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A Data Management Inflection
Point

Massively scalable processing and
storage

Pay-as-you-go processing and storage

-lexible schema on read vs. schema on
Wwrite

Easier integration of search, query and
analysis

Variety of lanquages for
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Autonomic Computing & Cloud

AMPLab in Context
lab
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Spark Meetups (Feb 2013)

Powered by Leaflet
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Skip the Ph.D and Learn Spark, Data Science Salary Survey

Says
Alex Woodie
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Apache Spark rises to become
most active open source projectin
big data

Adoption interest in Spark has topped MapReduce, says a new survey. What's supporting
interest is the need for speed, boosting agility, and revenues.

By Brian Taylor 9 | February 8, 2016, 12:11 PM PST



Apache Spark Meetups (Sept
2016)
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AMPLab: A Public/Private Partnership

Launched 2011; ~90 Students, Postdocs, and Faculty
from: Systems, ML, Database, Networks, Security,/Ap

Wrapping up this year (transition to new lab)
National Science Foundation Expedition Award g
Darpa XData; DoE/Lawrence Berkeley National Lab

40 Industry Sponsors including:
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AMP: 3 Key Resources

e Machine Learning, Statistical Methods
e Prediction, Business Intelligence

e Clusters and Clouds
e Warehouse Scale Computing

e Crowdsourcing, Human Computation
e Data Scientists, Analysts




Berkeley Data Analytics
Stack
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AMPLab Unification Strategy

Specializing MapReduce leads to stovepiped

systems
Instead, generalize MapReduc
1. Richer Programming Modé¢ 5

= Fewer Systems to Mast I L

2. Data Sharing .S;::)Cir‘ll(\Z

ing

GraphX
MLbase

Stream

= Less Data Movement
For improved productivity and performance
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Iteration In Map-Reduce
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Cost of Iteration In Map-
Reduce

Repeatedly
load same data
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Cost of Iteration In Map-
Reduce

Redundantly save
output between
stages




Dataflow View
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Memory Opt. Dataflow
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Memory Opt. Dataflow View
Efficiently
move data

Map
/ between
Data —>*——> Map stages
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Resilient Distributed Datasets
(RDDs

API. coarse-grained trans?ormations (map,
group-by, join, sort, filter, sample,...) on
Immutable collections

Resilient Distributed Datasets (RDDs)

» Collections of objects that can be stored in memory
or disk across a cluster

» Bulilt via parallel transformations (map, filter, ...)

» Automatically rebuilt on failure

Rich enough to capture many models:

»Data flow models: MapReduce, Dryad, SQL, ...
» Specialized models: Pregel, Hama,

M. Zaharpa et al, Resilient Distributed Datasets: A Qault tolerant abstraction for in- memory
cluster computing, NSDI 2012.



Abstraction: Dataflow

map
filter
groupBy

sort

union

join
leftOuterJoin

rightOuterJoin

Operators

reduce
count

fold
reduceByKey
groupByKey
cogroup
Cross

ZIp

sample

take

first
partitionBy
mapWith
pipe

save



Fault Tolerance with RDDs

RDDs track the series of transformations

used to build them (their lineage)
»L0og one operation to apply to many elements
»No cost if nothing falls

Enables per-node recomputation of lost data

messages = textFile(...).Tfilter( .contains(“error’))
-map( )

HadoopRDD FilteredRDD MappedRDD
path = hdfs://... func = _.contains(...) func = _.split(...)




Spark oL — beeper
Replaces “Shaer:[%glan%yiPnp ementation of

Hive
 Hive dependencies were cumbersome
 Missed integration opportunities

Spark SQL has two main additions
1) Tighter Spark integration, including Data Frames
2) Catalyst Extensible Query Optimizer

First release May 2014, in production use

e e.g., large Internet co has deployed on 8000 nodes;
R Zn ) B¥NOPB Atk tippical GenerieZech retingR 10y pEics at Scale,

SIGMOD
M. Armbrust, R. Xin et al., “Spark SQL: Relational Data Processing in Spark”, SIGMOD 2015.



DataFrames

employees

Join(dept, employees("deptld") === dept("id"))
.where(employees("gender”) === "female")
.groupBy(dept(“id"), dept("name”))

.agg(count("name"))

Notes:

1) Some people think this is an improvement over
SQL ©

2) Spark 2.0 integrates “Datasets”, which are
effectivelv tvyped dataframes



Catalyst Optimizer

Extensibility via Optimization Rules written In
Scala

Code generation for inner-loops

Extension Points:

Data Sources: e.g., CSV, Avro, Parguet,
JDBC, ...

 via TableScan (all cols), PrunedScan (project),
FilteredPrunedScan(push advisory selects and
projects) CatalystScan (push advisory full Catalyst
expression trees)



An Interesting thing about

SparkSQL Performance

DataFrame SOL

DataFrame R

DataFrame Python

DataFrame Scala
RDD Python
RDD Scala
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Don’t Forget About
Approximation

BDAS Uses Approximation in two main ways:

1) BlinkDB (Agarwal et al. EuroSys 13)
 Run queries on a sample of the data
 Returns answer and confidence interval
e Can adjust time vs confidence

2) Sample Clean (Wang et al. SIGMOD 14)
 Clean a sample of the data rather than whole
data set
 Run query on sample (get error bars) OR
 Run query on dirty data and correct the answer



SQL + ML + Streaming

// Load historical data as an RDD using Spark SQL
val trainingData = sql(
"SELECT location, language FROM old_tweets")

// Train a K-means model using MLlib

val model = new KMeans()
.setFeaturesCol("location")
.setPredictionCol("language")
.fit(trainingData)

// Apply the model to new tweets in a stream
TwitterUtils.createStream(...)
.map(tweet => model.predict(tweet.location))

“Apache Spark has made big data processing, machine
learning, and advanced analytics accessible to the
masses. This is awesome.”

- Chris Fregly “creator of the “PANCAKE STACK”, infoQ 8/29/16



Renewed Excitement Around

Streaming

Stream Processing (esp. Open Source)
» Spark Streaming
» Samza
» Storm
» Flink Streaming
» Google Millwheel and Cloud Dataflow
»<YOUR FAVORITE SYSTEM HERE>

Message Transport
» Kafka
» Kenesis
» Flume



Lambda Architecture:
Real-Time + Batch

batch layer serving layer

lambda-
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Lambda: How Unified Is It?

Have to write everything twice!

Have to fix everything (maybe) twice.
Subtle differences in semantics

how much Duct Tape required?

What about Graphs, ML, SQL, etc.?

see e.g., Jay Kreps: http://radar.oreilly.com/2014/07/questioning-the-lambda-architect
and Franklin et al., CIDR 2009.



http://radar.oreilly.com/2014/07/questioning-the-lambda-architecture.html

Spark Streaming

Scalable, fault-tolerant stream processing

High-level
API

joins, windows, ...
often 5x less code

: Kafka

Flume

Kinesis

| HDFS/S3 |

[ Twitter ]
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system

Fault-

tolerant

Exactly-once
semantics, even for

stateful ops
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File systems

Databases

Dashboards

32



Spark Streaming

Microbatch approach provides low latency

RDD @ time 1 RDD @ time 2 RDD @ time 3 RDD @ time 4

data from data from
DStream data from data from
timeOto 1 time 1to 2 time 2 to 3 time 3to 4

Additional operators provide windowed
operations  tme! tmez tmes  tmed tmes

original

DStream
window-based
operation
windowed
DStream
window window window
at time 1 at time 3 attime 5

M. Zaharia, et al, Discretized Streams: Fault-Tollerant Streaming Computation at Scale,
SOSP 2013.



Structured Streams (Spark
2.0)

Batch Analytics

val inputDF = spark.read.json("s3://logs")

inputDF.groupBy($"action", window($"time", "1 hour")).count()
.write.format("jdbc")
.save("jdbc:mysql//...")

Streaming Analytics

val inputDF = spark'son("sB://logs")

inputDF.groupBy($"action", window($"time", "1 hour")).count()
C.writeStream.Yormat("jdbc")

.start("jdbc:mysql//...")

34



Conceptual View

Spark 1.3 Spark 2.0
Static DataFrames Infinite DataFrames

Note: Spark 2.0 was done by the Apache Spark
community after Spark’s “graduation” from the
AMPLab

35



Spark Streaming -
Comments

Mini-batch approach appears to be “low
latency” enough for many applications.

Integration with the rest of the BDAS/Spark
stack Is a big deal for users

We're also adding a “timeseries” capability
to BDAS (see AMPCamp 6

ampcamp . berkeley.edu)
 Initially batch but streaming integration
planned



Beyond ML Operators

Data Analytics Is a complex process

Rare to simply run a single algorithm on
an existing data set

Emerging systems support more complex

workflows:

« Spark MLPIipelines
 Google TensorFlow
o KeystoneML (BDAS)



KeystoneML

Software framework for describing complex
machine learning pipelines built on Apache
Spark.

Pipelines are specified using domain specific
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High-level APl =>»
Optimizations

-------

Automated ML ; ]

Sy g -

operator
selection

Auto-caching for iterative workloads
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KeystoneML: Status

Current version: v0.3

Amazon TIMIT

Scale-out performance on 10s of ,‘%12:- =~
TBs of training features on 100s of g ’ fﬁgg__:::
machines. apps. Image §e g Cluséter1lgizga[#ggf rlnéosdes) o 16 % e il
Classification, Speech, Text. sige BL03078 TG a Rk g m1oce S0

W Loading Test Data I Model Eval

First versions of node-level and
whole-pipeline optimizations.

Many new high-speed, scalable
operators

Coming soon:

»Principled, scalable

hyperparameter tuning. (TUPAQ -
SoCC 2015)

- -

Machines

Machines,
Input Size

Use few iterations for
training




Spark User Survey 7/2015
(One Size Fits Many)

Core
SQL I S S
Streaming __
MLlIib _—
GraphX _

0% 20% 40% 60% 80% 100%

Fraction of Users

~1400 respondents; 88% Use at least 2 components; 60% at least 3; 27% at least
Source: Databricks 41



Integrating the “P” in AMP

Optl m Izatlon for Retainer Pool Slots

. 5 || s S |
human-in-the-loop h

waope|d
pPMOID)

analtyics (AMPCrowd)
« SampleClean *E\d 2

X
b

5jeq
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=
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Selector B Resizer Hr
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Some Early Reflections
(tech)

Integration vs Silos

Scala vs 7?7

Real time for real this time?
Deep learning

Privacy and Security

What did we learn from database
technology?

Robust answers, interpretability and



The Patterson Lessons

1) Build a cross-disciplinary team

2) Sit together

3) Engage Industry and Collaborators

4) Build artifacts and get people to use them

5) Start your project with an end date

See Dave Patterson “How to Build a Bad Research Center’”, CACM
March 201A



Thanks and More Info

Thanks to NSF CISE Expeditions in Computing, DARPA
XData,
Founding Sponsors: Amazon Web Services, Google,
IBM, and SAP,
the Thomas and Stacy Siebel Foundation,
all our industrial sponsors, partners and collaborators,
and all the amazing students, staff, and faculty of the
AM

amplab.berkeley.edu
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