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Big Data, Big Picture

@ Linear model: f(x) = w'x

\

. L e 3 min L(f)
fer

. . @ Nonlinear model: f(x) = w”¢(x)

N \j e L(N) = + > HF(x).)
. O\ B i=1

(x,y),y ~ f(X)

@ Multi-layer network model:
f(x) = Wy (WL g1 (Wi x))

Data Model Optimization
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Big Data, Big Opportunity

@ Most problems are convex!
o Local optimum is also global optimum; fundamentally tractable.

@ Some problems are non-convex, but admits nice structure.
o Local optimum “behaves like" global optimum.

@ We have a dedicated library of efficient first-order optimization
algorithms.
o Gradient Descent, its acceleration and cousins

Conditional Gradient (a.k.a. Frank Wolfe algorithm)

Coordinate Descent, its randomization variations

Primal-dual algorithms, ADMM

o
o
o
o Quasi-Newton Methods
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Big Data, Big Challenges

@ Too many data points (n large): simpler algorithms are needed

o Stochastic gradient descent (SGD, a.k.a. stochastic approximation)
type of algorithms become the only method of choice
o Cheap iteration cost and (at least) sublinear convergence guarantee

@ Too many features (d large): bigger models are needed
However,

o Kernel methods are usually not scalable
o Neural network models break convexity
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Revisit: Stochastic Optimization and SGD
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SGD - Overview

(Stochastic) convex optimization problem
1 n
in(0) = E[F(0 - F(0,&
min ¢(0) = Be[F(0,€)] o n; (6.6)
o Stochastic Gradient Descent [Robbins-Monro, 1951]
Orr1 = Mo (0: — 7t VF(0r,&t))

where Mo(n) = Argmingq {%H@ = 77||§}

o Stochastic Mirror Descent [Nemirovski, 1979]
Or+1 = Po, (7¢VF(0:, &)
where Py, (1) = Argmingcg {Dw (9, 0:) + (n,0)}.
@ Inexact Stochastic Mirror Descent
Oe+1 € Pyt (e VF(0r, &)
where P (n) = Argming {Du (6, 0¢) + (1,0)}.
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SGD - Typical Results

min ¢(0) = E¢[F (6, )]

The inexact Stochastic Mirror Descent algorithm guarantees that

]E ld’ (Z'trt—l ’yT97'> i ¢(9*)] S M2 271.'21 ’772' + th(e*a 91) + Z::1 €r
ZT:I Yr ZT:I Yr

where M2 = maxXgco IE[||VF(0,§)H§].

unbiased gradient 4+ bounded variance
+ proper stepsize + well-controlled error
+ good average scheme

@ O(1/t) convergence rate for strongly convex case

@ O(1/+/t) convergence rate for general convex case
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SGD - Practical Performance

o Full Gradient Descent:
converges faster but with expensive iteration cost

o Stochastic Gradient Descent:
converges slowly but with cheaper iteration cost

Figure from [Bach,2013]
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SGD - Beyond

o Lots of recent algorithmic development for supervised learning:
SGD for convex-concave saddle point problems

SGD with adaptive learning rates / preconditioning (AdaGrad, etc.)
SGD with importance / stratified sampling (Iprox-SMD, etc.)

SGD with second order information (SQN, stochastic BFGS, etc.)
Variance reduced algorithms (SAG, SAGA, SVRG, PRDG, etc.)
Parallel and asynchronous SGD (Hogwild!, Downpour SGD, etc.)

®© 6 6 6 o o

@ However, still for several fundamental machine learning tasks,
SGD or any of the above adaptation is not enough.
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Three Variants of Stochastic Gradient Descent

@ Supervised Learning:

o Doubly Stochastic Gradient Descent (Doubly SGD)
[with Dai, Xie, Liang, Balcan, Song, NIPS'14]
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Doubly SGD: scaling up big nonlinear models
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Learning in Hilbert Space

LS 0(F (), i) + v f
min ",Z:l (F(xi), yi) + vIIFII3
or
Yiier2
min L(f) := iy ) (o) [6F (), )] + S 11113
expected loss regularizer

with domain H as the reproducing kernel Hilbert space:

@ generators: k(x,-),Vx € X
o reproducing property: (f, k(x, )y = f(x).
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Previous Work

o Dual approach: e.g. for square loss

min a’ Ka+ Aa'a—2a'y

acR?

— inpractical to store/compute kernel matrix K = (k(xj, X;)).
@ Stochastic Gradient Descent/Dual Coordinate Ascent

[ Kivinen et.al.,2004; Shalev-Shwartz & Zhang, 2013]

t

—atstep t, fi(x) = > ;4 aik(x;, ")

— require high memory to retrieve support vectors
@ Low-rank approximation/Random feature approximation

[ Williams & Seeger, 2001; Rahimi & Rechet, 2008]

— low memory, but does not generalize well
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Duality Between Kernels and Random Processes

Theorem (Bochner)

A continuous kernel k(x,x") = k(x — x") on RY is PD if and only if
k(x — x") is the Fourier transform of a non-negative measure P(w).

k) = [ €07 dBw) = Bufou (0]

Examples

Kernel k(x,x") p(w)
: _Ix=XT3 - I
Gaussian | exp( >—2) | 2172 exp(—+52)

; d
Laplacian | exp(—||x — X'H ) [Ti— m

Cauchy Hfi 1 1+(x, xI)? exp(_Hle)

many other kernels (dot product, polynomial, Hellinger's, x?, Arc-cosine).
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Doubly SGD: Basic ldea

?gﬂ E(ny)ep()(,y)[g(f(x):)/)] =+ VHfH%-t

o First randomly sample (x, y) ~ P(x, y) = stochastic gradient
() = (f(x), y)k(x,-) + vf(")
@ Then randomly sample w ~ P(w) => doubly stochastic gradient
8() = U(f(x), ¥)bu(x)u () + V(")

o double sources of randomness:
o unbiased: By, ,[8()] = VR(f)

@ Observation: £,(-) = >i_; Bik(x, ) = f:(:) = Si_; it (+)
Memory significantly reduced from O(td) to O(t)

o Caveat: no longer in H
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Doubly SGD: Theoretical Complexity

Assumption: Loss function is smooth and kernel is bounded;

Theorem

When ¢ = £ with 6 > 0 such that v € Z,, Vx € X,

~ (1
Ifri1(x) — f(x)? < O (t> , with high probability

High-level proof idea. Decompose the error into two terms

fera(x) = £ < 2 [fraa(x) = hea(x))
error due to random features
+2/f Ilht+1 - f*||’2H
—_———

error due to random data

Niao He (UIUC) 18/26



Doubly SGD: Key Features

Doubly SGD: {ai}i_;

Input: P(w), ¢u(x), €(f(x),y), v.

fori=1,...,tdo
Sample (xi, yi) ~ P(x,y).
Sample w;i ~ P(w) with seed /.
f(xi) = Predict(x;, {o5}/_}).
ai = =il (F(xi), yi) b (xi)-

aj=1—yv)a, j=1,...,i—1

end for

Niao He (UIUC)

simple algorithm
flexible, nonparametric

low memory cost

@ O(t) for doubly SGD
@ O(n?) for kernel matrix

o O(td) for vanilla SGD

cheap computation cost
— O(td) at each iteration

theoretically grounded
- O(1/t) w.h.p.

strong empirical results
— competes with neural nets
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Toy Example

@ Model: Kernelized Ridge Regression

@ Dataset: 2D Synthetic dataset

1 optimal function surface ‘
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Handwritten Digit Recognition

@ Model: Support Vector Machines

o Dataset: 1.6 million images for digit 6 and digit 8

@ Input Dimension: each data point is of size 784

3

Test Error (%)

0.5
O L L L
10° o0 10°
MNIST handwritten digits Training Time (sec)
doubly SGD/ / SDCA / n-SDCA...
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21/26



ImageNet Classification

I 5 S o Red layers are convolutions
\ 7

learn with max pooling layers.
(1) Jointly Trained Neural Nets

o Blue layers are fully
connected layers.

fixed learn o Green layer is the output

(2) Fixed Neural Nets

ks layer — multiclass logistic
i 1 learn .
|:>|:r> P :>:H:|;> Kernel regression model.

machine
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ImageNet Classification

(]

Model: Logistic regression
@ Dataset: 1.3 million color images and 1000 classes

@ Input Dimension: each data point is of size 9216

100
\’\/__ — jointly—trained neural net
90 — fixed neural net i
80 —' doubly SGD
70

60

Test error (%)

50

40

10° 10°
Number of training samples

ImageNet

Platform: AMD 16 2.4GHz Opteron CPUs and 200G memory
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Extending to Min-Max Saddle Point Problems

Optimizing saddle point problems over RKHS:

. 141 1)
min max B, [f(x)g(x) = deC) )] + 5 IF15, = 5 llgllg

@ The doubly SGD trick still applies.
@ Under mild conditions (smooth loss and kernels), we have

E[f(x) — £.0)P + lg(xe) — g(x)]*] < O <1)

@ Recently been applied to solve reinforcement learning problem.
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Further Implication

Solving two-level stochastic optimization problems

min Ee[Fe(En[Gy(8, )]

@ The algorithm and analysis can be easily extended to address
general stochastic problems involving two levels of expectations.

fori=1,...,tdo
Sample (éh 77:') ~ ]P’(f, 77)-
g=172)6Gn(6:,)
0141 = Po, (7iV Gy (01, €) VFe, (8))
end for

o When &1l n and f Lipschitz smooth, g Lipschitz continuous, the
overall function is strongly convex, then we obtain the “optimal”
O(1/t) rate of convergence.
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Summary

o Optimization lies at the heart of Big Data analytics.
@ Stochastic gradient descent is powerful, but has limitations.

o Simple optimization techniques allow us to learn bigger and
faster.
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