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Mobile	Devices	with	Visual	Perception



Required	Perception	of	Mobile	Devices

Mapping Object Dynamics

• Location
• Geometry
• Semantics
• Updates

• Distance
• Dimension
• Category
• Instance

• Motion
• Behavior
• Interaction



Vision	as	Sensing	Input	

• High	resolution	provides	details	about	complex	scenes	
• Typical	camera	has	~1.3	mega-pixel,	running	at	36FPS	(~50Mbyte	per	second)
• More	than	70%	of	human	body’s	sensors	are	in	the	eyes

• Visual	information:	Shape	vs.	Appearance
• Most	complex	situations	 are	defined	by	appearance	(texture)	more	than	shape:

• e.g.	road	markings,	traffic	signs,	person	identity,	object	instance,	etc.

• Cheap	and	versatile	in	size	and	configuration



Computer	Vision

past

• Single	image
• Static	scene
• RGB	only
• Limited	data
• Limited	computation	power
• Slow	algorithms

• Video	
• Dynamic	scene
• Depth,	IMU,	GPS
• Large	amount	of	data
• Visual	computing	chips
• Real-time	algorithms

present

• Key	problems	in	mobile	vision:
• Localization	and	mapping
• Object	and	place	recognition
• Motion	and	dynamics



Vision	from	a	Mobile	Device

Source:	Seattle	Police	Department



On	the	Information	Rates	of	Mobile	Vision

Cunha,	Do,	Vetterli (2010)

Theorem: The entropy rate and rate-distortion function of V satisfies
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Mobile	Vision	of	Dynamic	Environments

Theorem:

H(V |W ) +H(pW )�H(Pe)  H(V )  H(V |W ) +H(pW )

where H(V |W ) = (L� 1)H(X(1)
0 |X(0)

0 ) + (1� 2pW )H(X(1)
0 ) +

1X

i=0

H(X(i)
0 |X(0)

0 )Pr{T i}



Lessons	from	Bees

were the bees gauging the distance flown? A number of
hypotheses were examined, as described below.

Were the bees learning the position of the feeder by
counting the stripes en route to the goal? To examine this
possibility, bees were trained in a tunnel lined with stripes
of a particular spatial period and tested in a tunnel lined
with stripes of a different period. The test bees searched
at the correct distance from the tunnel entrance, regard-
less of stripe period (Fig. 17B, thin and dashed curves).
Therefore, distance is not gauged by counting the number
of stripes or other features passed whilst flying through
the tunnel (249, 254).

Were the bees measuring distance flown in terms of
the time required to reach the goal? To examine this
possibility, bees were trained as above and tested in a
tunnel that presented a headwind or a tailwind, generated
by a fan at the far end of the tunnel. In a headwind, bees
flew slower and took longer to reach the estimated loca-
tion of the reward. The opposite was true in a tailwind
(249). Therefore, distance is not estimated in terms of
time of flight, or other correlated parameters such as
number of wing beats. Interestingly, in a headwind, bees
overshot the location of the reward; in a tailwind, they
undershot it. Thus, in each case, the bees overcompensate
for the effects of the wind, and exactly why they do this is
not yet clear. Nevertheless, the existence of the overshoot
and undershoot demonstrate convincingly that distance
flown is not measured in terms of energy consumption.
This is because, in the case of the headwind, the bees are
experiencing a greater resistance to forward motion, as
well as flying a greater distance, compared with the tail-
wind, which implies that they must be expending more
energy in the former case than in the latter (249).

Were the bees measuring distance flown by gauging
the extent of motion of the image of the surrounding
panorama as they flew to the goal? To investigate this
possibility, bees were trained in a tunnel of a given width
and then tested in a tunnel that was narrower or wider. In
the narrower tunnel, the bees searched at a shorter dis-
tance from the entrance; in the wider tunnel, they
searched farther into the tunnel (249, 254). These results
suggest that distance flown is gauged by integrating the
speed of the images of the walls and floor on the eyes
whilst flying through the tunnel.

To test the image motion hypothesis critically, bees
were trained and tested in conditions where image motion
was eliminated or reduced. This was done by using tun-
nels that carried axially oriented stripes on the walls and
floor. Such tunnels provided no information on image
motion, because the bee’s flights in them were parallel to
the direction of the stripes. In the experiments using
axial-striped tunnels, the bees’ behavior was strikingly
different: they showed no ability to gauge distance trav-
elled. The bees searched uniformly over the entire length
of the tunnel, showing no tendency to stop or turn at the
former location of the reward (Fig. 17B, dashed curve).
Evidently, when bees are deprived of image-motion cues,
they are unable to gauge how far they have flown. This
finding provides direct and rather compelling evidence
that the honeybee’s odometer is driven by image motion,
and that the distance traveled is estimated by integrating
the amount of image motion that is experienced over time
(249, 254). Experiments similar to those described above
have been conducted on stingless bees (Melipona semi-
nigra) and have yielded similar results (109).

FIG. 17. A: experiment investigating how honeybees gauge distance flown to a food source. Bees are trained to find a food reward placed at a distance
of 1.7 m from the entrance of a 3.2-m-long tunnel of width 22 cm and height 20 cm. The tunnel is lined with vertical black-and-white gratings of period 4
cm. B: when the trained bees are tested in a fresh tunnel with the reward absent, they search at the former location of the feeder, as shown by the
bell-shaped search distributions. This is true irrespective of whether the period of the grating is 4 cm (as in the training, square symbols), 8 cm (triangles),
or 2 cm (diamonds). The inverted triangle shows the former position of the reward, and the symbols below it depict the mean values of the search
distributions in each case. Bees lose their ability to estimate the distance of the feeder when image-motion cues are removed by lining the tunnel with axial
(rather than vertical) stripes (circles). These experiments and others (218, 249) demonstrate that 1) distance flown is estimated visually, by integrating over
time the image velocity that is experienced during the flight, and 2) the honeybee’s odometer measures image velocity independently of image structure.
[Adapted from Srinivasan et al. (249), with permission from The Company of Biologists.]
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What are the consequences of measuring distance
travelled by integrating optic flow? One consequence
would be that errors in the measurement and integration
of image speed accumulate with distance so that larger
distances are estimated with greater error. To test this
prediction, Srinivasan et al. (249) examined the accuracy
with which bees were able to localize a feeder when it
was placed at various distances along a tunnel. The re-
sults (Fig. 18) show that the width of the search distribu-
tion indeed increases progressively with the distance of
the feeder from the tunnel entrance. Thus the error in
estimating distance increases with distance flown, as
would be expected of any mechanism that measures a
velocity, or a rate, and integrates it over time to obtain a
measure of the total distance traversed.

An integrative mechanism for measuring distance
travelled would be feasible only if the cumulative errors
are somehow prevented from exceeding tolerable levels.
One strategy, which could be employed when traversing
familiar routes, would be to recommence the integration
of image motion whenever a prominent, known landmark
is passed. Do bees adopt such a tactic? To investigate this,
Srinivasan et al. (249) examined the bees’ performance
when they were again trained to fly to a feeder placed at
a large distance into a tunnel (Fig. 18), but now had to
pass a prominent landmark (a baffle consisting of a pair of
overlapping partitions) occurring en route to the feeder. If
these bees reset their odometer at the landmark, they
should display a smaller error because they would then
only need to measure the distance between the landmark
and the feeder. This is precisely what occurred: the search

distribution was then significantly narrower (green cir-
cles, Fig. 18). Furthermore, when the trained bees were
confronted with a test in which the landmark was posi-
tioned closer to the tunnel entrance, the bees’ mean
search position shifted toward the entrance by almost
exactly the same distance (249). These results confirm
that bees recommence computation of distance when
they pass a prominent landmark and that such landmarks
are used to enhance the accuracy of the odometer.

Further experiments are required to determine
whether bees use a single odometer, resetting it to zero
each time a landmark is passed, or start a new odometer
at each landmark, leaving some or all of the earlier ones
running. In conditions where landmarks are poorly visible
or not stable, it may be advantageous to combine odomet-
ric readings referenced to a number of different land-
marks encountered en route, as well as to the total dis-
tance from the start to the goal, to obtain a reliable
estimate of the distance flown. Indeed, there is evidence
that desert ants combine various odometric readings in
this way (38, 39). Furthermore, as we shall see later
below, honeybees also behave as though they run two
odometers concurrently: one for their own personal use
and the other for indicating the distance of the route their
nestmates.

A number of studies (32, 33, 40, 42, 45, 51) indicate
that foraging bees “expect” to see a specific sequence of
landmarks situated at specific distances on the way to the
food source and that they monitor their progress toward
the destination by checking whether the expected land-
marks show up at the appropriate distances. Thus bees

FIG. 18. Experiment investigating variation of the accu-
racy of the honeybee’s odometer with the distance travelled.
Bees were trained, in separate experiments, to find a food reward
in a long tunnel at a feeder positioned at various distances from
the entrance: 6, 9, 15, and 28 units, where 1 unit ! 10 cm. The
searching distributions of the trained bees became progres-
sively broader with increasing feeder distance, indicating that
the accuracy of the odometer in pinpointing the goal deterio-
rates with longer flights, due to increased accumulation of
odometric errors. However, when bees are trained with the
feeder at the largest distance (28 units) but with a prominent
landmark placed en route to the feeder, the searching distri-
bution of the trained bees is substantially sharper (green
circles, dot-dashed curve), indicating that in this situation the
bees are able to reset their odometer at the landmark (or start
a new odometer there), and start measuring distance afresh
from that point to the goal. [Adapted from Srinivasan et al.
(249), with permission from The Company of Biologists.]
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Srinivasan	(1997,	2011)



• Geometry-aware	filtering
• Fast	randomized	algorithms
• Efficient	inference	models
• Deep	learning	innovation

• Visual	place/scene recognition
• Object recognition,	localization
• Human re-identification
• Action recognition,	tracking

How:	model,	solve,	 compute

Holistic	Mobile	Vision

• Real-time	camera pose localization
• 3D	environmentmapping
• Depth and	motion estimation
• Large-scale	urban reconstruction	

Reconstruction Recognition

Key	techniques

Geometric	Reconstruction	meets	
Semantic	Recognition	for	3D	holistic	vision:	
Real-time,	robust,	geometry-centric	vision

• Multiple	sensors
• Modern	vehicles
• Moving	robots
• Opportunistic	scan

Where:	geometry,	 location… What:	semantics,	action…

• Mobile	cameras
• Big	visual	data
• Rich	annotations
• Powerful	machine

10



CODE	[ECCV’14]
Feature	matching

DSE	[CVPR’15]
Camera	pose	rec.

SLAM-O	[xyz]
3D	object	prop.

3D	vision	&	percept.

Fine-grained	
recog.	[TIP’16]

MHIC	[WACV’14]
Recog	&	Co-seg.

PISA	[CVPR’13b]
Pixel-acc.	saliency

Recogn.	&	segment.

CLMF	[CVPR’12]
Local	EAF

FGS	[TIP’14]
Global	EAF

FGI	[ECCV’16]
Sparse	to	dense

Edge-aware	filtering
PMF	[CVPR’13]
Local	optim.

SPM-BP	[ICCV’15]
Global	optim.

DFF	[CVPR’14]
Generalized

Efficient	inference

CODE	[ECCV’14,	’16]
Feature	matching

DSE	[CVPR’15]
Camera	pose	rec.

SLAM-O	[TCSVT’16]
3D	object	prop.

3D	vision	&	percept.

Fine-grained	
recog.	[TIP’16]

MHIC	[TMM’16]
Recog	&	Co-seg.

PISA	[CVPR’13b]
Pixel-acc.	saliency

Recogn.	&	segment.

• Scene	flow
• Robust	SLAM
• Motion	seg.

• Text	detection
• Place	recogn.
• Scene	labeling
• Action	recog.

• Deep	learning

Current	topics

• Photo	refocus
• Rain	removal
• Image	stitching
• Multi-scale	 dec.
• Structure	extra.
• Image	warping
• Colorization

Comp.	imaging

• Depth	enhance.
• Slanted	stereo
• Optical	flow
• Live	FG	segment
• 3D	city	recons.

Scene	structure

11
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Localizing	3D	object	proposals

3D	object	
proposals

Camera	pose	localization

Dense	depth	&	motion

Action	recog.	w/		min.	labelling

Stitching	&	visualization

Feature	matching	and	mapping



Summary

• Visual	perception	 is	crucial	for	mobile	devices	and	autonomous	systems
• Small
• Cheap
• Fast

• Key	problems:
• Localization	and	mapping
• Object	and	place	recognition
• Motion	and	dynamics

• Holistic	mobile	vision:
• Combine	geometric	reconstruction	with	semantic	recognition
• Supported	by	information	rates
• Challenges:	 real-time	and	robust	methods


