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Big Data, Big Picture

(x , y), y ∼ f (x)

Data

Linear model: f (x) = wT x

Nonlinear model: f (x) = wTφ(x)

Multi-layer network model:
f (x) = W T

3 g2(W T
2 g1(W T

1 x))

Model

min
f∈F

L(f )

e.g ., L(f ) =
1

n

n∑
i=1

`(f (xi ), yi )

Optimization
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Big Data, Big Opportunity

Most problems are convex!

Local optimum is also global optimum; fundamentally tractable.

Some problems are non-convex, but admits nice structure.

Local optimum “behaves like” global optimum.

We have a dedicated library of efficient first-order optimization
algorithms.

Gradient Descent, its acceleration and cousins
Conditional Gradient (a.k.a. Frank Wolfe algorithm)
Coordinate Descent, its randomization variations
Primal-dual algorithms, ADMM
Quasi-Newton Methods
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Big Data, Big Challenges

Too many data points (n large): simpler algorithms are needed

Stochastic gradient descent (SGD, a.k.a. stochastic approximation)
type of algorithms become the only method of choice
Cheap iteration cost and (at least) sublinear convergence guarantee

Too many features (d large): bigger models are needed
However,

Kernel methods are usually not scalable
Neural network models break convexity
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Revisit: Stochastic Optimization and SGD

Niao He (UIUC) 7/26



SGD – Overview
(Stochastic) convex optimization problem

min
θ∈Θ

φ(θ) = Eξ[F (θ, ξ)] or
1

n

n∑
i=1

F (θ, ξi )

Stochastic Gradient Descent [Robbins-Monro, 1951]

θt+1 = ΠΘ (θt − γt∇F (θt , ξt))

where ΠΘ(η) = Argminθ∈Θ

{
1
2
‖θ − η‖2

2

}
.

Stochastic Mirror Descent [Nemirovski, 1979]

θt+1 = Pθt (γt∇F (θt , ξt))

where Pθt (η) = Argminθ∈Θ {Dω(θ, θt) + 〈η, θ〉}.

Inexact Stochastic Mirror Descent

θt+1 ∈ Pεtθt (γt∇F (θt , ξt))

where Pεtθt (η) = Argminεtθ∈Θ {Dω(θ, θt) + 〈η, θ〉}.
Niao He (UIUC) 8/26



SGD – Typical Results

min
θ∈Θ

φ(θ) = Eξ[F (θ, ξ)]

The inexact Stochastic Mirror Descent algorithm guarantees that

E

[
φ

(∑t
τ=1 γτθτ∑t
τ=1 γτ

)
− φ(θ∗)

]
≤

M2
∑t
τ=1 γ

2
τ + Dω(θ∗, θ1) +

∑t
τ=1 ετ∑t

τ=1 γτ

where M2 = maxθ∈Θ E[‖∇F (θ, ξ)‖2
∗].

unbiased gradient + bounded variance
+ proper stepsize + well-controlled error

+ good average scheme

O(1/t) convergence rate for strongly convex case

O(1/
√
t) convergence rate for general convex case
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SGD – Practical Performance

Full Gradient Descent:
converges faster but with expensive iteration cost

Stochastic Gradient Descent:
converges slowly but with cheaper iteration cost

Figure from [Bach,2013]
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SGD – Beyond

Lots of recent algorithmic development for supervised learning:

SGD for convex-concave saddle point problems
SGD with adaptive learning rates / preconditioning (AdaGrad, etc.)
SGD with importance / stratified sampling (Iprox-SMD, etc.)
SGD with second order information (SQN, stochastic BFGS, etc.)
Variance reduced algorithms (SAG, SAGA, SVRG, PRDG, etc.)
Parallel and asynchronous SGD (Hogwild!, Downpour SGD, etc.)

However, still for several fundamental machine learning tasks,
SGD or any of the above adaptation is not enough.
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Three Variants of Stochastic Gradient Descent

Supervised Learning:

Doubly Stochastic Gradient Descent (Doubly SGD)
[with Dai, Xie, Liang, Balcan, Song, NIPS’14]

Bayesian Inference:

Particle Mirror Descent (PMD)
[with Dai2 and Song, AISTATS’15]

Reinforcement Learning:

Embedding Stochastic Gradient Descent (Embedding-SGD)
[with Dai, Pan, and Song, 2016]
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Doubly SGD: scaling up big nonlinear models
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Learning in Hilbert Space

min
f ∈H

1
n

n∑
i=1

`(f (xi ), yi ) + ν‖f ‖2
H

or

min
f ∈H

L(f ) := E(x ,y)∼P(x ,y)[`(f (x), y)]︸ ︷︷ ︸
expected loss

+
ν

2
‖f ‖2
H︸ ︷︷ ︸

regularizer

with domain H as the reproducing kernel Hilbert space:

generators: k(x , ·), ∀x ∈ X
reproducing property: 〈f , k(x , ·)〉H = f (x).
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Previous Work

Dual approach: e.g. for square loss

min
α∈Rn

αTKα + λαTα− 2αT y

– inpractical to store/compute kernel matrix K = (k(xi , xj)).

Stochastic Gradient Descent/Dual Coordinate Ascent
[ Kivinen et.al.,2004; Shalev-Shwartz & Zhang, 2013]

– at step t, ft(x) =
∑t

i=1 αik(xi , ·)
– require high memory to retrieve support vectors

Low-rank approximation/Random feature approximation
[ Williams & Seeger, 2001; Rahimi & Rechet, 2008]

– low memory, but does not generalize well
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Duality Between Kernels and Random Processes

Theorem (Bochner)

A continuous kernel k(x , x ′) = k(x − x ′) on Rd is PD if and only if
k(x − x ′) is the Fourier transform of a non-negative measure P(ω).

k(x , x ′) =

∫
Rd

e iω
>(x−x′) dP(ω) = Eω[φω(x)φω(x ′)].

Examples

Kernel k(x , x ′) p(ω)

Gaussian exp(−‖x−x
′‖2

2

2 ) 2π−
d
2 exp(−‖ω‖

2
2

2 )

Laplacian exp(−‖x − x ′‖1)
∏d

i=1
1

π(1+ω2
i )

Cauchy
∏d

i=1
2

1+(xi−x′
i )2 exp(−‖ω‖1)

many other kernels (dot product, polynomial, Hellinger’s, χ2, Arc-cosine).
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Doubly SGD: Basic Idea

min
f ∈H

E(x ,y)∈P(x ,y)[`(f (x), y)] + ν‖f ‖2
H

First randomly sample (x , y) ∼ P(x , y)⇒ stochastic gradient

g(·) = `′(f (x), y)k(x , ·) + νf (·)

Then randomly sample ω ∼ P(ω)⇒ doubly stochastic gradient

ĝ(·) = `′(f (x), y)φω(x)φω(·) + νf (·)

double sources of randomness:
unbiased: Ex,y ,ω[ĝ(·)] = ∇R(f )

Observation: ft(·) =
∑t

i=1 βik(xi , ·) =⇒ ft(·) =
∑t

i=1 αiφωi (·)
Memory significantly reduced from O(td) to O(t)

Caveat: no longer in H
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Doubly SGD: Theoretical Complexity

Assumption: Loss function is smooth and kernel is bounded;

Theorem

When γt = θ
t with θ > 0 such that θν ∈ Z+, ∀x ∈ X ,

|ft+1(x)− f∗(x)|2 ≤ Õ

(
1

t

)
, with high probability

High-level proof idea. Decompose the error into two terms

|ft+1(x)− f∗(x)|2 6 2 |ft+1(x)− ht+1(x)|2︸ ︷︷ ︸
error due to random features

+2κ ‖ht+1 − f∗‖2
H︸ ︷︷ ︸

error due to random data
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Doubly SGD: Key Features

Doubly SGD: {αi}ti=1

Input: P(ω), φω(x), `(f (x), y), ν.

for i = 1, . . . , t do
Sample (xi , yi ) ∼ P(x , y).
Sample ωi ∼ P(ω) with seed i .
f (xi ) = Predict(xi , {αj}i−1

j=1 ).
αi = −γi`′(f (xi ), yi )φωi (xi ).
αj = (1−γiν)αj , j = 1, . . . , i −1.

end for

simple algorithm

flexible, nonparametric

low memory cost

O(t) for doubly SGD
O(n2) for kernel matrix

O(td) for vanilla SGD

cheap computation cost
– O(td) at each iteration

theoretically grounded
– O(1/t) w.h.p.

strong empirical results
– competes with neural nets
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Toy Example

Model: Kernelized Ridge Regression

Dataset: 2D Synthetic dataset
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Handwritten Digit Recognition

Model: Support Vector Machines

Dataset: 1.6 million images for digit 6 and digit 8

Input Dimension: each data point is of size 784

MNIST handwritten digits
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doubly SGD/ SGD / SDCA / n-SDCA...
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ImageNet Classification

Red layers are convolutions
with max pooling layers.

Blue layers are fully
connected layers.

Green layer is the output
layer – multiclass logistic
regression model.
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ImageNet Classification

Model: Logistic regression

Dataset: 1.3 million color images and 1000 classes

Input Dimension: each data point is of size 9216

ImageNet 106 108
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jointly−trained neural net
fixed neural net
doubly SGD

Platform: AMD 16 2.4GHz Opteron CPUs and 200G memory
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Extending to Min-Max Saddle Point Problems

Optimizing saddle point problems over RKHS:

min
f∈Hk

max
g∈Gk̃

Ex,y [f (x)g(x)− `(g(x), y)] +
ν1

2
‖f ‖2
H −

ν2

2
‖g‖2

G

The doubly SGD trick still applies.

Under mild conditions (smooth loss and kernels), we have

E[|f (xt)− f∗(x)|2 + |g(xt)− g∗(x)|2] ≤ Õ

(
1

t

)
Recently been applied to solve reinforcement learning problem.
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Further Implication

Solving two-level stochastic optimization problems

min
θ∈Θ

Eξ[Fξ(Eη[Gη(θ, ξ)])]

The algorithm and analysis can be easily extended to address
general stochastic problems involving two levels of expectations.

for i = 1, . . . , t do
Sample (ξi , ηi ) ∼ P(ξ, η).
ĝ = 1

i

∑i
j=1 Gηi (θi , ξj)

θi+1 = Pθi
(
γi∇Gηi (θi , ξi )

T∇Fξi (ĝ)
)

end for

When ξ |= η and f Lipschitz smooth, g Lipschitz continuous, the
overall function is strongly convex, then we obtain the “optimal”
O(1/t) rate of convergence.
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Summary

Optimization lies at the heart of Big Data analytics.

Stochastic gradient descent is powerful, but has limitations.

Simple optimization techniques allow us to learn bigger and
faster.
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