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Data science as a pipeline from data to insights and decisions
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Data science as a discipline at the interface
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Continuum limits in physics and applied math

Continuum limits are the basis for many results in applied physics and math

• Riemann integral limits of finite sums

lim
n→∞

1

n

n∑
1=1

ψ(xi ) =

∫
IRd

ψ(x)f (x)dx

• Limits of finite particle systems in statistical mechanics
• Thermodynamic limit for magnetic systems (Ising 1925, Onsager 1948)

• Boltzman hydrodynamic limit for dilute gasses (Bardo 1991)

• Hamilton-Jacobi diffusion limit for non-ideal gases (Rajeev 2008)

Ising, Ernst (1925), Beitrag zur Theorie des Ferromagnetismus. Z. Phys., 31: 253258,

Bardos, C, F. Golse and D. Levermore (1991), Fluid dynamic limits of kinetic equations. J. Stat. Pysics 63, 323 - 344

Rajeev, S.G. (2008), A HamiltonJacobi formalism for thermodynamics. Annals of Physics, 323(9), pp.2265-2285

Evans, Lawrence C. (2001). Entropy and partial differential equations. URL math. berkeley. edu/evans

These latter limits often reduce the free energy of a complex system to simpler
(maximum entropy) solutions to partial differential equations (Evans 2001).
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Continuum limits in physics and applied math

Such limits have often motivated discrete approximations to cts operators

• Approximation of integrals by quadrature (Gaussian, Nyström) methods

• Approximation of differential equations by finite differences (Euler,
Runge-Kutta)

and construction of asymptotic performance approximations

• Dense network approximations to wireless communication (Gupta and
Kumar 2000)

• Fluid approximations to queuing networks (Dai and Meyn 1995)

• High dimensional approximations to eigenspectra of random matrices
(Silverstein 1995)

Gupta, Piyush, and PR Kumar (2000). The capacity of wireless networks. IEEE Transactions on information theory 46:2: 388-404.

Dai, Jim G., and Sean P. Meyn (1995). Stability and convergence of moments for multiclass queueing networks via fluid limit models.

IEEE Transactions on Automatic Control 40:11: 1889-1904.

Silverstein, Jack W., and Z. D. Bai (1995). On the empirical distribution of eigenvalues of a class of large dimensional random matrices.

Journal of Multivariate analysis 54.2: 175-192.
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Continuum limits in data science?

Q. Are continuum limits useful for machine learning and data mining?

A. Yes. Continuum limits often reveal scalable approximations for large sample
size

Some examples

• Nyström low rank approximations for kernel-based learning (Drineas and
Mahoney, 2005)

• Information divergence from limit of MST (Henze-Penrose 1999)

• Minimum volume sets from limit of K-point MST (Hero 1998)

• Intrinsic dimension from continuum limit of MST growth rate (Hero 2006)

• Pareto non-dominated sorting from Hamilton-Jacobi continuum limit
(Hero 2014)

• Dykstra shortest paths from Euler-Lagrange continuum limit (Hero 2016)

→ Euclidean graph continuum limits appear especially promising

Drineas, Peter and Mahoney, Michael W. (2005), On the Nyström method for approximating a Gram matrix for improved kernel-based

learning. Journal of Machine Learning Research, 6:12: 2153-2175.
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Geometric graphs

A geometric graph has nodes V that represent real valued features and edges E
that represent similarities between the features (Penrose 2003).

Some data-driven applications where geometric graphs arise

• Data mining
• Clustering and segmentation (GLap, kNNG, MST, graph cuts)
• Dimensionality reduction (GLap, kNNG, GMST)
• Denoising and anomaly detection (kMST, BP-kNNG)

• Imaging and computer vision
• Orthoregistration (MST, kNNG)
• Frame-to-frame registration (TSP)
• Multi-resolution image representation (MST-based pyramid)
• Image inpainting interpolation (kNNG)

• Database indexing and retrieval
• Query-reference matching (NNG)
• Database partitioning (kNNG)
• Multi-criterion image retrieval (Chain graph)

Such geometric graphs are often modeled as random, having nodal feature
vectors {X1, . . . ,Xn} drawn from some probability distribution f .

M. Penrose, Random geometric graphs, Oxford University Press 2003
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Minimal Euclidean graphs under constraints

Define Xn = {X1, . . . ,Xn} a set of points (features) in M⊂ IRd .

A graph G = {V, E}
• {V} = {X1, . . . ,Xn}, Xi ∈M ⊂ IRd : nodes or vertices

• {E} = {eij}: edges connecting distinct pairs {i , j}
• |eij | = ‖Xi − Xj‖: edge length wrt to a distance metric on M
• A = ((aij)): adjacency matrix associated with G

aij =

{
1, eij ∈ E
0, o.w .

• di =
∑

j aij : degree of vertex i

Length functional

L(V, E) =
∑
eij∈E

|eij |γ

where γ ≥ 0. Given constraint set C a minimal Euclidean graph G∗ = {E∗,V}

is solution of
E∗ = aminE:E⊂C

∑
eij∈E

|eij |γ

12
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k-nearest neighbor (kNN) graph

• kNN graph is solution of the
optimization

LkNN
γ (V) = min

E:A1≥k1
Lγ(V, E)

= min
E:A1≥k1

∑
eij∈E

|eij |γ

=
n∑

i=1

∑
j∈Nk (Xi )

‖Xi − Xj‖γ

• Nk(Xi ) are the k-nearest neighbors of
Xi in Xn − {Xi}

• Applications: inpainting, feature
density estimation,
clustering+classification,
dimensionality reduction

• Computational complexity is
O(knlogn)

13
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kNNGs in spectral clustering and dimensionality reduction

k-NNG-based spectral algorithm

• Extract features Xn = {X1, . . . ,Xn}
• Compute similarity matrix W btwn Xi ’s

• Use W to construct kNN graph over Xn

• (V,Λ) =Eigendecomp(W −D), D = diag(W1)

• Dimension reduction: Yn = Λ
1/2
2×2[v1, v2]T Xn

• Spectral clustering: K-means(v2)

Adjacency matrix kNNG

kNNG clustering for image segementation (Felzenszwalb 2003)

3D data 2D Graph Laplacian embeddings (Ting 2011)

• Belkin, Mikhail, and Partha Niyogi. ”Laplacian eigenmaps and spectral techniques for embedding and clustering.” NIPS. Vol. 14. 2001.

• Coifman, Ronald R., and Stphane Lafon. ”Diffusion maps.” Applied and computational harmonic analysis 21.1 (2006): 5-30.

14
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Minimal spanning tree (MST)

• MST is solution of the optimization

LMST
γ (V) = min

E:A1>0
Lγ(V, E)

= min
E:A1>0

∑
eij∈E

|eij |γ

• MST spans all of the vertices V
without cycles

• MST has exactly n − 1 edges

• Applications: image segmentation,
image registration, clustering

• Computational complexity is O(n2logn)

15
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Illustration: MST for image segmentation, representation and rendering

MST-based image segmentation (Zahn 1971, Felzenszwalb 2003)

MST for surface rendering (Hoppe 1992))
MST for building image pyramid (Mathieu 1996)

• Zahn, Charles T. ”Graph-theoretical methods for detecting and describing gestalt clusters.” IEEE Transactions on Computers, 1971

• P. Felzenswalb and D. Huttenlocher, ”Efficient graph-based image segmentation,” International Journal of Computer Vision, 2004

• H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle, ”Surface reconstruction from unorganized points,” SIGRAPH, 1992

• C. Mathieu and I. Magnin, ”On the choice of the first level on graph pyramids”, Journal of Mathematical Imaging and Vision, 1996

17
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Minimal spanning tree for liineage tracking in epidemiology

Minimum-spanning tree (MST) of Mycobacterium tuberculosis strains
based on MIRU-VNTR 24-locus copy numbers. The M. tuberculosis
clonal complexes are represented by different colors. Circle size is
proportional to the number of MIRU-VNTR types belonging to each
complex. Abbreviations: CAS, Central Asian strain; LAM, Latin
American-Mediterranean.

Yimer et al, “Mycobacterium tuberculosis Lineage 7 Strains Are Associated with Prolonged Patient Delay in Seeking Treatment for

Pulmonary Tuberculosis in Amhara Region, Ethiopia,” Journal of Clinical Microbiology, 53(4), February 2015
18
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Friedman-Rafsky graph (FR)

• Two labeled samples Xn, Ym

• Start with MST over V = Xn ∪ Ym

LMST
γ (V) = min

E:A1>0
Lγ(V, E)

=
∑

eij∈E∗
|eXXij |γ + |eXYij |γ + |eYYij |γ

• FR graph is the set of edges {eXYij }
• The length of FR graph is

LFR
γ (V) =

∑
eXYij ∈E

∗

|eXYij |γ

• This was proposed as a difference
measure (divergence) btwn
distributions of Xn and Ym (Friedman
and Rafsky, 1979)

J. Friedman, and L. Rafsky. ”Multivariate generalizations of the Wald-Wolfowitz and Smirnov two-sample tests,” Annals of Statistics, 1979.
19
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Friedman-Rafsky graph (FR)

• Two labeled samples Xn, Ym

• Start with MST over V = Xn ∪ Ym
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γ (V) = min
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Lγ(V, E)
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∑
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• FR graph is the set of edges {eXYij }
• The length of FR graph is

LFR
γ (V) =

∑
eXYij ∈E

∗

|eXYij |γ

• Applications: image registration,
pattern matching, meta-learning

• Computational complexity is
O((n + m)2log(n + m))
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Application: multimodality image registration using MI

Find transformation T that best aligns
images I1 and I2

Feature vector at location zi ∈ IR2:
X(i) = [I1(zi ),T (I2(zi ))]

Joint intensity histogram
pX(x1, x2) = n−1

∑n
i=1 X[x1,x2](X(i))

Maximize mutual information (MI)

max
T

255∑
x1,x2=0

pX(x1, x2) ln

(
pX(x1, x2)

pX1
(x1)pT (X2)(x2)

)
= max

T
H(I1,T (I2))− H(I1)− H(T (I2))

Where have defined entropy of V

H(V) = n−1
∑
v

ln
1

pV (v)

Mutual information (MI) based registration

• W. Wells, P. Viola, P., H. Atsumi, S. Nakajima, and R. Kikinis, ”Multi-modal volume registration by maximization of mutual

information,” Medical image analysis, 1996.

• E. Oubel, M. De Craene, A. Hero, A. Pourmorteza, M. Huguet, G. Avegliano, B. Bijnens, A. Frangi, ”Cardiac motion estimation by

joint alignment of tagged MRI sequences,” Med. Image Anal. 2012.
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Comparison: multimodality image registration using FR

Find transformation T that best aligns
images I1 and I2

Feature vectors of I1 and T (I2) at
location zi ∈ IR2:

X1(i) = [W(zi ), zi ], X2(i) = [W(zi ), zi ]

W1(zi ) and W2(zi ) are localized Meyer
wavelet coefficients of I1 and T (I2)

Maximize FR statistic

max
T

LFRγ (X1,X2)

FR registration uses higher dimensional

(6) features that capture images’ local

spatial patterns

• H. Neemwuchwala and A. Hero, ”Entropic Graphs for Registration,” in Multi-Sensor Image Fusion and its Applications, Eds. R. S.

Blum and Z. Liu, Marcel Dekker, Inc., 2005.
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k-Minimal spanning tree (kMST)

• Let Vk ⊂ V and |Vk | = k

• Let Ek be edges over Vk
• kMST is solution of the optimization

LkMST
γ (V) = min

Vk :|Vk |=k
LMST
γ (Vk)

= min
Vk :|Vk |=k

min
Ek :Ak1>0

∑
eij∈Ek

|eij |γ

• kMST is the smallest MST that spans
any k of the vertices V

• Applications: Denoising and outlier
detection, robust image registration,
robust clustering

• Computational complexity is NP hard

• Greedy approximations are available
(Ravi 1994)

R. Ravi, M. Marathe, D. Rosenkrantz and S. Ravi ”Spanning trees short and small,” Proc of ACM-SIAM Symp on Discrete Algorithms, 1994.
24
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Denoising illustration of kMST

Ring pdf f1

Uniform pdf f0

f = (1− ε)f1 + εf0

• A. Hero and O. Michel, ”Asymptotic theory of greedy approximations to minimal K-point random graphs,” IEEE Information Theory

1999.
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Illustration: kMST for WSN intruder detection

• A. Hero, ”Geometric entropy minimization (GEM) for anomaly detection and localization,” NIPS 2006

• K. Sricharan and A. Hero, ”Efficient anomaly detection using bipartite k-NN graphs,” NIPS 2011.

26



Motivation Minimal graphs Continuum limits Application Summary References

Shortest path (SP)

• Let G be a graph with m = |E| edges on n
vertices V

• π(XI ,XF ) a path over G btwn points XI

and XF

π(XI ,XF ) = (XI ,Xi1 , . . . ,Xil ,XF )

Xij+1
is neighbor on G of predecessor Xij

and XI = Xi0 , XF = Xil+1

• The shortest path is the solution to

LSPγ (V) = min
π(Xi ,XF )

∑
Xi∈π(XI ,XF )

|Xij+1
− Xij |

γ

• Typical choices of G:

• Complete graph
• kNN graph
• MST

• Applications: clustering, manifold learning,
image retrieval, efficient network routing,
graph classification

• Computational complexity is O(m+nlogn)

27
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Shortest paths in manifold learning: ISOMAP geodesic approximation

• Tenenbaum, Joshua B., Vin De Silva, and John C. Langford. ”A global geometric framework for nonlinear dimensionality reduction.”

Science 290.5500 (2000): 2319-2323.
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Shortest paths in computer vision: morphing images through a database

Averbuch-Elor, Cohen-Or and Kopf, “Smooth Image Sequences for Data Driven Morphing,” Computer Graphics Forum, 35(6), 2016
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Shortest paths in epidemiology: virus strain genotyping

30
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Lensing effect: SP through complete graph for Gaussian points in plane
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No lensing effect: SP through complete graph for uniform points in plane
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Non-dominated ranking in multiple dimensions

• Define partial order relation ”5” between any

X,Y ∈ IRd :

X 5 Y ⇔ Xi ≤ Yi , ∀i = 1, . . . , d

• X a minimal element of X = {X1, . . . ,Xn} if

1) X ∈ X
2) {Xi ∈ X : Xi 5 X} = ∅

• Define minX the set (Pareto front) of all
minimal elements of X .

• Pareto front of depth k, denoted {Fk}, is
defined recursively

F1 = minX

Fk = min
{
X/ ∪k−1

i=1 Fi

}
, k = 1, 2, . . .

• Applications: evolutionary computing,
database indexing and retrieval, portfolio
design, anomaly detection

• Computational complexity is O(dn2)
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Illustration: Image retrieval combining multiple semantic concepts

Objective: search a database for images

combining concepts of “sea” and

“mountain”

Standard image matching is limited

• Produces single rank ordered list of
closest matches

• Desired match may be deeply
buried in combined lists

Issue: people rarely examine more than

a few of the top matches
34
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Illustration: multiple concept image retrieval in SS dataset

Stanford Scene dataset, SIFT feature, Spatial Pyramid Matching

Hsiao, Calder and H, “Multiple-query Image Retrieval using Pareto Front Method,” IEEE Trans. on Image Processing 2015.
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Illustration: first Pareto front for (forest, mountan) query

Stanford Scene dataset, SIFT feature, Spatial Pyramid Matching
Hsiao, Calder and H, “Multiple-query Image Retrieval using Pareto Front Method,” IEEE Trans. on Image Processing 2015.
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MST continuum limit: MST length functional captures “spread” of
distribution

38
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Large n behavior of MST length functional

length(MST) (log length(MST))/
√
n

Unif.

Triang.

Unif.

Triang.
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Continuum limit of kNN and MST length functionals

Theorem (Beardwood, Halton&Hammersley 1959, Steele 1997)

Let Xn = {X1, . . . ,Xn} be an i.i.d. realization from a Lebesgue density f
supported on compact subset of IRd . If 0 < γ < d

lim
n→∞

LMST ,kNN
γ (Xn)/n(d−γ)/d = βγ,d

∫
f (x)(d−γ)/ddx , (a.s.)

Alternatively, letting α = (d − γ)/d and defining the entropy function

Hα(f ) =
1

1− α ln

∫
f α(x)dx ,

1

1− α ln Lγ(Xn)/nα → Hα(f ) + c (a.s.)

• RMS rate of convergence (Costa & Hero 2003)

sup
f∈Hβ,K

E

[∣∣∣∣βγ,d ∫
S
f (x)(d−γ)/ddx − LMST

γ (Xn)/n(d−γ)/d

∣∣∣∣2
]1/2

≥ cn−
β
β+1

1
d

Steele, Probability theory and combinatorial optimization, SIAM 1997.

Beardwood and Halton and Hammersley, ”The shortest path through many points,” Proc. Cambridge Philosophical Society 1959.
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Continuum limit for Euclidean length functionals (Yukich 1998)

• BHH theorem holds generally for any quasi-additive continuous Euclidean
length functional Lγ(F ) (Yukich 1998) - kNN, Steiner tree, TSP

• Translation invariant and homogeneous

∀ x ∈ IRd , Lγ(F + x) = Lγ(F), (translation invariance)

∀ c > 0, Lγ(cF ) = cγLγ(F), (homogeneity)

• Null condition: Lγ(φ) = 0, where φ is the null set
• Subadditivity: There exists a constant C1 with the following property: For

any uniform resolution 1/m-partition Qm

Lγ(F ) ≤ m−γ
md∑
i=1

Lγ(m[(F ∩ Qi )− qi ]) + C1m
d−γ

• Superadditivity: For same conditions as above, there exists a constant C2

Lγ(F ) ≥ m−γ
md∑
i=1

Lγ(m[(F ∩ Qi )− qi ])− C2m
d−γ

• Continuity: There exists a constant C3 such that for all finite subsets F
and G of [0, 1]d

|Lγ(F ∪ G)− Lγ(F )| ≤ C3 (card(G))(d−γ)/d

J. Yukich, ”Probability theory of classical Euclidean optimization problems,” Springer Lecture Notes in Mathematics, 1998. 41
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Main ideas behind proof of BHH (Yukich 1998)

Start with f (x) uniform over [0, 1]d

• Avg distance between n points in
[0, 1]d

|ei |avg = n−1/d

• Avg length of MST should therefore be

LMST
γ =

n−1∑
i=1

|ei |γavg ≈ c nn−γ/d = cn(d−γ)/d

• The constant c in front is βd,γ

Next apply partitioning heuristic

• Dissect [0, 1]d into md cubes {Qi} each with
center qi .

• From translation invariance, homogeneity,
quasi-additivity of MST

LMST
γ (Xn) ≈ m−γ

md∑
i=1

LMST
γ (m(Xn ∩ Qi ))

• From the [0, 1]d result

LMST
γ (m(Xn ∩ Qi )) = c(ni )

(d−γ)/d

• From smoothness of f

ni/n ≈ m−d f (qi )

• Therefore

LMST
γ (m(Xn∩Qi )) ≈ cn(d−γ)/d (m−d f )(d−γ)/d

• since
(m−d f )(d−γ)/d = mγm−1/d f (d−γ)/d (qi )

LMST
γ (Xn) ≈ n(d−γ)/d ·c

md∑
i=1

f (d−γ)/d (qi )m
−1/d
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BHH theorem Riemannian extension

Theorem (Costa 2004, 2005 )

Let (S, g) be a compact smooth Riemannian d-dimensional manifold in IRD .
Suppose Xn = {X1, . . . ,Xn} is a random sample on S with density f relative to
µg and d ≥ 2, 1 ≤ γ < d. Then

lim
n→∞

LMST
γ (Xn)

nα
= βd,γ

∫
S
f α(x)dµg

where α = (d − γ)/d.

Alternative representation For finite n

logLMST
γ (Xn) = αlogn + (1− α)Hα(X ) + logβd,L + ε(n)

where

Hα(X ) = (1− α)−1 ln

∫
S
f α(x)dµg

is α-entropy of X and ε(n)→ 0 w.p.1.

Key observation: can use representation of logLMST
γ to estimate intrinsic

dimension d of S in addition to entropy of f (x).

43



Motivation Minimal graphs Continuum limits Application Summary References

Dimension and entropy estimation for unif density on swiss roll

• d̂ = round

(
γ

1− a

)
︸ ︷︷ ︸

2.1

= 2

• Ĥα(X ) =
b−γ/2logβd,γ

1−a
= 7.3

• Ground truth: Hα(X ) = log(1869) = 7.53
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Dimension estimation: MNIST digits

J. Costa and A. Hero, ”Learning intrinsic dimension and entropy of shapes,” in Statistics and analysis of shape, Eds. H. Krim and T.

Yezzi, Birkhauser, 2005
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Continuum limit of greedy kMST length functional

Ravi (1996) proposed a greedy partitioning approximation to kMST.

Theorem (Hero and Michel 1999 )

Fix ρ ∈ [0, 1]. If k/n→ ρ then the length of Ravi’s greedy partitioning k-MST
satisfies

LkMST
γ (Xn)/(ρn)α → βγ,d inf

A:Pr(A)≥ρ

∫
f α(x |x ∈ A)dx (a.s.)

Pr(A) =
∫
A
f .

Alternatively, defining the conditional entropy function

Hα(f |x ∈ A) =
1

1− α ln

∫
f α(x |x ∈ A)dx ,

1

1− α ln
(
LkMST
γ (Xn)/(ρn)α

)
→ βγ,d inf

A:Pr(A)≥ρ
Hα(f |x ∈ A) + c (a.s.)

Solution to variational problem is a level set A = Ao of f .

• A. Hero and O. Michel, ”Asymptotic theory of greedy approximations to minimal K-point random graphs,” IEEE Information Theory

1999.
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Continuum limit of kMST length functional

Here level set A0 satisfies P(X ∈ A0) = ρ.

Level set can be estimated empirically from data Xn by

• Empirical kernel estimation of f by f̂ (x) = G(x) ∗
∑n

i=1 δ(Xi )

• Solve for level-set of f̂ by variational pde

• S. Osher and R. Fedkiw, ”Level set methods: an overview and some recent results,” Journal of Computational physics, 2001

• J. Sethian, ”Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer

vision, and materials science,” Vol. 3. Cambridge university press, 1999
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Continuum limit of FR length functional

Let X = {X1, . . . ,Xn} and Y = {Y1, . . . ,Ym} be independent sets of i.i.d.
random vectors in IRd with marginal pdfs fx and fy , respectively.

Theorem (Henze and Penrose, 1999)

Let n,m converge to infinity in such a way that n/(n + m) = ε, ε ∈ [0, 1]. Then
the FR length functional satisfies

LFR
1 (X ∪ Y)/(n + m)→

∫
fx(x)fy (x)

εfx(x) + (1− ε)fy (x)
dx (a.s.)

Alternatively, define the f-divergence

Dε(p, q) = (4ε(1− ε))−1

(∫
(εp(x)− (1− ε)q(x))2

εp(x) + (1− ε)q(x)
dx − (2ε− 1)2

)
then (Berisha and Hero 2015)

1− LFR
1 (X ∪ Y)

n + m

2nm
→ Dε(fx , fy ) (a.s.)

• N. Henze and M. Penrose, ”On the multivariate runs test,” Ann. of Statistics, 1999.

• V. Berisha and A. Hero, ”Empirical non-parametric estimation of the Fisher Information,” IEEE Signal Processing Letters, 2015.
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Continuum limit of shortest path

Let X = {X1, . . . ,Xn} be i.i.d. random vectors in IRd with marginal pdf f with
support set S. Fix two points xI and xF in IRd .

Define G as the complete graph spanning X

Theorem (Hwang, Damelin and H 2016)

Assume that infx f (x) > 0 over a compact support set S with pd metric tensor
g. For γ > 1 the shortest path on G between any two points xI , xF ∈ S satisfies

LSP
γ (X )/n(1−γ)/d → Cd,γ inf

π

∫ 1

0

f (πt)
(1−γ)/d

√
g(π̇t , π̇t)dt︸ ︷︷ ︸

distγ (xI ,xF )

(a.s.)

where the infimum is taken over all smooth curves π : [0, 1]→ IRd with π0 = xI
and π1 = xF and C(d , γ) is a constant independent of f .

• S.-J. Hwang, S. Damelin, A. Hero, ”Shortest path through random points,” Annals of Applied Probability, 2016 (arXiv:1202.0045).
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Continuum limit of shortest path: archimedean vs relativistic limit

-2
-1

0
1

2

-2
-1

0
1

2

-1.5

-1

-0.5

0

0.5

1

1.5

0
0.2

0.4
0.6

0.8
1

0

0.5

1
-1

-0.5

0

0.5

1

𝑑𝑑 = 2, 𝛾𝛾 = 2

Archimedean shortest path

Relativistic shortest path

50



Motivation Minimal graphs Continuum limits Application Summary References

Main ideas behind proof of SP (Hwang, Damelin, H 2016)

Start with {Xi}ni=1 ∼ f (x) = U([0, 1]d )

• Avg. interpoint distance is

|ei |avg = n−1/d

• Avg # points in a short path π: cn1/d

• Avg length of π should therefore be

Lπγ = n1/d |ei |γavg ≈ c n1/dn−γ/d = cn(1−γ)/d

• Contant is c = cπ̇ = Cd,γ

∫ 1
0 ‖π̇‖

Next apply partitioning heuristic

• Dissect [0, 1]d into md cubes {Qi} each with
center qi .

• Let π be any short path crossing through
O(m) cubes. Then, length of path satisfies

Lπγ (Xn) ≈ m−γ
m∑
i=1

Lπγ (m(Xn ∩ Qi ))

• From the [0, 1]d result, with πi = π ∩ Qi

Lπγ (m(Xn ∩ Qi )) = cπ̇i
‖(ni )(1−γ)/d

• From smoothness of f

ni/n ≈ m−d f (qi )

• Therefore

Lπγ (m(Xn ∩ Qi )) ≈ cπ̇ n(1−γ)/d (m−d f )(1−γ)/d

• since (m−d f )(1−γ)/d = mγm−1f (1−γ)/d

Lπγ (Xn) ≈ n(1−γ)/d ·
m∑
i=1

cπ̇ f (1−γ)/d (qi )m
−1
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Continuum limit of shortest path: variational form

Define
F (π, π̇) = f (π)(1−γ)/d

√
g(π̇, π̇)

Then normalized shortest path length converges to Cd,γ infπ
∫ 1

0
F (πt , π̇t)dt.

Using calculus of variations can show that the asymptotic shortest path π
satisfies the system of d coupled Euler-Lagrange equations

d

dt
(∇π̇F (π, π̇))−∇πF (π, π̇) = 0, t ∈ [0, 1]

with boundary conditions π0 = xI , π1 = xF . E.g., for g(π̇, π̇) = 〈π̇, π̇〉

1− γ
d

A(π̇)∇π ln f (π) +
d

dt

(
π̇

‖π̇‖

)
= 0

Special case of points in the plane (d = 2): πt = (t, yt)

1− γ
d

(α1(ẏ)f10(t, y) + α2(ẏ)f01(t, y)) /f (t, y) +
d

dt

(
ẏ√

1 + ẏ 2

)
= 0

α1(ẏ) = ẏ/
√

1 + ẏ 2, α2(ẏ) = −1/
√

1 + ẏ 2
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Experimental validation of shortest path continuum limit

Regression equation (α = (1− γ)/d):

logLγ(X ) = αlogn + logdistγ(x , y) + logCd,γ

Experimental setting

• d = 2, γ = 2 so that slope should be (1− γ)/d = −0.5

• Xn are n uniform points on S = S2

• Blue plot: x = (1, 0, 0), y = (−1, 0, 0)

• Red plot: x = (0, 1, 0), y = (0, 0, 1)
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Continuum limit for non-dominated sorting: Demo for Unif[0, 1]2

J. Calder, ”Hamilton-Jacobi equations for sorting and percolation problems”, PhD thesis Univ Michigan 2014.
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Continuum limit for non-dominated sorting: Demo for Unif[0, 1]2

J. Calder, ”Hamilton-Jacobi equations for sorting and percolation problems”, PhD thesis Univ Michigan 2014.
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Continuum limit for non-dominated sorting: Demo for Unif[0, 1]2

J. Calder, ”Hamilton-Jacobi equations for sorting and percolation problems”, PhD thesis Univ Michigan 2014.
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Continuum limit for non-dominated sorting: Demo for Unif[0, 1]2

J. Calder, ”Hamilton-Jacobi equations for sorting and percolation problems”, PhD thesis Univ Michigan 2014.
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Continuum limit for non-dominated sorting: Demo for Unif[0, 1]2/[0, 0.5]2

J. Calder, ”Hamilton-Jacobi equations for sorting and percolation problems”, PhD thesis Univ Michigan 2014.
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Continuum limit for non-dominated sorting: Demo for Unif[0, 1]2/[0, 0.5]2

J. Calder, ”Hamilton-Jacobi equations for sorting and percolation problems”, PhD thesis Univ Michigan 2014.
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Continuum limit for non-dominated sorting: Demo for Unif[0, 1]2/[0, 0.5]2

J. Calder, ”Hamilton-Jacobi equations for sorting and percolation problems”, PhD thesis Univ Michigan 2014.
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Continuum limit for non-dominated sorting: Demo for Unif[0, 1]2/[0, 0.5]2

J. Calder, ”Hamilton-Jacobi equations for sorting and percolation problems”, PhD thesis Univ Michigan 2014.
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Asymptotic theorem for non-dominated sorting

Define un(x) the function that counts the number of Pareto fronts in wedge
{Xi 5 x}. Assume that supp(f ) ⊂ Ω ⊂ IRd , Ω bounded with Lipshitz ∂Ω.

Theorem (Calder, Esedoglu and H, 2014)

There exists a cd > 0 such that w.p.1

n−1/dun → cdU, in L∞(IRd
+)

where

1 U is the Pareto monotone a solution of the variational problem

U(x) = sup
γ∈A

∫ 1

0

f
1
d (γ(t))(γ

′
1(t) · · · γ

′
d(t))

1
d dt

where A =
{
γ ∈ C 1(0, 1; IRd) : γ

′
(t) = 0 ∀t ∈ [0, 1]

}
2 U is the unique viscosity solution to the Hamilton-Jacobi p.d.e

∂U

∂x1
· · · ∂U

∂xd
=

1

dd
f in Ω

U = 0 on ∂Ω
aU(x) ≤ U(y) if x 5 y

J. Calder, S. Esedoglu and A. Hero, ”A Hamilton-Jacobi equation for the continuum limit of non-dominated sorting”, SIAM Mathematical

Analysis, Feb 2014
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Demonstration: theory vs experiment for Unif[0, 1]/[0, 0.5]2

J. Calder, ”Hamilton-Jacobi equations for sorting and percolation problems”, PhD thesis Univ Michigan 2014.
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Relation of Pareto fronts to longest chain problem

Proof of theorem relies on connection to longest chain problem (Ulam
[1961]),(Hammersley et al. [1972]), (Aldous and Diaconis [1995])

• un(x) is the length of longest chain in {Xi ∈ X : Xi 5 x}.
• Fk is anti-chain containing {Xi ∈ X : un(Xi ) = k}
• un = u{X1,...,Xn} is a superadditive functional in the sense that

u{X1,...,Xn}(x) ≥
m∑
i=1

u{X1,...,Xn∩Ri}(x)

• Superadditivity implies convergence of n−1/dun

• Smoothness of f implies convergent limit obeys Hamiltonian-Jacobi p.d.e.

Low complexity (linear) numerical p.d.e. solver proposed (Calder et al. [2015])

d∏
i=1

[U(x)− U(x− hei )] = hdd−d f (x), x ∈ {h, 2h, . . . ,Mh}d

Calder, Esedoglu and H, ”A Hamilton-Jacobi equation for the continuum limit of non-dominated sorting”, SIAM Mathematical Analysis,

Feb 2014

Calder, Esedoglu, H, ”A PDE-based approach to non-dominated sorting,” SIAM Numerical Analysis, 2015
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Multicriteria anomaly detection

K.-J. Hsiao, K. Xu, J. Calder and A. Hero, “Multi-criteria anomaly detection using Pareto depth analysis,” NIPS 2012.
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Multicriteria anomaly detection

Speed and shape similarity between trajectories Ti (t),Tj(t) ∈ IR2:

D1(i , j) = ‖hist(∆Ti )− hist(∆Tj)‖,

D2(i , j) = ‖Ti − Tj‖

K.-J. Hsiao, K. Xu, J. Calder and A. Hero “Multi-criteria anomaly detection using Pareto depth analysis,” NIPS 2012.
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Detection performance of multicriteria anomaly detection

K.-J. Hsiao, K. Xu, J. Calder and A. Hero, “Multi-criteria anomaly detection using Pareto depth analysis,” NIPS 2012.
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Run-time comparisons

• Performed on 50, 000 trajectories (a total of 109 Pareto points)

• Grid size used 250× 250

Calder, Esedoglu, H, ”A PDE-based approach to non-dominated sorting,” SIAM Numerical Analysis, 2015. Calder et al. [2015]
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Summary

• Continuum limit analysis can lead to useful tools and insights for data
science

• They lie at the interface between statistical physics, machine learning,
combinatorial optimization, probability, and applied math

• Scalable pde-based algorithms for solving minimal path and non-dominated
sorting problems

• Graph-based methods for estimating information measures (entropy,
divergence, mutual information)

• Some related open problems
• Minimal paths on sparse graphs, directed paths, multigraphs, hypergraphs
• Non-dominated sorting extensions to data depth and convex hull peeling

• Broader questions
• New frontier: statistical mechanics of big data and data analysis?
• New primitive: state-of-the-art numerical pde solvers in pipeline?
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