The results of two-dimensional approach using real
riable method to Hertz’s problem.of contact of elastic
odles are presented. Both normal and tangential loads
e assumed to be distributed in Hertzian fashion over the
ea of contact,
ngential load is assumed to be linearly proportional to
that of the normal load when sliding motion of the body
isimpending. The stresses in the elastic body due to the
application of these loads on its boundary are presented in
closed form for both plane-stress and plane-strain cases.
A numerical value of f = 1/;is assumed for the linear pro-
portionality (coefficient of friction) between the tangen-
tial and normal loads in order that the distribution of
stresses may be illustrated. The significance of the stress
distribution, across the contact area and in the body, is also
discussed. It is shown that when the combination of
loads considered in the paper are applied at the contact
area of bodies in contact the maximum shearing stress may
be at the surface instead of beneath the surface. For ex-
ample, for plane strain, if the coefficient of frictionis f =
1/;, the maximum shearing stress is at the surface and is
43 per cent larger than the maximum shearing stress,
which would be below the surface, that occurs when the
- normal force acts alone. The effect of range of normal
1' stress and of shearing stress on the plane of maximum
shear and on the plane of maximum octahedral shear on
- failure by progressive fracture (fatigue) is discussed.

InTRODUCTION

HE problem of the contact of elastic bodies under normal
loading was first investigated by H. Hertz (1)3in 1881, He
computed and verified with experiment the load distribu-
- tlon over the contact area, and solved for the stresses in the body
in terms of a Newtonian potential function. S. Fuchs (2) in
1913, performed a laborious arithmetical integration to obtain
the stresses. Eight years later, W. B. Morton and L. J. Close

(3), using zonal harmonics, calculated the stresses in a half space
" on which a spherical ball is pressed by a normal load. At about
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esses 'uev to Tangential and Normal Loads

Some[ Contact Stress Problems
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The magnitude of the intensity of the ,

the same time (és Morton and Close) Coker and Ahmed (4)
studied analytically and experimentally a’ plane-stress problem

" where a portion of the boundary of a half plane is loaded with

normal pressure. In 1930, H. R. Thomas and V. A..Hoersch (5)
transformed the Hertzian solution for the stresses on the axis of
symmetry into standard elliptical integrals and. discovered that
the shearing stress on the axis of symmetry is maximum at some
distance underneath the center of the contact area. Their com-
putation of the stresses is checked by agreement with experiment.
Independently, Belajef (6) calculated the stresses at any point in
the half space by the use of elliptical co-ordinates. His solution
gives similar results on the axis of symmetry to those obtained
by Thomas and Hoersch. L. Foeppl (7), in 1936, also obtained a
similar solution for the problem of a cylinder and a spherical
ball pressed on a flat plate, and verified the results by a photo-
elastic experiment.

The effect on the stresses due to the presence of a tangenmal
load, however, was not taken into consideration by investigators
until 1939, when G. Lundberg (8) developed a general theory of
elastic contact between two semi-infinite bodies. In his theory,
he introduced three potential functions which correspond to
three components of the load along three axes of a Cartesian co-
ordinate. The components of the load tangent to the contact
area presumably are regarded as frictional forces between the
contact surfaces, He made no attempt to find the stresses caused
by the frictional forces in addition to the normal load.

R. D. Mindlin (9), in 1949, investigated the distribution of tan-
gential load across the area of contact when one elastic body
slides over the other. He found that the stress on the bounding
curve of the contact area due to the tangential load is infinite and
consequently a state of impending slipping prevails. Corre-
sponding to this condition the intensity of tangential force at a
point in the contact area cannot usually exceed the product of
the coefficient of friction between the sliding surfaces and the
normal pressure at the same point. In this paper, a value of
1/y1s used for the coefficient of friction, in order to show the stress
distributions due to the tangential load superimposed on the nor-
mal load acting over the same area of contact.

In December, 1949, not long after the authors completed their
solution of this problem, H. Poritsky (10) presented a solution of
the same problem (he uses a coefficient of friction of 0.3) by
means of an Airy’s function. The results, independently ob-
tained by two different methods, agree. In this paper the au-
thors have extended the results of the solution to include an inter-
pretation of the significance of these stresses in causing failure by
inelastic yielding and by fatigue. ;

-
EQUATIONS FOR STRESSES

Plane-Stress Problem: Concentrated Forces—Normal or Tan-
gential. TFrom elasticity theory, the stresses in a half plane due
to a concentrated force p, acting either normally or tangentially
to its boundary as shown in Figs. 1(a) and (b), respectively,
are
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Tra. 1 ConcENTRATED NORMAL LOAD AND TaNGENTIAL LOAD ON

BOUNDARY
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Stresses Due to Distributed Normal Forces.t If the normal
forces as just discussed are distributed along a portion of the
boundary of the half plane, as shown in Fig. 2, the stresses in the
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Tie. 2 Evviprical DIsTRIBUTION OF NoRMAL Loap on Bounpary

half plane are )
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K, = (a—=) + 2

- various values of z and z where zis taken as 0.1254, 0.254, 0.3754,
: umetrlcal to'z, ‘whereas V¥ is symmetrical to the origin.
= Forces.

" stresses in the area of contact.
;;pressed respectively, by the following equations: el
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Siresses Due to Distributed Tangential Forces. In a similar
manner, the stresses in a half plane due to a tangential force di

Fic. 8 (left) Evviprical DisTrIBU-
va TronN OF TANGENTIAL LOAD ON ~
BoUNDARY

tributed along a portion of its boundary as shown by the ordi-
nates to the ellipse in Fig. 3 are given by the following equations

Op = —_—0 [(29:2 -— 2q% — 322 W -+ 271 2
+ 2t — ot — ) E/]
O = — %:} szb
T = — 2 [(a2 Loz b2 L g —or o
T a a
— szl//:l

in which ¥ and ¢ denote the same quantities as expressed by
Equations [4].

An examination of Equations [3] and [5] reveals that, excep
for a constant multiplier, o,, and T,,, have identical form, and
so do 7,,,and 0.

In order to facilitate the plotting of the stresses against z whil
zis taken as a'parameter, the values of ¢ and T are first computed
from Equations [4]. Table 1 shows the values of Y and ¥ fo
0.50a, 0.75a, 1.00a, 1.50a, and 2.00a. It is seen that T is sym-
“Siresses on ‘Boundary Due to Distributed Normal and Tangentza
‘Special consideration is given to the computation of th
They can be shown to be ex

(A) For dlstnbuted tangential load on boundary

width of the contact area, may be found for two cyhndrlcal cylmders
whose 10ng1tudma1 axes are parallel that are in contact:along .aline;

Q

i z z?

v‘u"“'zqo [‘ Ja—"’—l] forz 2 a
—2¢ -+ 4,1 forz < —a ... [6]

oo a - Ya .

modulus of elastlmty, respectxvely, fo
E;have sumlar meamng for the: second ylin er
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“mimrTe TABLE'1 VALUES OF ¢ AND ¥
2 = 0.25a—— = 0.3750— = 0.50a0——
¥ v 7 ¥ T
068769 '%£0.017059 +0.068520 £0.016869 +0.068109 £0.016609 +0.067542
1322447 " v0,043408 +0.131239 +£0.042456 +0.129603 £0.041181 +0.127390 .
381269° . 0181679 +0.370867 £0.169666 +0.355007 +0.155094 +0.335404
034918 =£0. 596645 +0.938128 =£0.494131 +0.818711 =+0.397638 +0.702863
640856 =3, 286846 -+4,224414 +1.618003 +2.349094 =+0.946560 +1.552699
.204954" . =£3.200000 +4. 800000 +1,644113 +2.750869 +0.962013 -+1.814951
105318477 1, 983798 +4.290146 £1.128147 +2.659019 £0.708155 +1.840884
+8.515818 ‘£1.435473 +4.103299 0. 837865 +2.591848 0. 533935 g
+8.181206 7'40.932308 +3.976819 £0.552732 +2.539731 £0.357433 -+1.805773
+7.997064 . :0.458916 +3.904208 £0.274341 +2. 507644 +0.178875 +1.793268
+7.938238 0 +3.880572 0 +2.496877 0 +1.788855
= 0.75a—— = 1.00a—— =1.50a—— = 2.000——
v v - ¥ v w
.015900 +0.065979 +0,014985 +0.063919 +0.012783 +0.058734 +£0.010456 +0.052826
==0.037866 +0.121520 £0.033907 +0.114263 +0.025644 +0.098004 +0.018508 40082202
=0.123658 +0.291460 +0.094958 +0.248603 =£0.053975 +0.179423 £0.030949 +0.132013
+=0.251632 +0.517119 +0.161253 +0.390254 =£0.071873 +0.242207 £0.035479 +0.163798
=£0,415822 +0.865845 +0.217287 +0.568865 +0.076980 +0.307921 +0.033323 -+0.194222
+0.409649 +0.991404 =+0.206280 +0.638105 =£0.068606 +0.334686 =0.028377 +0.206565
=+0.315303 +1.048121 =+0.159598 +0.680775 +0.051689 +0.354278 +0.020750 +0.215885
+£0.245772 +1.059185 +0.125429 -0, 693299 =+0.040439 +0.361111 +0.016079 +0.219237
+0.167802 +1.064253 +0.086294 +0.701305 +0.027778 +0.365955 =£0.010973 +0.221656
0.084988 +1.066196 +0.043935 +0.705709 +0.014139 +0. 368842 £0.005564 +0.223118
0 +1.066667 0 +0.707107 0 +0.369800 0 0.223607
Entries in this table are to be multiplied by =/a?, where a is the half length of the loading region on the boundary.
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A complete picture of stresses in the half plane is plotted from i
{31, [5], and [6] through [11]. They are shown in L. 0 forz 2 aand z < —a
gs. 4 to 7 — -
In reality, any presence of tangential load must be associated F 1 Do ‘/ 1 z? for le <a
th that of normal load. Hence the stresses from Equations Tasfomo® = 3 a?
and {5] (plotted in Figs. 4 to 7), should be superimposed upon .
(5] (p & ) p P P L0 forz 2 gand z < —q

h other, provided the quantities p, and g are related by some
.. According to Mindlin (9), go = fps, where f denotes the
flicient of friction of the surfaces of contact; f can vary in a
erange in accordance with the surface conditions of the bodies
contact. For the purpose of illustration, f is assumed to be
al to 1/;.  Thus the stresses due to combined application of
tributed normal and tangential loads, as expressed in terms of
when f = 1/; become

_ z
Y, Y.
W L
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3z + % [(Qz'l — 2a* — 3220 + 2w z—
. [12]
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Prane-Strain ProBLEM

In the preceding section the stresses have been found for a
state of plane stress. For a state of plane strain two principal
stresses are the same as for plane stress, but the third princi-
pal stress o, is not zero as in the case for plane stress. The
stress o, in the y-direction (perpendicular to the zz-plane) for the
case of plane strain (contact of long cylinders) due to combined
application of distributed tangential and normal loads is

0-1/* = V(O.I* + o-l*)

where v is the Poisson’s ratio of the material.
When Equations [12] are substituted into Equation [13], the
following is obtained

____2_1:. pc{[:(aﬂ + 22
™

[(a:z—— a? — 220y + 7; + (a*— % — 2?) z-\flj!} [14]

Ty

zi__—’.’r_z_ ]
—{—z)a\p - 2z

L1
.3




R3

160 JOURNAL OF APPLIED MECHANICS JUNE, 1953

Ninfo dlo o

ozp,

4T

-4 [}

Fig. 4 Curves SHOWING VALUES OF STRESS o,n FOR VARIOUS VALUES OF Z, AT SURFACE
i AND AT Various DeprHs BELOow SURFACE
| (See TFig. 2, for loading.)

Consequently, on the boundary, the stress in y-direction is ex- Txt
pressed by the following equations corresponding to their respec- 2oL
tive regions

212 /932 59,
—-Vpog ;—\a—z_l forz 2 a
z? 2z
Oy /et = ) I:Q Jl — ; + 3 for le S a .. [15] to 4,

2 2
—VPo = j—£+‘/x~——1 forz < —a
3la

‘ In later calculations, v is assumed to be equal to 1/s.

MAXIMUM STRESSES AND THEIR SIGNIFICANCE

Introduction. The results of the preceding sections may be

used to solve certain problems involving contact stresses, for o
example, for computing the stresses in two cylindrical rollers
of the same material, whose longitudinal axes are parallel, that
-0, —

are pressed against each other, Fig. 8(a), while one or both eyl--
inders are rotated about a longitudinal axis causing a slidingfric- . ¢ )
tion force between the rollers, as shown in Fig. 8(b).«*Themormal . . Gx
and tangential loads are distributed over the area of contact:as = - — -159,
shown in Fig. 8(c). In this section the results of computatxons" 5
of the stresses in the cylinders in this example will:be given, but . :
before this is done, it should be noted that the-significance:of the - -zog, L — he s
maximum values of stress cannot be'determined ‘apart'from.a . frg. 5 Curves Smowine VALUES OF STRESS op FOR VABIQ ;
knowledge of what action constitutes fa,ﬂure of the Toller. 4 VALUES OF 7, AT SURFACE AND AT VaRious DEPrHs BELOW SURF

While it is not possible here to descnbe all types of failur y of (See Tig. 3, for loading.) oe
B e
such rollers it can be said that’ fa.xlure generally ccurs in-one ‘of - shearing stress. The maximum shearing stress is given by
two ‘main types. "The term faxlure is used 0 mean any actiod ;
i - ~equation )
' Whlch Wlll des "0 ailure” from e 1 )
! ¥ ST e g o &
‘ tlon (y—IEId' . Tmax = — (01— 03)0euvviiinuenesr !
fracture by .pro- 2 ; £
gressive -spreading of a cracks fatxgue) suslly it israssumed ~in which o} and o are the maximum and minimum values of t
o

failur .1s-’assocxated with  principal stresses at the point. The maximum octahedral sh
ximum octahedral ing stressis given by the equation

that the inelastic deformation type-
the maximum shearing stress
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F1c. 6 Corves SHOWING VALUES OF F=ussws vem, ot FOR VARIOUS VALUES OF 2, AT SURFACE AND AT
Vagums Dy=ras BELOW SURFACE

(See Fige I =nd % respectively, for loading.)
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Fie.7 Curves SEOWING VALUES (F STRESES 04n, 772t FOR VARIOUS VALUES OF %, AT SURFACE
AND AT \.ZIOTR JEPTHS BELOW SURFACE
(See Fizs 2 and T -espectively, for loading.)

1 .
TG max = é \/(01 - (72)2 + (0'2—- 0'3)2 + (U:’—l'g#:..in

in which o, and o; are defined as before and o is the thrd { iz
mediate value) principal stress.
The second type of failure is associated with many epesisf
applications of the loads and is characterized by = fafigms)
racture that starts as a localized crack with very Iitfe viseal
vidence of inelastic deformation. The crack starts eifer st fie
urface or underneath the surface and grows progressivy as e
tress is repeated until some of the metal breaks out 1 the s
ace thereby causing pitting, shelling, or other damaziy effexs
0 the surface which constitutes failure, In the typeo fnilne
nown as fatigue we must know the “range” of stess. Ths
means that we must determine for the roller the nzenituus
irection (line of action through point) and sense, that & #hether

ositive or negative, of the stress at a given point on a gren plare

z

. AT

Jéai«

(a) (b) (c)
Fia. 8 Normarn AND TaNGENTIAL Loaps ror Two ROLLERS IN
ConracT

throughout one cycle of application and release of the load. This
will be done later in this paper.

In this section of the paper the values of o1, oy, and o3 are
given for e sufficient number of points in the cross sections of the
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rollers near the contact area so that the maximum value of Tmax 01 mex™ = —1.39p0, T2 mex™ = —0.72p0, and 05 max™ = —0.53p,
and T¢ max may be determined from Equations [16] and {17). L [18]

Mazimum Siresses. By making use of Equations [12]) [12a],
[13], [14], and [15}, the stresses ,%, 0,%, ¢,% and 7.,* have been
found at points whose z and z-co-ordinates are given in Table 1.
By making use of Mohr’s circle the three principal stresses, o ¥,
0%, and o3* were determined at each point described in Table 1.
From these results contour lines that represent constant values of
principal stress, o1¥%, ¢2*, and o:* are plotted in Figs. 9, 10, and
11. Itisfound that at the point A(z = 0,z = + 0.3a) in Fig. 9, . _

10, or 11, the maximum values of the three principal stresses ocgcur. Tawx = 043P0 1]

See footnotet for a method of obtaining the values of py and a.
Fig. 12 shows the directions of o3 max® and 0 max®.  The third
stress 03 max”™ is perpendicular to the plane of the other two.

Tt is found from Equation [16] by the substitution of the values
of stresses from Figs. 9, 10, or 11 that the maximum value of Tmas
also oceurs at the point A and has a value

These values at the point 4 are In a similar manner by making use of Equation [17] it is found that
has
-4 -3 -2 _IQQP. +2 +3 +4 x
=y N\ a It
~1.00Ps .
) frict
/ \‘P}/ s Eau
o Lo/ a1
-.625
~.50
J 2
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=3, = + fore
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& 37p
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Fie. 9 ConTours For ONE OF Two PrincipaL STrEssEs LYING IN z2-PLANE gatic
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Fia.-11 --CoNTOURS FOR PrINCIPAL STrRESS WHICHE ACTS IN ¥Y-DIRECTION
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Fic. 12 Locarion oF MAXIVIUM PRINCIP AL STRESSES

t the maximum value of 7gmax also occurs at the pomt A and
the value : “ ; ;

Tgm——OSI po., ....... PRI
t should be noted that if the normal forces act alone, ’chét is, the

iction coefficient is assumed to be zero, the stresses as given in
uations [18], {19], and [20] would be, respectively,

Ot max = —Po, O2max = —Po, T3 max = —0.5 Po.... [21]
Tmax = 0.30 Poe oo e [22]
Temax = 0.27 po.ooovvi i oL, [23]

tance z = 0.78a underneath the surface. Therefore the tangential
force caused by the coefficient of friction of 1/; increases the maxi-
mum principal stress 39 per cent, the maximum shearing stress
A'y 43 per cent, and the maximum octahedral shearing stress by
37 per cent. Furthermore, the location of these maximum shear-
ing stresses is changed by the addition of the tangential force
from beneath the surface to the point 4 in the surface. Investi-
gation shows that when the coefficient of friction becomes greater
han f = 1/, the maximum shearing stress occurs at a point in the
surface, but when f is less than !/s this stress is underneath
he surface.

Range of Stress for One Load Cycle. In order to determine the
nge of stress it is necessary to compute the stresses at a given
point for several positions of the loads relative to the location
of the given point. To state the idea differently, the loads ap-
ied to the rollers are assumed to remain constant while the
movement of the roller surfaces changes the location at which the
oads are applied. At a point located a relatively large distance
rom the loads the stresses due to these loads are approximately
ero.  As the loads move nearer to the point the stresses at the
oint increase. Moreover, as the loads begin to pass over
he point the magnitude, line of action, and sense of the stresses
hange. From a study of these changes in the stresses the range
f stress is established.

In Figs. (a) through (¢) of Table 2, the point O represents a
ed point in the surface of one of the rollers (the dimensions a
re greatly magnified) as the load approaches and passes over the
oint 0. The figures in the second column show the magnitude,
irection, and sense (sense here means whether tensile or com-
?essive stress) of the three principal stresses at the point O for
ach position of the load. In Table 2 the symbol o1* is always
ven to the principal stress having the largest magnitude, a3* to
he principal stress of least magnitude and ¢»* to the principal
tress whose magnitude is intermediate. From Table 2 it is
oted that the directions of the two principal stresses that lie in the
z-plane rotate through 90 deg during each load cycle. This
¢t ‘makes the range of stress mére difficult to determine because
most members that are subjected to repeated loads the direc-
on of each of the principal stresses remains fixed during the load

8 Reference (5), p. 29.

and these values of Tmax and Tgmax cceur® on the z-axis at a dis- -

b
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TABLE 2:TABLE SHOWING CHANGES IN MAGNITUDE, SENSE
A IRECTION: OF PRINCIPAL STRESSES AT A IIXED POINT
;i OIN SURI‘ACE AS LOAD MOVES PAST IT

.. POSITION OF LOAD EELATIVE
IO A FIXED POINT O

DIRECTION, SENSE AND MAGNITUDE OF
PRINCIPAL STRESSES AT FIXED POINT O,
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° X 10 =0
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cyele so that only the magnitude and sense of the stress changes.
Therefore, in order to make use in this paper of the methods
usually employed in desecribing the effect of range of stress (14),
the changes in the stress on a fixed plane through a point O in the
surface of the roller will be considered. Three different fixed
planes are selected here for this purpose, as discussed in the fol-
lowing paragraphs.

Range of Normal Siress o,*. From the first of Equations [124]
the values of ¢,* have been computed at points on the surface for
various values of z relative to one position of the load. The re-
sults are plotted in Fig. 13 in which the ordinates represent
values of o, * at each value of z. If the load in Fig. 13 is allowed
to move along the surface, then the stress ¢,* at a fixed point O
will have in turn each of the values shown in Fig. 13. Fig. 13
shows that the stress o,* changes from a maximum compression
of ~—1.20 pp to a maximum tension of 4-0.67 po, or, that is, a
maximum range of stress of 1.87 po. The stress ¢,* has been
chosen here because it has a greater change in magnitude than
the normal stress on any other fixed plane through a fixed point
on the surface or underneath the surface. Two important facts
about this range of stress should be noted: (@) When this range of
normal stress is compared with the range that occurs when there
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is no friction force, which is from zero to —1.0 p; in compression,
it is noted that there is an 87 per cent increase in magnitude (co-
efficient of friction 1/;). (b) There is a change in the sense of the
stress from tension to compression; that is, there is some reversal
of stress, a fact that is of considerable importance in explaining
how a progressive crack starts and propagates when the stresses
are predominantly in compression.

Range of Shearing Siress on Plane of Mazimum Shear. The
magnitude and direction of the shearing stress on the plane of the
maximum shearing stress (plane bisecting angle between o1* and
o:* in Fig. d, Table 2) have been computed at the point O for each
position of the load as shown in Table 2. In Fig. 14 the vectors

Fic. 14 DiacraM Suowine MANNER IN WHicH MAGNITUDE, SENSE,
AND DIRECTION OF SHEARING STRESS VARY ON PLANE OF MaXIiMUM
SHEEAR

(f =1y u =1 E = 30,000,000 psi.)

through the point O marked b, ¢, and so on through A, respec-
tively, represent these values of the stress. A smooth curve
0-A-B is drawn and a vector from O to this curve represents the
shearing stress on this particular plane through O for some posi-
tion of the load. The magnitude of the maximum shearing stress
on this plane, therefore, varies from zero to 0.43 po. However,
it is seen from Fig. 14 that the changes in direction of the shear-
ing stress.are such that along certain lines in the plane there is a
change in sense, that is, a reversal of the shearing stress. For
example, the vectors marked b and h represent equal and -oppo-
site shearing stresses, that is, a complete reversal of stress, each
- being equal to 0.23 pyor a total range’iof:0.46 p,. But the line
C-0-D, where DO .is'a component:of ‘the-stress OB and OC is a
component of the stress OA; represents the-largest range of the
shearing stress-along:all lines thatican :be:drawn:in this plane
through O. The vectors OD.=~—0,16!p; and-0C = +0.37 p,
give a total range of 0.53:p, which:is!23 per.cent-greater than the
range-from zero 10:0.43 :po alongthe vectord inFig. 14.~ Further-
more, & comparison of thisrange'of stressof 0,53 py with the maxi-
mum shearing stress”'of .0:30: po'when:the coeflicient of friction is
assumed to be zero (Equation [22]) shows-an increase of 77 per
cent in range of shearing stress.due: to the.addition of the ’cangen-
tial force caused by-afriction: coefﬁment ofi/a.

Range *of ‘Shearing* “Stress”on ltme of <M aximum Oclahedral
Shearing. Stress..2Itwill: now,be shown fshat on-the plane of maxi-
grea,ter range of shearing stress
maximum shear. In Fig. 15

nx'refere_nge "(13) has shown that when the
i 1 ero the maximum range of shearing stress
“occurs:atia pointbelow:the surface on-a plane parallel to the z and
“iry-axes; Fig. 8,.and 'thisrange of stress is.from —0.25pp to 4-0.25p0.
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Fic. 15 DiscrAM SHOWING MANNER 1N WrICH MAGNITUDE, SENSE,
AND DIRECTION OF SHEARING STRESS VARY ON PLANE oF MaxiMuMm

OCTAHEDRAL SHEARING STRESS (a.
(f = Y p = 1/4, E = 30,000,000 psi.)
the vectors marked b, ¢, d, and so on, respectively, represent the
shearing stresses on & plane making equal angles with 0,%, o,¥,
and o3* in Fig. d of Table 2, for the corresponding positions of the
load in Table 2 and the smooth curve 0-4-B is drawn so that any
vector from O to the curve represents the shearing stress in this 3
plane through O for some position of the load. Theline C-0-D, as
was the case in Fig. 14, represents the direction in this plane along T,
which occurs the greatest range of shearing stress. This range
consists of OD = —0.24 py and OC = +40.39 p or a total
range of 0.63 p, which is 61 per cent greater than the range® of |
0.39 po. The range of shearing stress on the octahedral plane is’
from zero to 0.27 pe when the coefficient of friction is assumed to : ®
be zero (Equation [23]). Thus by comparing 0.03 po with 0.27 p, |
it is noted that the tangential {orce caused by a coefficient of fric
tion of /s produces an increase of 122 per cent in range of shear:
ing stress.
SraNrFIcance or CONTACT STRESS IN SHELLING FAILURES OF stressc
RAILROAD RAILS forceg
Many examples involving the stresses described in the fore , oon abi
going sections could be given to illustrate the relationship o , ail ll;e
these stresses with failure, such as pitting failures, bearing race igr~ o
gear teeth, rolls for rolling steel or other metals, and the like ! ,eIfﬁ
One such example, namely, the wheel of a locomotive rolling o portaj

the rail of a railroad, is chosen for showing the relation of con
tact stresses with failure of the rail,

Tn Fig. 16 are shown the forces of a locomotive wheel on rails o
straight and curved railway. The force P is due to the WEIgh
of the locomotive, F is a frictional force that, on straight rail i
due to the driving or braking forces applied through the whee
For a rail on curved track F also includes frictional forces cau
by wheel slippage because the wheels are rigidly attached to
axle. The force T is the thrust on the outside rail of & curve du
to the centrifugal forces on the train, Both of the forces P and ]
that oceur on curved rail, Fig. 16(b), therefore may be considera
bly larger than on straight rail, Fig. 16(a). )

It might be expected from the foregoing analysis of the for
on the wheels and railway rails that rail failures are more 5eV]
on curved rail, where contact stresses due to both norm
tangential forces occur, than on straight rail. Reports con
in the Proceedings of the American Railway Assocxa,tlon
that this is the case. R. E. Cramer (15) has described se
types of shelly failures of railway rails that frequently oce
curved rail, usually in the outside rail on the curve.. N
these failures are of a progressive fracture typ
of the failure is characterized by inelastic
surface layer on top of the rail head aﬁd
edge in contact with the wheel flange, .
inelastic strains probably are caused by th

8 The reason for omitting the use of distortion:energy,
usually found in discussions of fatigue. failure, is.shown
facts., Distortion energy is a scalar quantxty that 18
to the square of the magnitude of the maximum octahedral she!
stress. Hence the range of distortion-energy will not have iner
corresponding to those shown in Figs. 14 and 15. : !



(b} FORCES ON RAILWAY RAIL FROM LOCOMOTIVE WHEEL ON
CURVED RAML.

Fic. 16 ContacT FORCES ON Rarnway Ramn

resses that occur when the combined normal and tangential
rees act on the rail head. After many applications of such
mbinations of normal and tangential contact loads, cracks in the
il head will form and progress either horizontally or transversely
rboth) across the rail head. Figs. 17 and 18 illustrate two of
se failures of railway rail probably caused by these stresses,
he theoretical stresses, such as given in this paper, are an im-
ortant factor in determining the cause of failure, but in actual
aterials, discontinuities, particularly when they occur at points
of high stress, may have a large influence on failure.

atlway Wheels. The foregoing remarks apply also to shelly
ailures in the rims of wheels used on diesel locomotives. These
heel surfaces are subjected to heavy normal forces due to the
weight of the locomotive and to tangential forces due to the driv-
g torque applied through these wheels.
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