Extracting and Quantifying Visual Information from Mobile Devices

Minh N. Do

Mobile Devices with Visual Perception

- Automobile
- Service
- Consumer
- Medical

- Entertainment
- Education
- Domestic
- Manufacturing
- Military
- Augmented Reality

Required Perception of Mobile Devices

- Location
- Geometry
- Semantics
- Updates

- Distance
- Dimension
- Category
- Instance

Dynamics

- Motion
- Behavior
- Interaction

Vision as Sensing Input

- High resolution provides details about complex scenes
- Typical camera has ~ 1.3 mega-pixel, running at 36FPS ($\sim 50 \mathrm{Mbyte}$ per second)
- More than 70% of human body's sensors are in the eyes
- Visual information: Shape vs. Appearance
- Most complex situations are defined by appearance (texture) more than shape:
- e.g. road markings, traffic signs, person identity, object instance, etc.
- Cheap and versatile in size and configuration

Computer Vision

past

present

- Single image
- Static scene
- RGB only
- Limited data
- Limited computation power
- Slow algorithms
- Video
- Dynamic scene
- Depth, IMU, GPS
- Large amount of data
- Visual computing chips
- Real-time algorithms
- Key problems in mobile vision:
- Localization and mapping
- Object and place recognition
- Motion and dynamics

Vision from a Mobile Device

Source: Seattle Police Department

On the Information Rates of Mobile Vision

Theorem: The entropy rate and rate-distortion function of V satisfies

$$
\begin{gathered}
\left(1-2 p_{W}\right) H(X)+H\left(p_{W}\right)-H\left(P_{e}\right) \leq H(V) \leq\left(1-2 p_{W}\right) H(X)+H\left(p_{W}\right) \\
R_{V}(D) \leq\left(1-2 p_{W}\right) R_{D}(X)+H\left(p_{W}\right)
\end{gathered}
$$

Cunha, Do, Vetterli (2010)

Mobile Vision of Dynamic Environments

Theorem:

$$
H(V \mid W)+H\left(p_{W}\right)-H\left(P_{e}\right) \leq H(V) \leq H(V \mid W)+H\left(p_{W}\right)
$$

where $H(V \mid W)=(L-1) H\left(X_{0}^{(1)} \mid X_{0}^{(0)}\right)+\left(1-2 p_{W}\right) H\left(X_{0}^{(\infty)}\right)+\sum_{i=0}^{\infty} H\left(X_{0}^{(i)} \mid X_{0}^{(0)}\right) \operatorname{Pr}\left\{\mathcal{T}^{i}\right\}$

Lessons from Bees

Srinivasan $(1997,2011)$

Holistic Mobile Vision

Geometric Reconstruction meets
Semantic Recognition for 3D holistic vision:
Real-time, robust, geometry-centric vision
Where: geometry, location...

What: semantics, action...

Recognition

- Visual place/scene recognition
- Object recognition, localization
- Human re-identification
- Action recognition, tracking

How: model, solve, compute

Key techniques

- Multiple sensors
- Modern vehicles
- Moving robots
- Opportunistic scan
- Geometry-aware filtering
- Fast randomized algorithms
- Efficient inference models
- Deep learning innovation
- Mobile cameras
- Big visual data
- Rich annotations
- Powerful machine

Summary

- Visual perception is crucial for mobile devices and autonomous systems
- Small
- Cheap
- Fast
- Key problems:
- Localization and mapping
- Object and place recognition
- Motion and dynamics
- Holistic mobile vision:
- Combine geometric reconstruction with semantic recognition
- Supported by information rates
- Challenges: real-time and robust methods

