Energetics of Cracked Bodies

Sanford: Chapter 6
Anderson: 2.1, 2.3, 2.4, 2.7
Kanninen and Popelar: pg. 32-37, 158-163

Equivalence of Stress Intensity and Energy Methods

111

Cracked body energetics (1)

• Total potential energy \(\pi \) of a conservative system

\[
\pi = U + \Omega
\]

\[
U = \int P \Delta = \int_0^{\varepsilon_{ij}} \sigma_{ij} \, d\varepsilon_{ij}
\]

\[
\Omega = -P \Delta = -\int_{S_T} t_i u_i \, dS = -W_{ext}
\]

Load control test

© Robert H. Dodds, Jr. (2011)
Cracked body energetics (2)

- If specimen is deformed by imposing displacement (Δ) rather than weight (P), then $\Omega = 0$ (*use an old style screw machine in the lab!*)

\[\pi = U + \Omega \]

Stored elastic energy

\[U = \int P \, d\Delta = \int \sigma_{ij} \, d\varepsilon_{ij} \]

\[\Omega = 0 \]

Testing machine is so stiff relative to specimen that Δ does not change during crack advance

Energy release rate (1)

- When the crack grows by amount Δa during a test, the new traction free crack area is $\Delta A_c = \Delta a \times B$ (this is conventional usage of the “projected area”)

- The crack growth causes the potential energy of the structure to change

Example shown here is load control during crack extension
The potential energy change per unit area of crack extension is called the **energy release rate** (J or \mathcal{G}) and is given by:

$$J = -\frac{\partial \pi}{\partial A_c} = \lim_{\Delta a \to 0} \frac{\pi_2 - \pi_1}{B \Delta a}$$

A leading (-) is included in the definition so that the release rate has a positive numerical value.

J for Displacement Controlled Loading

- The key concept is what happens with the forces (tractions) across the crack area $\Delta a \times B$ in configuration 1 that are zero in configuration 2 after the crack grows.
- Imagine that we have simple springs connecting the crack faces over $\Delta a \times B$.
- In 1, these springs are stretched due to specimen loading and they have some stored elastic energy.
- In 2, these springs are broken (to create crack growth by $\Delta a \times B$) and no longer have the stored energy.
J for Displacement Controlled Loading

- Something happens to the energy balance in the cracked structure since it is closed and conservative – this changes the potential energy.
- We also know that for fixed displacement loading, $\Omega = 0$ in 1 and in 2, and that the compliance (flexibility) increases in 2 due to the increased crack length.

![Diagram showing energy balance in cracked structures](image)

1. Some energy stored in springs (U_{sp})
2. No energy stored in springs

- Crack advance by Δa

Compute J : Δ controlled loading (1)

- Measure reaction force (R) on load cell.
- Crack extension takes place at constant axial displacement imposed on specimen.

![Diagram showing displacement-controlled loading](image)

1. $\pi_1 = U_1$
$\Omega_1 = 0$
Δ_1

2. $\pi_2 = U_2$
$\Omega_2 = 0$
$\Delta_2 = \Delta_1$

- $a_2 = a_1 + \Delta a$
- U_1 is area under red line
- U_2 is area under green line

Specimen compliance is inverse of stiffness. Compliance increases during crack advance.
Compute $J : \Delta$ controlled loading

(2)

U_1 is area under red line and includes U_{sp}

U_2 is area under green line: $U_{sp} = 0$

\[
\pi_2 - \pi_1 = U_2 - U_1
\]

\[
J = -\frac{\partial \pi}{\partial A_c} = \lim_{\Delta a \to 0} \frac{\pi_2 - \pi_1}{B \Delta a} = -\frac{U_2 - U_1}{B \Delta a}
\]

\[
U_1 = \frac{1}{2} R_1 \Delta; \quad U_2 = \frac{1}{2} R_2 \Delta
\]

\[
J = \lim_{\Delta a \to 0} -\frac{\Delta R_2 - R_1}{2B} \frac{1}{\Delta a} = -\frac{\Delta}{2B} \left(\frac{\partial R}{\partial a} \right)_{\Delta = fixed}
\]

J_{Δ} has units of $F \cdot L / L^2$

\[
J = \lim_{a \to 0} \frac{R_1}{2} = \frac{U_1}{2}
\]

$J = \lim_{a \to 0} \frac{R_2}{2} = \frac{U_2}{2}

\]

Compute $J : \Delta$ controlled loading

(3)

- Write R and Δ in terms of compliance C: $C = \Delta / R$
- Then the derivative can be re-written to give

\[
J = -\frac{\Delta}{2B} \left(\frac{\partial R}{\partial a} \right)_{\Delta = fixed} = -\frac{\Delta}{2B} \left(\frac{\partial (\Delta / C)}{\partial a} \right)_{\Delta = fixed}
\]

\[
J = -\frac{\Delta}{2B} \left(-\frac{C}{C^2} \frac{\partial C}{\partial a} \right)_{\Delta = fixed} = \frac{1}{2B} \frac{\Delta \Delta}{C^2} \left(\frac{\partial C}{\partial a} \right)_{\Delta = fixed} = \frac{R^2}{2B} \left(\frac{\partial C}{\partial a} \right)_{\Delta = fixed}
\]
Compute $J : \Delta$ controlled loading (3)

How to Use?

- Suppose we have a closed-form solution for the compliance
- Energy release rate follows directly by applying the above derivative (usually very simple to compute)
- Can also compute approximate compliance change in a finite element analysis for small changes in crack length

$J = \frac{R_1^2}{2B} \left(\frac{\partial C}{\partial a} \right)_{\Delta \text{ fixed}}$

$\text{Compliance, } C = \frac{a}{R}$

$J \times B \Delta a$

$R_1, R_2, a_1, a_2, \Delta$

J interpretation

U_{sp} is energy stored in springs

U_1 is area under red line: includes U_{sp}

U_2 is area under green line: $U_{sp} = 0$

- Since the system is closed, conservative, & fixed displacement during growth, the energy change between 1 and 2 must be only from the energy stored in the broken springs

$U_2 + U_{sp} = U_1$

$U_2 - U_1 = -U_{sp}$

$\pi_2 - \pi_1 = U_2 - U_1 = -U_{sp}$

$J = \frac{\partial \pi}{\partial A_c} = \lim_{\Delta \alpha \to 0} \frac{\pi_2 - \pi_1}{B \Delta a} = \frac{U_{sp}}{B \Delta a} = \frac{dU_{sp}}{dA_c}$

J has units of $F \cdot L / L^2$
What does this mean?

• When K_I approaches K_{Ic}, the cracked body in configuration 1 has just reached sufficient potential energy (in this case, stored elastic energy) available (and can give up) to break the springs (cohesive tractions) holding the crack closed over the area $B \times \Delta a$ (i.e. the energy to be released during crack advance)

• When K_I from the applied displacement is $< K_{Ic}$:
 - The cohesive tractions (i.e. spring forces or strength) available from the metallurgical features exceed the applied tractions imposed by K_I stress field (no break)
 - The energy available from the background (elastic) material during a crack growth $B \times \Delta a$ < energy stored in the springs at their breaking point

What does this mean? (2)

• The energy criterion was the original concept of fracture mechanics: $K_I = K_{Ic}$ came many years later

• In a few slides we show that energy and stress-intensity arguments are equivalent for linear-elastic systems

• Energy arguments are especially powerful in finite element analysis: U and Ω are the most accurate quantities computed

• **Key point:** fracture conditions described w/o any mention of the metallurgical mechanisms! (caused much confusion for decades – still does)

\[
J_{\text{applied}} = J_{\text{critical}}
\]
\[J \text{ for load control (1)} \]

1. Crack extension takes place at constant applied load

\[\begin{align*}
\pi_1 &= U_1 + \Omega_1 \\
\Omega_1 &= -P\Delta_1 \\
U_1 &= \frac{1}{2}P\Delta_1
\end{align*} \]

\[\begin{align*}
\pi_2 &= U_2 + \Omega_2 \\
\Omega_2 &= -P\Delta_2 \\
U_2 &= \frac{1}{2}P\Delta_2
\end{align*} \]

\[\text{U}_1 \text{ is area under red line} \]
\[\text{U}_2 \text{ is area under green line} \]

\[\Delta_1 \]
\[\Delta_2 \]

\[\Delta_1 > \Delta_2 \]

\[\begin{align*}
\Delta_1 &= a_1 + da_1 \\
\Delta_2 &= a_1 + da_2
\end{align*} \]

\[\begin{align*}
\pi_1 &= U_1 + \Omega_1 \\
\Omega_1 &= -P\Delta_1 \\
U_1 &= \frac{1}{2}P\Delta_1
\end{align*} \]

\[\begin{align*}
\pi_2 &= U_2 + \Omega_2 \\
\Omega_2 &= -P\Delta_2 \\
U_2 &= \frac{1}{2}P\Delta_2
\end{align*} \]

\[\text{U}_1 \text{ is area under red line} \]
\[\text{U}_2 \text{ is area under green line} \]

\[\Delta_1 \]
\[\Delta_2 \]

\[\Delta_1 > \Delta_2 \]

\[\begin{align*}
\Delta_1 &= a_1 + da_1 \\
\Delta_2 &= a_1 + da_2
\end{align*} \]

\[\begin{align*}
\Omega_1 &= -P\Delta_1 \\
U_1 &= \frac{1}{2}P\Delta_1 \\
\Omega_2 &= -P\Delta_2 \\
U_2 &= \frac{1}{2}P\Delta_2
\end{align*} \]

\[\text{Compliance, } C = \frac{\Delta}{P} \]

\[J = -\frac{\partial \pi}{\partial A_c} = \lim_{\Delta a \to 0} \left(\frac{\pi_2 - \pi_1}{B\Delta a} \right) = \frac{1}{2} \frac{P}{B} \left(\frac{\partial \Delta}{\partial A} \right)_{P=\text{fixed}} \]
J for load control (3)

- Write P and Δ in terms of compliance C: $C = \Delta / P$
- Then the derivative can be re-written to give

$$J = \frac{P^2}{2B} \left(\frac{\partial C}{\partial a} \right)_{P=\text{fixed}}$$

Equivalence of load-displacement control (1)

- The crack grows when the reaction from the imposed displacement is the same as the load applied by a weight, i.e., $R = P$ (and the internal stresses are identical)
- The compliance, C, of a linear-elastic specimen is not a function of the load P or the displacement Δ. It is a function only of the crack length (and other dimensions of the specimen) and the material elastic properties
Equivalence of load-displacement control (2)

Displacement Control

\[J = \frac{R^2}{2B} \left(\frac{\partial C}{\partial a} \right)_{\Delta=fixed} \]

Load Control

\[J = \frac{P^2}{2B} \left(\frac{\partial C}{\partial a} \right)_{P=fixed} \]

• Consequently,

\[R = P \]

\[\left(\frac{\partial C}{\partial a} \right)_{\Delta=fixed} = \left(\frac{\partial C}{\partial a} \right)_{P=fixed} \]

✓ \(J \) for Load & Displacement Control are Identical

General cohesive model (1)

• More realistic models treat the “springs” as cohesive elements uniformly distributed over the crack plane

• The cohesive stress (\(t_{coh} \)) normal to the crack plane varies with the opening displacement (\(\delta \)) between the crack faces

• The cohesive law can be linear, nonlinear or damaging
General cohesive model (2)

- Compute the energy stored in cohesive forces (i.e., U_{sp})

This calculation is for traction across the crack area & the total displacement across the faces.

$$U_{sp} = U_{coh} = \int_0^{\delta_c} t(\delta) B \, d\delta = B \int_0^{\delta_c} t(\delta) \, d\delta$$

J-K Relationship (1)

- Consider Mode I plane-strain conditions
 - Opening mode stresses acting ahead of crack in configuration 1 ($\alpha = a_1$) are given by K_I
 - Let crack area grow by $B \times \Delta a$ to configuration 2
 - The crack stresses relax to zero over new crack area $B \times \Delta a$ gradually as the crack opens from a_1 to a_2
 - The opening displacements must follow the Mode I solution
 - Perform “cohesive” integration to find J (work done by the tractions as they relax to zero during displacement increase)

$$J = \frac{U_{coh}}{B da} = \int_0^{\delta_c} t(\delta) \, d\delta = \Gamma$$
J-K Relationship (2)

Plane-stress

Plane-strain

Remember: these tractions and displacements are the final values (thus a ½ is needed for energy)

The outside 2 is needed because the displacement (v) is just the upper & lower value about symmetry plane

Differential force

\[U_{coh} = 2 \int_0^{\Delta a} \frac{1}{2} v(\bar{r}) t(\bar{r}) B \, d\bar{r} = \frac{4K_I^2}{2\pi E^p} B \int_0^{\Delta a} \frac{\Delta a - \bar{r}}{\bar{r}} \, d\bar{r} \]

\[J = \frac{U_{coh}}{B \Delta a} = \frac{K_I^2}{E^p} \]

\[E' = E \quad \text{Plane-stress} \]

\[E'' = \frac{E}{1-\nu^2} \quad \text{Plane-strain} \]

J-K Relationship (3)

- The **stress-intensity factor** approach and the **energy-based** approach for fracture under linear-elastic conditions are identical!!
- Given \(K_I \) we can compute \(J \)
- Given \(J \) we can compute \(K_I \)
- Use the more convenient computational approach for the problem needing solution
- Energy release rates (\(J \)) are very accurate even for relatively crude finite element models that employ displacement-based element formulations
Applications of Energy Approach

Sanford: Chapter 6
Anderson: 2.3,4,7,10
Kanninen and Popelar: pg. 32-37, 158-163

Equivalence of Stress Intensity and Energy Methods

Example J computation

(1)

Use simple beam theory to compute the displacement in the arms of the specimen assuming cantilever behavior

\[
\frac{\Delta}{2} = \frac{PL^3}{3EI} = \frac{Pa^3}{3EI}, \quad I = \frac{1}{12} Bh^3
\]

Compliance, \(C = \frac{\Delta}{P} = \frac{2a^3}{3EI} \)

Double Cantilever Beam
Example J computation (2)

\[
\frac{\Delta}{2} = \frac{PL}{3EI} = \frac{Pa}{3EI}; \quad I = \frac{1}{12} Bh^3
\]

Compliance, \(C = \frac{\Delta}{P} = \frac{2a^3}{3EI} \)

\[
J = \frac{P^2}{2B} \frac{\partial C}{\partial a} = \frac{P^2}{2B} \frac{\partial}{\partial a} \left(\frac{2a^3}{3EI} \right) = \frac{P^2a^2}{B} \frac{2a}{3EI} = \frac{12P^2a^2}{B^2h^3E}
\]

\[
J = \frac{12P^2a^2}{B^2h^3E}
\]

Example J computation (3)

- Neglects shear deformation in the arms
- Assumes arms fixed at crack tip
- Neglects energy in remainder of specimen
- At constant load, \(J \) increases as the square of the crack length
- Verify correct physical units (must be \(F \cdot L/L^2 \))

\[
K_I = \sqrt{EJ} = \frac{2\sqrt{3}Pa}{Bh^{3/2}} \quad \text{for plane stress}
\]

This is a very good approximation, especially for long, slender arms.
Crack stability (1)

As the crack grows in length, how does the energy release rate (J) change at fixed load?

$$J = \frac{12P^2a^2}{B^2h^3E}$$

$$\frac{\partial J}{\partial a} = \frac{24P^2a}{B^2h^3E} = \frac{2J}{a} > 0$$

The rate of change of energy release rate is positive.

Crack stability (2)

Change to displacement control loading

$$\Delta = \frac{2Pa^3}{3EI} \Rightarrow P = \frac{3EI\Delta}{2a^3}$$

Now compute rate of change of energy release rate at fixed, imposed displacement

$$J = \frac{9EI\Delta^2}{4a^4B}$$
Crack stability (3)

- Crack growth begins when $J = J_{\text{critical}}$ for both cases
- Suppose the J_{critical} is a material constant
- Then crack growth continues in load control since J will be above J_{critical}
- In displacement control, the crack stops since J decreases with growth. Additional imposed displacement is required to resume crack growth
- This also means that K_I increases in load control and decreases in displacement control during crack extension

Load control

$$\frac{\partial J}{\partial a} \bigg|_P = \frac{2J}{a} > 0$$

Displacement control

$$\frac{\partial J}{\partial a} \bigg|_\Delta = \frac{J}{a} < 0$$

Use of FEA to compute $J-K_I$

- The finite element method is ideally suited to compute the energy release rate, J, and then K_I from the $J-K_I$ relationship
- Illustrate using displacement control loading of the FE model
- Real crack length is a, located at edge of some shape of hole
- Mode I conditions, model only upper $\frac{1}{2}$ of specimen
- Use collapsed, 8-node 2-D elements at crack tip to best represent the strain-stress $r^{-1/2}$ singularity

$$\pi = U + \Omega = U = \frac{1}{2} (u_s)^T [K_s] \{u_s\}$$
Use of FEA to compute $J-K_I$

- Run 2 analyses with slightly longer and shorter crack lengths: just perturb the horizontal position of the 4 singularity elements
- Compute the strain energy, U, in each case. Most FEA codes print U if asked.

$$\pi = U + \Omega = U = \frac{1}{2} \{u_s\}^T [K_s] \{u_s\}$$

$$J_{symm} = -\frac{\partial \pi}{\partial A_c} = -\frac{\partial U}{\partial A_c} = -\frac{1}{B} \frac{\partial U}{\partial a}$$

$$J_{symm} = -\frac{1}{B} \left[U(a + \Delta a) - U(a - \Delta a) \right]$$

$$J = J_{total} = 2 \times J_{symm}$$

$$K_I = \sqrt{EJ}$$

Elastic-plastic fracture mechanics

- Anderson
 - Chp. 3 (section 3.1)
 - Chp. 7 (section 7.5)
- Sanford
 - Chp. 11 (sections 11.1, 11.2)
Elastic-plastic fracture mechanics

- Overview
- CTOD Methodology
- CTOD Estimation
- \(J \) Methodology
- \(J \) Integral
- HRR Solutions
- Features of HRR Solutions
- Asymptotic Dominance

Overview (1)

- Late 1950s-mid 1960s, nearly all research focused on Linear Elastic Fracture Mechanics (LEFM)
- Structures of most interest at the time were made of high-strength materials: Ti, Al, high-strength steels all with \(\sigma_{ys} > 100 \) ksi
 - Rockets, ICBMs
 - B-1 bomber
 - Low fracture toughness, plastic zones very small at unstable fracture
 - Extensive R&D work + ASTM standards development: E-399
Overview (2)

• In mid-1960s additional focus on (often driven by regulators)
 - Commercial & military nuclear power production
 - Offshore platforms
 - Welded pipelines
 - Low strength, high toughness steels (A36, A572, A516, A508, A533B, ...)
 - Large plastic zones at cleavage fracture, ductile instability
 - Invalidated analysis, experimental methods and assessment procedures developed for LEFM
• Relatively large R&D effort start in U.S. and abroad
 - “correlative” methodologies analogous to K_I: CTOD and J-integral

CTOD motivation

• Anderson Sections 3.1, 3.3, 7.5, 9.8
• Developed initially in the U.K. by Wells and colleagues at The Welding Institute (TWI, near Cambridge)
• Funding driven by safety of platforms in North Sea and associated pipelines
• Very physically appealing approach based on critical elastic-plastic stretching at crack tip
 - CTOD is an indirect measure of severe stretching at crack tip (no abstract energy concepts, math!)
CTOD developments

- Somewhat less popular in the U.S. where the J-integral dominated research, thinking and funding
- UK researchers (and now Edison Welding Institute in U.S.) pushed development of extensive fracture toughness testing and defect assessment procedures
- Petro-chemical industry worldwide uses CTOD for weld quality assurance, steel purchasing specs and assessment of existing defects: American Petroleum Institute, Fitness-for-Service standards

CTOD methodology

- CTOD intended as a single value of fracture toughness at instability
- Not meant to describe R-curve behavior
- For fracture after max load in a test, CTOD becomes quite ambiguous
- CTOA (crack tip opening angle) concept is an extension of CTOD for R-curve behavior (new ASTM E2472-06 standard for CTOA – much R&D activity)
- CTOD can be measured during a test by infiltration techniques, optically with high-resolution cameras, inferred from measured crack mouth opening displacement
- Plastic component of CTOD can be measured post-test directly from broken ends of specimen
CTOD methodology

- CTOD relies on its connection with the J-integral for a theoretical foundation (J-integral discussed soon)
- Major practical issue is transferability -- is the critical CTOD value measured using a deep notch SE(B) specimen in the lab the same value in a large, tension loaded structure?
- CTOD testing and assessment procedures attempt to “sidestep” this issue:
 - Specimen testing must also use the “application” thickness
 - Deep notch CTOD values are understood to be conservative values providing an additional (but not quantified) level of conservatism in assessment procedures

$$\text{Critical CTOD from deep-notch SE(B) test generally is smaller than critical CTOD measured in tension loaded components}$$

Use of CTOD methodology

- To use a CTOD methodology we need:
 - An un-ambiguous definition of CTOD both experimentally and numerically (CTOD changes with distance behind the crack front)
 - A computational procedure to estimate CTOD in a plastically deforming cracked body (at each location along crack front)
 - A experimental procedure to measure (or infer) values of CTOD at fracture instability that is robust, reliable and repeatable (can be standardized)
 - An understanding of potential effects of specimen size, loading mode (tension vs. bending), temperature, loading rate, prior ductile tearing, etc. on the critical value
 - Engineering (transferability) models for these effects to allow critical values measured in one condition to be used (“adjusted”) in another condition
 - Procedures to handle stochastic variability of measured CTOD values (e.g., cleavage fracture in steels)
 - Welds introduce more complexities - residual stresses, inhomogeneous material flow properties (how to compute...
Use of CTOD methodology

- **Testing standards**
 - ASTM E1290-08 Standard Test Method for Crack-Tip Opening Displacement (CTOD) Fracture Toughness Measurement (also an ISO standard)
 - Must test at “application thickness”
 - Plate only – no welds: appendix for welds under development
 - Single point toughness values (no R-curve)
 - Deep notch SE(B)s required, shallow notch specimens being added to quantify constraint effects
 - No guidance on transferability, stochastic
 - Prescribes how to run the test, not how to use the measured CTOD values at fracture

- **Defect assessment procedures**
 - Failure assessment diagrams (FADs)
 - UK-European: PD6493, R-6
 - US: API-579 (American Petroleum Institute)
 - See Anderson, Sections 9.3, 9.4, 9.8, 9.9

CTOD estimation

\[v(r) = \frac{4}{\pi} K_I \sqrt{\frac{r}{2\pi}} \]

\[\delta = 2 \times v(r = r_y) = \frac{8}{E} K_I \sqrt{\frac{1}{\pi \frac{K_I^2}{\sigma_y E}}} \]

\[\therefore \delta = \frac{4}{\pi} \frac{K_I^2}{\sigma_y E} \]

CTOD increases as \(K^2 \)

(this is a nonlinear effect!)

The actual coefficient (not 4/\(\pi\)) is found from nonlinear FE analyses, varies with material strain hardening and 3-D effects.

Suggestion: re-derive for plane-strain conditions, verify physical units are correct.
CTOD estimation (2)

- Compute J including plasticity (see later notes)
- Compute K_J from J (a K value computed from J)
- Finally get CTOD from K_J

\[J = \frac{K_J^2}{E'} \quad K_J = \sqrt{E'J} \]

\[E' = E \ (\text{plane stress}) \]
\[E' = \frac{E}{1 - \nu^2} \ (\text{plane strain}) \]

\[\therefore \delta = \frac{4}{\pi} \frac{K_J^2}{\sigma_0 E} \quad \therefore \delta = \frac{4}{\pi} \frac{J}{\sigma_0} \]

Detailed 2-D and 3-D finite element analyses show that a more accurate form is:

\[\therefore \delta = \frac{J}{m \sigma_{flow}} \quad m = 1.5 \text{ for plane strain and 3-D} \]

\[\sigma_{flow} = \frac{1}{2} (\sigma_{ys} + \sigma_u) \]

CTOD estimation (3)

- Use nonlinear finite element analysis to compute CTOD as function on applied loading
- Thermal loading, residual stresses, etc. introduce NO complications
- Just extract CTOD from displacements of nodes behind crack tip at each applied load level

More elements than this needed to resolve θ variation of fields

13 nodes at this front location- collapse to a point

Extract CTOD at each front location using 45° intercept method
CTOD: example FEA model

- Example from work of Sorem, Rolfe, Dodds (*Int. J. Fracture*, V47, 1991)
- Test & analyses of A36 steel, deep notch SE(B) specimen
 - Load, then unload specimen as shown
 - Cool to liquid N2 and fracture
 - Remaining deformation is plastic
 - Superpose deformed finite element mesh (-elastic) on deformed specimen

CTOD: Example data

- Example from work of Sorem, Rolfe, Dodds (*Int. J. Fracture*, V47, 1991)
- Illustrates major effect of constraint loss on measured fracture toughness (cleavage)
- Research still on-going to construct transferability models
J integral for elastic-plastic fracture

- Anderson
 - Chp. 3 (3.2-3.5, App. A3.2-A3.4)
- Sanford
 - Chp. 11

Elastic-plastic fracture mechanics

- What is J?
 - Energy release rate concept extended to nonlinear material behavior in contained yielding
- J Methodology
- J Integral
- HRR Solutions
- Features of HRR Solutions
- Asymptotic Dominance
J methodology (1)

- Development started in early 1970s
- R & D driven and funded by safety issues of nuclear power generation
- High toughness, low strength materials
 - $K_I > 100$ at operating temperatures
 - Yield stresses 50-80 ksi
- Large plastic zones at fracture invalidate LEFM assumptions
 - Cleavage in the DBT under large-scale plasticity
 - Initiation of stable ductile tearing
 - Extensive stable tearing terminated by tearing instability
- J based fracture mechanics has the same goals as CTOD approach – perhaps more focus on ductile tearing

J methodology (2)

- More abstract than CTOD (we cannot “see” a J), requires advanced math skills to understand, and nonlinear solid mechanics for analysis
- J approach used extensively in advanced R & D efforts – it has more “headroom” than CTOD given the fundamental mechanics basis
- Major practical issue is transferability -- is the critical J value or J-Δa curve measured using a deep-notch SE(B) specimen in the lab the same toughness in a large, tension loaded structure?
- Residual stresses, inhomogeneous materials (welds) are more difficult to address with J approach
- J approach mathematically (rigorously) simplifies to K; “correlative” fracture mechanics for SSY and LEFM – this is a major appeal of J
Three key developments occurred over a short time period (1966-1970)

- James Rice (then at Brown U.) explored a particular path-independent (conservation) integral for 2-D sharp crack tip configurations
 - The scalar value of the integral has units of $F \cdot L / L^2$ (energy release rate)
 - The integral has the same value when computed on all contours enclosing crack tip
 - But there are many, similar conservation integrals with path independence

Rice and his student (Rosengren) at Brown and John Hutchinson at Harvard both solved the asymptotic, Mode I crack-tip fields for a nonlinear material, analogous to the Williams solution for linear elasticity (the now-termed HRR fields)

- The leading stress-strain term of the field is singular
- For a linear-elastic material the solution is identical to the Williams solution
- The “amplitude” of the strain-stress-displacement field is again undetermined by the asymptotic solution (just like K_I)

- Rice then showed that the scalar value, J, is the amplitude of the asymptotic field analogous to K_I in the Williams solution
- He did this by evaluating the J-integral over a circular contour enclosing the crack tip with strains-stresses-displacements given by the HRR asymptotic field
- This remains today a remarkable breakthrough!
Conservation integrals (1)

Consider a simple 2-D region \(\mathcal{R} \) through which an incompressible fluid flows in steady-state.

The velocity vector of the fluid at each point \((x, y)\) is:

\[
\vec{V}(x, y) = V_x(x, y) \hat{i} + V_y(x, y) \hat{j}
\]

Let \(\rho \) denote the mass density of the fluid. Then the net outflow of fluid from the region is given by

\[
I_\Gamma = \rho \int_{\Gamma} \vec{V}(x, y) \cdot \hat{n} \, ds = \text{net outflow}
\]

Conservation integrals (2)

If there are no sources or sinks of fluid in the region \(\mathcal{R} \). Then conservation of mass for incompressible, steady flow requires that

\[
I_\Gamma = \rho \int_{\Gamma} \vec{V}(x, y) \cdot \hat{n} \, ds = 0
\]

Suppose now there exists a point source that adds fluid to the region \(\mathcal{R} \). The strength of the source is \(\rho F \) (has units of mass/time). Then

\[
I_\Gamma = \rho \int_{\Gamma} \vec{V}(x, y) \cdot \hat{n} \, ds = \rho F
\]
Conservation integrals (3)

Now consider some other closed contour in \mathcal{R} that encloses the point source. Then mass conservation also requires that

$$I_\Gamma = \rho \int_\Gamma \vec{V}(x, y) \cdot \hat{n} \, ds = \rho F$$

Then,

$$\rho \int_\Gamma \vec{V}(x, y) \cdot \hat{n} \, ds = \rho \int_\Gamma \vec{V}(x, y) \cdot \hat{n} \, ds$$

It is clear that all such contour integrals “compute” the same strength of the point source in the fluid.

Conservation integrals (4)

If we evaluate the integral over a contour within \mathcal{R} that does not contain the point source, we see that

$$I_\Gamma = \rho \int_\Gamma \vec{V}(x, y) \cdot \hat{n} \, ds = 0$$
Extension to cracks (1)

Suppose we have an elastic body in equilibrium that contains a sharp crack as shown. The crack tip represents a point singularity with an effect on the mechanical fields that radiates outward from the tip location and diminishes with distance.

We readily imagine that an integral defined over a contour enclosing the crack tip could compute the strength of the singularity.

\[J_\Gamma = \oint_\Gamma \vec{F} \cdot \hat{n} \, ds \]

A plausible measure for the strength of the singularity is the energy release rate

\[J = -\frac{\partial \pi}{\partial A_c} \]

Extension to cracks (2)

Based on the analogy with incompressible fluid flow, we anticipate that \(J \) computed over a different contour will have the same value under suitable restrictions (e.g., no body forces applied inside the contour, no crack face loading, etc.)

\[J_\Gamma = \frac{\partial \pi}{\partial A_c} = \oint_\Gamma \vec{F} \cdot \hat{n} \, ds \]
\[J_\Gamma = \frac{\partial \pi}{\partial A_c} = \oint_\Gamma \vec{F} \cdot \hat{n} \, ds \]
\[J_\Gamma = J_\Gamma = -\frac{\partial \pi}{\partial A_c} \]
Extension to cracks (3)

If we shrink the contour to the immediate crack tip region, we can define a “crack tip” value for J

$$J_{\text{tip}} = -\frac{\partial \pi}{\partial A_c} = \int_{\Gamma_{\text{tip}}} F(T_x, T_y, W, \ldots) \cdot \hat{n} \, ds$$

In the limit of shrinking contour sizes, the issues of body forces, crack face loading, etc. disappears.

Under these restrictions (no body forces inertial forces, isothermal, no crack-face tractions), we have

$$J_{\text{tip}} = J_{\text{far}} = -\frac{\partial \pi}{\partial A_c}$$

Extension to cracks (4)

Why of major importance?

Value of J_{tip} is clearly determined by stress-strain-displacement fields very near the crack tip (the crack-tip loading that causes material separation). Hard to compute accurate fields very near tip for nonlinear conditions!

J_{far} is determined by stress-strain-displacement values remote from the crack tip -- they reflect loading, geometry, boundary conditions. Should be able to compute these values accurately !!!

J relates quantitatively near-tip stress-strain-displacement fields to remote geometry, loading, boundary conditions

\[J = 0 \] when \(\Gamma \) contains no cracks or singularities!
J-integral (3)

\[J = \int_{\Gamma} \left(W \, dy - T_y \, \frac{\partial u_y}{\partial x} \, ds \right) = \int_{\Gamma} \left(W \, dy - T_x \, \frac{\partial u_x}{\partial x} \, ds - T_y \, \frac{\partial u_y}{\partial x} \, ds \right) \]

\[J = \int_{\Gamma_1 + \Gamma_2 + \Gamma_3 + \Gamma_4} \left(W \, dy - T_y \, \frac{\partial u_y}{\partial x} \, ds \right) \]

\[J = J_1 + J_2 + J_3 + J_4 \]

\[J_1 = J_4 = 0 \text{ because } dy = 0, T_y = T_x = 0 \]

Reverse direction of contour 2 to match 1, then \(J_1 = J_2 \)

\(J_1 \) turns out to provide the positive value so we adopt it.

J-integral = energy release rate?

\[t_{coh} = \sigma_y \delta \text{ in the continuum} \]

Thickness: \(B \)

Cohesive tractions across crack face

From previous notes

\[U_{sp} = U_{coh} = \int_{0}^{\delta_c} [t(\delta) \, B \, da] \, d\delta = B \, da \int_{0}^{\delta_c} t(\delta) \, d\delta \]

\[J = \frac{U_{coh}}{B \, da} = \int_{0}^{\delta_c} t(\delta) \, d\delta = \Gamma \]

Energy release per new crack face area
J = energy release rate (2)

\[J = \int_{\Gamma} \left(W \frac{\partial u}{\partial x} - T_y \frac{\partial u}{\partial x} ds - T_x \frac{\partial v}{\partial x} ds \right) = -\int_{\Gamma^{-} + \Gamma^{+}} T_y \frac{\partial v}{\partial x} ds \]

\[dx = -mds \]
\[dy = lds \]
\[T_y = T_x^{+} + \sigma_{yy} m = t(+1) \]
\[\hat{n} = \hat{i} + mj \]
\[dy = 0 \text{ and } T_x = 0 \]
\[\text{on } \Gamma^{-} \text{ and on } \Gamma^{+} \]

Thickness: \(B \)

Cohesive tractions across crack face

J = energy release rate (3)

\[J = -\int_{\Gamma^{-} + \Delta a} T_y \left(\frac{\partial u}{\partial x} \right) ds - \int_{\Gamma^{+} + \Delta a} T_y \left(\frac{\partial u}{\partial x} \right) ds \]

The only non-zero stress acting on material points along \(\Gamma \) is \(\sigma_{yy} = t(\hat{n}) \) and it is positive (tension) algebraically.

- **on** \(\Gamma^{-} : \)
 - \(\hat{n} = \hat{i} + mj = (0) i + (-1) j \)
 - \(T_x = \sigma_{xx} l + \tau_{xy} m = 0 \)
 - \(T_y = \tau_{xy} l + \sigma_{yy} m = t(-1) = -t \)
 - \(dx = -mds \Rightarrow ds = dx \)
 - for \(\Gamma^{-} = 0 \Rightarrow x = a \)
 - for \(\Gamma^{-} = \Delta a \Rightarrow x = a + \Delta a \)

- **on** \(\Gamma^{+} : \)
 - \(\hat{n} = \hat{i} + mj = (0) i + (1) j \)
 - \(T_x = \sigma_{xx} l + \tau_{xy} m = 0 \)
 - \(T_y = \tau_{xy} l + \sigma_{yy} m = t(+1) = t \)
 - \(dx = -mds \Rightarrow ds = -dx \)
 - for \(\Gamma^{+} = 0 \Rightarrow x = a + \Delta a \)
 - for \(\Gamma^{+} = \Delta a \Rightarrow x = a \)
\[J = \text{energy release rate (4)} \]

\[J = - \int_{a}^{a+\Delta a} -t(\delta) \left(\frac{\partial \sigma^-}{\partial x} \right) dx - \int_{a+\Delta a}^{a} t(\delta) \left(\frac{\partial \sigma^+}{\partial x} \right) (-dx) \]

\[J = - \int_{a}^{a+\Delta a} t(\delta) \left(\frac{\partial \sigma^+}{\partial x} - \frac{\partial \sigma^-}{\partial x} \right) dx \]

\[\Delta a \to 0 \]

\[\delta(a) = \delta_c \text{ and } \delta(a + \Delta a) = 0 \text{ (not yet opening)} \]

\[\frac{\partial \delta}{\partial x} dx = d\delta \]

\[\Rightarrow J = - \int_{0}^{\delta_c} t(\delta) \ d\delta = \int_{0}^{\delta_c} t(\delta) \ d\delta \]

\[J = \text{energy release rate (5)} \]

Same result as before for energy release rate!
Integral limitations

- Note that J is a 2-D concept (the integration is around a planar contour Γ).
- There are fairly strict requirements to insure that J remains independent of the integration contour Γ:
 - The material must be elastic (linear or nonlinear)
 - The material properties (E, ν) can vary in Y but not X direction
 - The contour contains only 1 crack tip
 - No body forces inside the contour (including inertia loading)
 - No thermal or other initial strains or stresses inside the contour
 - No loading on crack faces that lie inside the contour
- Additional terms can be added to the definition of J to “remove” contributions from these other effects that destroy the path independence
- When this is done, the connection of J to the energy release rate is maintained but connection to the HRR field is not guaranteed