror

descent, accelerated cubic-regularized Newton’s method
(Nesterov ’08), etc.

• Important for both theory (optimal rate for first-order
methods) and practice (many extensions: FISTA, stochastic
setting, etc.)

• Not descent methods, faster than gradient methods, still
mysterious
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Accelerated methods

I Analysis using Nesterov’s estimate sequence technique

I Common interpretation as “momentum methods” (Euclidean
case)

I Many proposed explanations:

• Chebyshev polynomial (Hardt ’13)
• Linear coupling (Allen-Zhu, Orecchia ’14)
• Optimized first-order method (Drori, Teboulle ’14; Kim,

Fessler ’15)
• Geometric shrinking (Bubeck, Lee, Singh ’15)
• Universal catalyst (Lin, Mairal, Harchaoui ’15)
• . . .

But only for strongly convex functions, or first-order methods

Question: What is the underlying mechanism that generates
acceleration (including for higher-order methods)?
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Accelerated methods: Continuous time perspective

I Gradient descent is discretization of gradient flow

Ẋt = −∇f (Xt)

(and mirror descent is discretization of natural gradient flow)

I Su, Boyd, Candes ’14: Continuous time limit of accelerated
gradient descent is a second-order ODE

Ẍt +
3

t
Ẋt +∇f (Xt) = 0

I These ODEs are obtained by taking continuous time limits. Is
there a deeper generative mechanism?

Our work: A general variational approach to acceleration

A systematic discretization methodology
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Bregman Lagrangian
Define the Bregman Lagrangian:

L(x , ẋ , t) = eγt+αt

(
Dh(x + e−αt ẋ , x)− eβt f (x)

)

I Function of position x , velocity ẋ , and time t

I Dh(y , x) = h(y)− h(x)− 〈∇h(x), y − x〉
is the Bregman divergence

I h is the convex distance-generating function

I f is the convex objective function

I αt , βt , γt ∈ R are arbitrary smooth functions

I In Euclidean setting, simplifies to damped

Lagrangian

x y

h(x)

h(y)

Dh(y, x)

Ideal scaling conditions:

β̇t ≤ eαt

γ̇t = eαt
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L(x , ẋ , t) = eγt+αt

(
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L(x , ẋ , t) = eγt+αt

(
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Bregman Lagrangian

L(x , ẋ , t) = eγt+αt

(
Dh(x + e−αt ẋ , x)− eβt f (x)

)

Variational problem over curves:

min
X

∫
L(Xt , Ẋt , t) dt

t

x

Optimal curve is characterized by Euler-Lagrange equation:

d

dt

{
∂L
∂ẋ

(Xt , Ẋt , t)

}
=
∂L
∂x

(Xt , Ẋt , t)

E-L equation for Bregman Lagrangian under ideal scaling:

Ẍt + (eαt − α̇t)Ẋt + e2αt+βt
[
∇2h(Xt + e−αt Ẋt)

]−1
∇f (Xt) = 0
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∂ẋ

(Xt , Ẋt , t)
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General convergence rate

Theorem
Theorem Under ideal scaling, the E-L equation has convergence
rate

f (Xt)− f (x∗) ≤ O(e−βt )

Proof. Exhibit a Lyapunov function for the dynamics:

Et = Dh

(
x∗, Xt + e−αt Ẋt

)
+ eβt (f (Xt)− f (x∗))

Ėt = −eαt+βtDf (x∗,Xt) + (β̇t − eαt )eβt (f (Xt)− f (x∗)) ≤ 0

Note: Only requires convexity and differentiability of f , h
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Polynomial convergence rate

For p > 0, choose parameters:

αt = log p − log t

βt = p log t + logC

γt = p log t

E-L equation has O(e−βt ) = O(1/tp) convergence rate:

Ẍt +
p + 1

t
Ẋt + Cp2tp−2

[
∇2h

(
Xt +

t

p
Ẋt

)]−1
∇f (Xt) = 0

For p = 2:

I Recover result of Krichene et al with O(1/t2) convergence
rate

I In Euclidean case, recover ODE of Su et al:

Ẍt +
3

t
Ẋt +∇f (Xt) = 0
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Time dilation property (reparameterizing time)

(p = 2: accelerated gradient descent)

O

(
1

t2

)
: Ẍt +

3

t
Ẋt + 4C

[
∇2h

(
Xt +

t

2
Ẋt

)]−1
∇f (Xt) = 0y speed up time: Yt = Xt3/2

O

(
1

t3

)
: Ÿt +

4

t
Ẏt + 9Ct

[
∇2h

(
Yt +

t

3
Ẏt

)]−1
∇f (Yt) = 0

(p = 3: accelerated cubic-regularized Newton’s method)

I All accelerated methods are traveling the same curve in
space-time at different speeds

I Gradient methods don’t have this property
• From gradient flow to rescaled gradient flow: Replace 1

2‖ · ‖
2

by 1
p‖ · ‖

p
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• From gradient flow to rescaled gradient flow: Replace 1

2‖ · ‖
2

by 1
p‖ · ‖

p



Time dilation for general Bregman Lagrangian

O(e−βt ) : E-L for Lagrangian Lα,β,γy speed up time: Yt = Xτ(t)

O(e−βτ(t)) : E-L for Lagrangian Lα̃,β̃,γ̃
where

α̃t = ατ(t) + log τ̇(t)

β̃t = βτ(t)

γ̃t = γτ(t)

Question: How to discretize E-L while preserving the convergence
rate?
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Discretizing the dynamics (naive approach)

Write E-L as a system of first-order equations:

Zt = Xt +
t

p
Ẋt

d

dt
∇h(Zt) = −Cptp−1∇f (Xt)

Euler discretization with time step δ > 0 (i.e., set xk = Xt ,
xk+1 = Xt+δ):

xk+1 =
p

k + p
zk +

k

k + p
xk

zk = arg min
z

{
Cpk(p−1)〈∇f (xk), z〉+

1

ε
Dh(z , zk−1)

}
with step size ε = δp, and k(p−1) = k(k + 1) · · · (k + p − 2) is the
rising factorial
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Naive discretization doesn’t work

xk+1 =
p

k + p
zk +

k

k + p
xk

zk = arg min
z

{
Cpk(p−1)〈∇f (xk), z〉+

1

ε
Dh(z , zk−1)

}

Cannot obtain a convergence guarantee, and empirically unstable
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Modified discretization
Introduce an auxiliary sequence yk :

xk+1 =
p

k + p
zk +

k

k + p
yk

zk = arg min
z

{
Cpk(p−1)〈∇f (yk), z〉+

1

ε
Dh(z , zk−1)

}
Sufficient condition: 〈∇f (yk), xk − yk〉 ≥ Mε

1
p−1 ‖∇f (yk)‖

p
p−1
∗

Assume h is uniformly convex: Dh(y , x) ≥ 1
p‖y − x‖p

Theorem
Theorem

f (yk)− f (x∗) ≤ O

(
1

εkp

)

Note: Matching convergence rates 1/(εkp) = 1/(δk)p = 1/tp

Proof using generalization of Nesterov’s estimate sequence
technique
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Modified discretization
Introduce an auxiliary sequence yk :

xk+1 =
p

k + p
zk +

k

k + p
yk

zk = arg min
z

{
Cpk(p−1)〈∇f (yk), z〉+

1

ε
Dh(z , zk−1)

}
Sufficient condition: 〈∇f (yk), xk − yk〉 ≥ Mε

1
p−1 ‖∇f (yk)‖

p
p−1
∗ ←−

How?

Assume h is uniformly convex: Dh(y , x) ≥ 1
p‖y − x‖p

Theorem
Theorem

f (yk)− f (x∗) ≤ O

(
1

εkp

)

Note: Matching convergence rates 1/(εkp) = 1/(δk)p = 1/tp

Proof using generalization of Nesterov’s estimate sequence
technique



Higher-order gradient update
Higher-order Taylor approximation of f :

fp−1(y ; x) = f (x) + 〈∇f (x), y − x〉+ · · ·+ 1

(p − 1)!
∇p−1f (x)(y − x)p−1

Higher-order gradient update:

yk = arg min
y

{
fp−1(y ; xk) +

2

εp
‖y − xk‖p

}

Assume f is smooth of order p − 1:

‖∇p−1f (y)−∇p−1f (x)‖∗ ≤
1

ε
‖y − x‖

Theorem
Lemma

〈∇f (yk), xk − yk〉 ≥
1

4
ε

1
p−1 ‖∇f (yk)‖

p
p−1
∗

Can use this to complete the modified discretization process!
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Accelerated higher-order gradient method

xk+1=
p

k + p
zk +

k

k + p
yk

yk= arg min
y

{
fp−1(y ; xk) +

2

εp
‖y − xk‖p

}
← O

(
1

εkp−1

)
zk= arg min

z

{
Cpk(p−1)〈∇f (yk), z〉+

1

ε
Dh(z , zk−1)

}
If ∇p−1f is (1/ε)-Lipschitz and h is uniformly convex of order p,
then:

f (yk)− f (x∗) ≤ O

(
1

εkp

)
← accelerated rate

p = 2: Accelerated gradient/mirror descent

p = 3: Accelerated cubic-regularized Newton’s method (Nesterov
’08)

p ≥ 2: Accelerated higher-order method



Recap: Gradient vs. accelerated methods

How to design dynamics for minimizing a convex function f ?

Rescaled gradient flow

Ẋt = −∇f (Xt) / ‖∇f (Xt)‖
p−2
p−1
∗

O

(
1

tp−1

)

Polynomial Euler-Lagrange equation

Ẍt+
p + 1

t
Ẋt+tp−2

[
∇2h

(
Xt+

t

p
Ẋt

)]−1
∇f (Xt) = 0

O

(
1

tp

)

Higher-order gradient method

O

(
1

εkp−1

)
when ∇p−1f is

1

ε
-Lipschitz

matching rate with ε = δp−1 ⇔ δ = ε
1

p−1

Accelerated higher-order method

O

(
1

εkp

)
when ∇p−1f is

1

ε
-Lipschitz

matching rate with ε = δp ⇔ δ = ε
1
p
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Ẋt

)]−1
∇f (Xt) = 0

O

(
1

tp

)

Higher-order gradient method

O

(
1

εkp−1

)
when ∇p−1f is

1

ε
-Lipschitz

matching rate with ε = δp−1 ⇔ δ = ε
1

p−1

Accelerated higher-order method

O

(
1

εkp

)
when ∇p−1f is

1

ε
-Lipschitz

matching rate with ε = δp ⇔ δ = ε
1
p



Summary: Bregman Lagrangian

I Bregman Lagrangian family with general convergence
guarantee

L(x , ẋ , t) = eγt+αt

(
Dh(x + e−αt ẋ , x)− eβt f (x)

)
I Polynomial subfamily generates accelerated higher-order

methods: O(1/tp) convergence rate via higher-order
smoothness

I Exponential subfamily: O(e−ct) rate via uniform convexity

I Understand structure and properties of Bregman Lagrangian:
Gauge invariance, symmetry, gradient flows as limit points,
etc.

I Bregman Hamiltonian:

H(x , p, t) = eαt+γt
(
Dh∗

(
∇h(x) + e−γtp, ∇h(x)

)
+ eβt f (x)

)
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Discussion 

•  Many conceptual and mathematical challenges 
arising in taking seriously the problem of “Big Data” 

•  Facing these challenges will require a rapprochement 
between “computational thinking” and “inferential 
thinking”  
–  bringing computational and inferential fields together at the 

level of their foundations 




