
A Retrospective on AMPLab
and the

Berkeley Data Analytics
Stack

UC BERKELEY

Michael Franklin
Sept 24, 2016

Symposium on Frontiers in Big Data
UIUC

A Data Management Inflection
Point

• Massively scalable processing and
storage

• Pay-as-you-go processing and storage
• Flexible schema on read vs. schema on

write
• Easier integration of search, query and

analysis
• Variety of languages for

interface/interaction
• Open source ecosystem driving

i.e., “Not your grandfather’s Relational Database Management Sy

AMPLab in Context

3



2006-2010
Autonomic Computing & Cloud

UC BERKELEY

2011-2016
Big Data Analytics

Usenix HotCloud Workshop 2010

Spark Meetups (Feb 2013)

4
spark.meetup.com

5

6

Apache Spark Meetups (Sept
2016)

7

526 groups with 245,287 members
spark.meetup.com

AMPLab: A Public/Private Partnership
Launched 2011; ~90 Students, Postdocs, and Faculty

from: Systems, ML, Database, Networks, Security, Apps
Wrapping up this year (transition to new lab)
National Science Foundation Expedition Award
Darpa XData; DoE/Lawrence Berkeley National Lab

40 Industry Sponsors including:

AMP: 3 Key Resources

Algorithms

• Machine Learning, Statistical Methods
• Prediction, Business Intelligence

Machines

• Clusters and Clouds
• Warehouse Scale Computing

People

• Crowdsourcing, Human Computation
• Data Scientists, Analysts

Berkeley Data Analytics
Stack

In House Applications – Genomics, IoT, Energy, Cosmology

Access and Interfaces

Processing Engines

Resource Virtualization

Storage

AMPLab Unification Strategy
Specializing MapReduce leads to stovepiped
systems
Instead, generalize MapReduce:

1. Richer Programming Model
Fewer Systems to Master

2. Data Sharing
Less Data Movement

For improved productivity and performance

Spark

St
re

am
in

g

G
ra

ph
X

…Sp
ar

kS
Q

L

M
Lb

as
e

11

Iteration in Map-Reduce

Training
Data

Map Reduce Learned
Model

w(1)

w(2)

w(3)

w(0)

Initial
Model

12

Cost of Iteration in Map-
Reduce

Map Reduce Learned
Model

w(1)

w(2)

w(3)

w(0)

Initial
Model

Training
Data

Read
2

Repeatedly
load same data

13

Cost of Iteration in Map-
Reduce

Map Reduce Learned
Model

w(1)

w(2)

w(3)

w(0)

Initial
Model

Training
DataRedundantly save

output between
stages

14

Dataflow View

Training
Data

(HDFS)

Map

R
educ
e

Map

R
educ
e

Map

R
educ
e

15

Memory Opt. Dataflow

Training
Data

(HDFS)

Map

R
educ
e

Map

R
educ
e

Map

R
educ
e

Cached
Load

16

Memory Opt. Dataflow View

Training
Data

(HDFS)

Map

R
educ
e

Map

R
educ
e

Map

R
educ
e

Efficiently
move data

between
stages

Spark:10-100× faster than Hadoop MapReduce17

Resilient Distributed Datasets
(RDDs)

API: coarse-grained transformations (map,
group-by, join, sort, filter, sample,…) on
immutable collections

Resilient Distributed Datasets (RDDs)
»Collections of objects that can be stored in memory

or disk across a cluster
»Built via parallel transformations (map, filter, …)
»Automatically rebuilt on failure

Rich enough to capture many models:
»Data flow models: MapReduce, Dryad, SQL, …
»Specialized models: Pregel, Hama, …

M. Zaharia, et al, Resilient Distributed Datasets: A fault-tolerant abstraction for in-memory
cluster computing, NSDI 2012. 18

Abstraction: Dataflow
Operators

map

filter

groupBy

sort

union

join

leftOuterJoin

rightOuterJoin

reduce

count

fold

reduceByKey

groupByKey

cogroup

cross

zip

sample

take

first

partitionBy

mapWith

pipe

save

...

19

Fault Tolerance with RDDs
RDDs track the series of transformations
used to build them (their lineage)

»Log one operation to apply to many elements
»No cost if nothing fails

Enables per-node recomputation of lost data
messages = textFile(...).filter(_.contains(“error”))

.map(_.split(‘\t’)(2))

HadoopRDD
path = hdfs://…

FilteredRDD
func = _.contains(...)

MappedRDD
func = _.split(…)

20

Spark SQL – Deeper
Integration

Replaces “Shark” – Spark’s implementation of
Hive

• Hive dependencies were cumbersome
• Missed integration opportunities

Spark SQL has two main additions
1) Tighter Spark integration, including Data Frames
2) Catalyst Extensible Query Optimizer

First release May 2014; in production use
• e.g., large Internet co has deployed on 8000 nodes;

>100PB with typical queries covering 10’s of TBR. Xin, J. Rosen, M. Zaharia, M. Franklin,S. Shenker, I. Stoica, “Shark: SQL and Rich Analytics at Scale,
SIGMOD 2013.

M. Armbrust, R. Xin et al., “Spark SQL: Relational Data Processing in Spark”, SIGMOD 2015.
21

DataFrames

employees

.join(dept, employees("deptId") === dept("id"))

.where(employees("gender") === "female")

.groupBy(dept("id"), dept("name"))

.agg(count("name"))

Notes:
1) Some people think this is an improvement over

SQL 
2) Spark 2.0 integrates “Datasets”, which are

effectively typed dataframes
22

Catalyst Optimizer
Extensibility via Optimization Rules written in
Scala

Code generation for inner-loops

Extension Points:

Data Sources: e.g., CSV, Avro, Parquet,
JDBC, …

• via TableScan (all cols), PrunedScan (project),
FilteredPrunedScan(push advisory selects and
projects) CatalystScan (push advisory full Catalyst
expression trees) 23

An interesting thing about
SparkSQL Performance

24

Don’t Forget About
Approximation

BDAS Uses Approximation in two main ways:

1) BlinkDB (Agarwal et al. EuroSys 13)
• Run queries on a sample of the data
• Returns answer and confidence interval
• Can adjust time vs confidence

2) Sample Clean (Wang et al. SIGMOD 14)
• Clean a sample of the data rather than whole

data set
• Run query on sample (get error bars) OR
• Run query on dirty data and correct the answer25

SQL + ML + Streaming

26

“Apache Spark has made big data processing, machine
learning, and advanced analytics accessible to the
masses. This is awesome.”

- Chris Fregly “creator of the “PANCAKE STACK”, infoQ 8/29/16

Renewed Excitement Around
Streaming

Stream Processing (esp. Open Source)
» Spark Streaming
» Samza
» Storm
» Flink Streaming
» Google Millwheel and Cloud Dataflow
» <YOUR FAVORITE SYSTEM HERE>

Message Transport
» Kafka
» Kenesis
» Flume

29

Lambda Architecture:
Real-Time + Batch

lambda-
architect re net

30

Lambda: How Unified Is It?
Have to write everything twice!

Have to fix everything (maybe) twice.

Subtle differences in semantics

how much Duct Tape required?

What about Graphs, ML, SQL, etc.?
see e.g., Jay Kreps: http://radar.oreilly.com/2014/07/questioning-the-lambda-architect
and Franklin et al., CIDR 2009.

31

http://radar.oreilly.com/2014/07/questioning-the-lambda-architecture.html

Spark Streaming
Scalable, fault-tolerant stream processing

system

File systems

Databases

Dashboards

Flume

Kinesis

HDFS/S3

Kafka

Twitter

High-level
API

joins, windows, …
often 5x less code

Fault-
tolerant
Exactly-once

semantics, even for
stateful ops

Integration
Integrate with MLlib,
SQL, DataFrames,

GraphX

32

Spark Streaming
Microbatch approach provides low latency

Additional operators provide windowed
operations

M. Zaharia, et al, Discretized Streams: Fault-Tollerant Streaming Computation at Scale,
SOSP 2013. 33

Structured Streams (Spark
2.0)

34

Batch Analytics

Streaming Analytics

Conceptual View

35

Note: Spark 2.0 was done by the Apache Spark
community after Spark’s “graduation” from the
AMPLab

Spark Streaming -
Comments

Mini-batch approach appears to be “low
latency” enough for many applications.

Integration with the rest of the BDAS/Spark
stack is a big deal for users

We’re also adding a “timeseries” capability
to BDAS (see AMPCamp 6
ampcamp.berkeley.edu)

• initially batch but streaming integration
planned 36

Beyond ML Operators
• Data Analytics is a complex process

• Rare to simply run a single algorithm on
an existing data set

• Emerging systems support more complex
workflows:
• Spark MLPipelines
• Google TensorFlow
• KeystoneML (BDAS)

37

KeystoneML
Software framework for describing complex

machine learning pipelines built on Apache
Spark.

Pipelines are specified using domain specific
and general purpose logical operators.

Automated ML
operator
selection

Auto-caching for iterative workloads

High-level API 
Optimizations

KeystoneML: Status
Current version: v0.3

Scale-out performance on 10s of
TBs of training features on 100s of
machines. apps: Image
Classification, Speech, Text.

First versions of node-level and
whole-pipeline optimizations.

Many new high-speed, scalable
operators

Coming soon:

»Principled, scalable
hyperparameter tuning. (TuPAQ -
SoCC 2015)

»Advanced cluster sizing/job

Spark User Survey 7/2015
(One Size Fits Many)

41
~1400 respondents; 88% Use at least 2 components; 60% at least 3; 27% at least
Source: Databricks

Integrating the “P” in AMP
Optimization for
human-in-the-loop
analtyics (AMPCrowd)
• SampleClean
• Straggler Mitigation
• Pool Maintenance
• Active Learning

42

Some Early Reflections
(tech)

Integration vs Silos

Scala vs ???

Real time for real this time?

Deep learning

Privacy and Security

What did we learn from database
technology?

Robust answers, interpretability and 43

The Patterson Lessons
1) Build a cross-disciplinary team

2) Sit together

3) Engage Industry and Collaborators

4) Build artifacts and get people to use them

5) Start your project with an end date

See Dave Patterson “How to Build a Bad Research Center”, CACM
March 2014

amplab.berkeley.edu
UC BERKELEY

Thanks to NSF CISE Expeditions in Computing, DARPA
XData,

Founding Sponsors: Amazon Web Services, Google,
IBM, and SAP,

the Thomas and Stacy Siebel Foundation,
all our industrial sponsors, partners and collaborators,
and all the amazing students, staff, and faculty of the

AMPLab.

45

Thanks and More Info

	A Retrospective on AMPLab� and the �Berkeley Data Analytics Stack
	A Data Management Inflection Point
	AMPLab in Context
	Spark Meetups (Feb 2013)
	Slide Number 5
	Slide Number 6
	�Apache Spark Meetups (Sept 2016)
	AMPLab: A Public/Private Partnership�
	AMP: 3 Key Resources
	Berkeley Data Analytics Stack
	AMPLab Unification Strategy
	Iteration in Map-Reduce
	Cost of Iteration in Map-Reduce
	Cost of Iteration in Map-Reduce
	Dataflow View
	Memory Opt. Dataflow
	Memory Opt. Dataflow View
	Resilient Distributed Datasets (RDDs)
	Abstraction: Dataflow Operators
	Fault Tolerance with RDDs
	Spark SQL – Deeper Integration
	DataFrames
	Catalyst Optimizer
	An interesting thing about SparkSQL Performance
	Don’t Forget About Approximation
	SQL + ML + Streaming
	Renewed Excitement Around Streaming
	Lambda Architecture: �Real-Time + Batch
	Lambda: How Unified Is It?
	Spark Streaming
	Spark Streaming
	Structured Streams (Spark 2.0)
	Conceptual View
	Spark Streaming - Comments
	Beyond ML Operators
	KeystoneML
	High-level API  Optimizations�
	KeystoneML: Status
	Spark User Survey 7/2015�(One Size Fits Many)
	Integrating the “P” in AMP
	Some Early Reflections (tech)
	The Patterson Lessons
	

