A Retrospective on AMPLab and the Berkeley Data Analytics Stack

Michael Franklin
Sept 24, 2016
Symposium on Frontiers in Big Data
UIUC
A Data Management Inflection Point

- Massively scalable processing and storage
- Pay-as-you-go processing and storage
- Flexible schema on read vs. schema on write
- Easier integration of search, query and analysis
- Variety of languages for interface/interaction
- Open source ecosystem driving

i.e., “not your grandpa’s relational Database Management System”
AMPLab in Context

2006-2010
Autonomic Computing & Cloud

Usenix HotCloud Workshop 2010

2011-2016
Big Data Analytics
Spark Meetups (Feb 2013)

Group: 1
Members: 538
Interested: 170
City: 1
Country: 1

spark.meetup.com
Prospective data scientists can boost their salary more by learning Apache Spark and its tied-at-the-hip language Scala than obtaining a Ph.D., a recent data science survey by O’Reilly suggests.
Apache Spark rises to become most active open source project in big data

Adoption interest in Spark has topped MapReduce, says a new survey. What's supporting interest is the need for speed, boosting agility, and revenues.

By Brian Taylor | February 8, 2016, 12:11 PM PST
Apache Spark Meetups (Sept 2016)

526 groups with 245,287 members
spark.meetup.com
AMPLab: A Public/Private Partnership

Launched 2011; ~90 Students, Postdocs, and Faculty from: Systems, ML, Database, Networks, Security, Apps

Wrapping up this year (transition to new lab)

National Science Foundation Expedition Award
Darpa XData; DoE/Lawrence Berkeley National Lab

40 Industry Sponsors including:
AMP: 3 Key Resources

Algorithms
- Machine Learning, Statistical Methods
- Prediction, Business Intelligence

Machines
- Clusters and Clouds
- Warehouse Scale Computing

People
- Crowdsourcing, Human Computation
- Data Scientists, Analysts
Berkeley Data Analytics Stack

In House Applications – Genomics, IoT, Energy, Cosmology

Access and Interfaces

Processing Engines

Storage

Resource Virtualization
AMPLab Unification Strategy

Specializing MapReduce leads to stovepiped systems

Instead, **generalize** MapReduce:

1. Richer Programming Model ➔ Fewer Systems to Master
2. Data Sharing ➔ Less Data Movement

For improved productivity and performance
Iteration in Map-Reduce

Initial Model: $w^{(0)}$

Training Data

Map

Reduce

Learned Model

$w^{(1)}$

$w^{(2)}$

$w^{(3)}$
Cost of Iteration in Map-Reduce

Repeatedly load same data
Cost of Iteration in Map-Reduce

Redundantly save output between stages
Dataflow View

Training Data (HDFS)

Map → Reduce

Map → Reduce

Map → Reduce
Memory Opt. Dataflow

Cached Load

Training Data (HDFS) → Map → Reduce → Map → Reduce → Map → Reduce
Memory Opt. Dataflow View

Training Data (HDFS)

Map ➔ Map ➔ Map ➔ Reduce ➔ Reduce ➔ Reduce ➔

Efficiently move data between stages

Spark: 10-100× faster than Hadoop MapReduce
Resilient Distributed Datasets (RDDs)

API: coarse-grained \textit{transformations} (map, group-by, join, sort, filter, sample, …) on immutable collections

Resilient Distributed Datasets (RDDs)

- Collections of objects that can be stored in memory or disk across a cluster
- Built via parallel transformations (map, filter, …)
- Automatically rebuilt on failure

Rich enough to capture many models:

- \textbf{Data flow models}: MapReduce, Dryad, SQL, …
- \textbf{Specialized models}: Pregel, Hama, …

Abstraction: *Dataflow Operators*

- map
- filter
- groupBy
- sort
- union
- join
- leftOuterJoin
- rightOuterJoin
- reduce
- count
- fold
- reduceByKey
- groupByKey
- cogroup
- cross
- zip
- sample
- take
- first
- partitionBy
- mapWith
- pipe
- save
- ...

19
Fault Tolerance with RDDs

RDDs track the series of transformations used to build them (their lineage)
 » Log one operation to apply to many elements
 » No cost if nothing fails

Enables per-node recomputation of lost data

```
messages = textFile(...).filter(_.contains("error"))
  .map(_.split('	')(2))
```

- HadoopRDD
 - path = hdfs://...
- FilteredRDD
 - func = _.contains(...)
- MappedRDD
 - func = _.split(...)
Spark SQL – Deeper Integration

Replaces “Shark” – Spark’s implementation of Hive

- Hive dependencies were cumbersome
- Missed integration opportunities

Spark SQL has two main additions

1) Tighter Spark integration, including Data Frames
2) Catalyst Extensible Query Optimizer

First release May 2014; in production use

- e.g., large Internet co has deployed on 8000 nodes; >100PB with typical queries covering 10’s of TB

DataFrames

employees
.join(dept, employees("deptId") === dept("id"))
.where(employees("gender") === "female")
.groupBy(dept("id"), dept("name"))
.agg(count("name"))

Notes:
1) Some people think this is an improvement over SQL 😊
2) Spark 2.0 integrates “Datasets”, which are effectively typed dataframes
Catalyst Optimizer

Extensibility via Optimization Rules written in Scala

Code generation for inner-loops

Extension Points:

Data Sources: e.g., CSV, Avro, Parquet, JDBC, …

- via TableScan (all cols), PrunedScan (project), FilteredPrunedScan (push advisory selects and projects), CatalystScan (push advisory full Catalyst expression trees)
An interesting thing about SparkSQL Performance

- DataFrame SQL
- DataFrame R
- DataFrame Python
- DataFrame Scala
- RDD Python
- RDD Scala

Time to Aggregate 10 million int pairs (secs)
Don’t Forget About Approximation

BDAS Uses Approximation in two main ways:

1) BlinkDB (Agarwal et al. EuroSys 13)
 • Run queries on a sample of the data
 • Returns answer and confidence interval
 • Can adjust time vs confidence

2) Sample Clean (Wang et al. SIGMOD 14)
 • Clean a sample of the data rather than whole data set
 • Run query on sample (get error bars) OR
 • Run query on dirty data and correct the answer
Apache Spark has made big data processing, machine learning, and advanced analytics accessible to the masses. This is awesome.

- Chris Fregly “creator of the “PANCAKE STACK”, infoQ 8/29/16
Renewed Excitement Around Streaming

Stream Processing (esp. Open Source)
 » Spark Streaming
 » Samza
 » Storm
 » Flink Streaming
 » Google Millwheel and Cloud Dataflow
 » <YOUR FAVORITE SYSTEM HERE>

Message Transport
 » Kafka
 » Kenesis
 » Flume
Lambda Architecture: Real-Time + Batch
Lambda: How Unified Is It?

Have to write everything twice!
Have to fix everything (maybe) twice.
Subtle differences in semantics
how much Duct Tape required?
What about Graphs, ML, SQL, etc.?

see e.g., Jay Kreps: http://radar.oreilly.com/2014/07/questioning-the-lambda-architecture
and Franklin et al., CIDR 2009.
Spark Streaming

Scalable, fault-tolerant stream processing system

High-level API
joins, windows, …
often 5x less code

Fault-tolerant
Exactly-once semantics, even for stateful ops

Integration
Integrate with MLlib, SQL, DataFrames, GraphX

File systems

Databases

Dashboards

Kafka
Flume
Kinesis
HDFS/S3
Twitter
Spark Streaming

Microbatch approach provides low latency

Additional operators provide windowed operations

Structured Streams (Spark 2.0)

Batch Analytics

```scala
// Read data once from an S3 location
val inputDF = spark.read.json("s3://logs")

// Do operations using the standard DataFrame API and write to MySQL
inputDF.groupBy("action", window("time", "1 hour")).count()
  .write.format("jdbc")
  .save("jdbc:mysql://...")
```

Streaming Analytics

```scala
// Read data continuously from an S3 location
val inputDF = spark.readStream.json("s3://logs")

// Do operations using the standard DataFrame API and write to MySQL
inputDF.groupBy("action", window("time", "1 hour")).count()
  .writeStream.format("jdbc")
  .start("jdbc:mysql://...")
```
Conceptual View

Spark 1.3
Static DataFrames

Spark 2.0
Infinite DataFrames

Note: Spark 2.0 was done by the Apache Spark community after Spark’s “graduation” from the AMPLab
Spark Streaming - Comments

Mini-batch approach appears to be “low latency” enough for many applications.

Integration with the rest of the BDAS/Spark stack is a big deal for users.

We’re also adding a “timeseries” capability to BDAS (see AMPCamp 6 ampcamp.berkeley.edu)
 • initially batch but streaming integration planned
Beyond ML Operators

- Data Analytics is a complex process
- Rare to simply run a single algorithm on an existing data set
- Emerging systems support more complex workflows:
 - Spark ML Pipelines
 - Google TensorFlow
 - KeystoneML (BDAS)
KeystoneML

Software framework for describing complex machine learning pipelines built on Apache Spark.

Pipelines are specified using domain specific and general purpose logical operators.
Automated ML operator selection

High-level API ➔ Optimizations

Auto-caching for iterative workloads
KeystoneML: Status

Current version: v0.3

Scale-out performance on 10s of TBs of training features on 100s of machines. apps: Image Classification, Speech, Text.

First versions of node-level and whole-pipeline optimizations.

Many new high-speed, scalable operators

Coming soon:

» Principled, scalable hyperparameter tuning. (TuPAQ - SoCC 2015)

» Advanced cluster sizing/job
Spark User Survey 7/2015
(One Size Fits Many)

~1400 respondents; 88% Use at least 2 components; 60% at least 3; 27% at least
Source: Databricks
Integrating the “P” in AMP Optimization for human-in-the-loop analytics (AMPCrowd)

- SampleClean
- Straggler Mitigation
- Pool Maintenance
- Active Learning
Some Early Reflections (tech)

Integration vs Silos

Scala vs ???

Real time for real this time?

Deep learning

Privacy and Security

What did we learn from database technology?

Robust answers, interpretability and
The Patterson Lessons

1) Build a cross-disciplinary team
2) Sit together
3) Engage Industry and Collaborators
4) Build artifacts and get people to use them
5) Start your project with an end date

See Dave Patterson “How to Build a Bad Research Center”, CACM March, 2014
Thanks and More Info

Thanks to NSF CISE Expeditions in Computing, DARPA XData, Founding Sponsors: Amazon Web Services, Google, IBM, and SAP, the Thomas and Stacy Siebel Foundation, all our industrial sponsors, partners and collaborators, and all the amazing students, staff, and faculty of the AMPLab.

amplab.berkeley.edu