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Abstract

This paper elucidates how predictions in the depth of reasoning model, special cases

of which include the Level-k and Cognitive Hierarchy models are robust to the common

knowledge assumption of level-0 players’ actions in two-player case. A prediction of

the model is said to be p-dominant if level-0 players play a p-dominant action pair in

the prediction. A sufficient condition is provided for a p-dominant prediction being

robust to incomplete information á la Kajii and Morris (1997). Depending on assumed

players’ decision rules, even a p-dominant prediction with p ≥ 1/2 can be robust. A

key mechanism behind this result is the effect of players’ limited depth of reasoning on

their strategic interaction through higher order beliefs, which is implied by Strzalecki

(2010) in the case of Rubinstein’s (1989) email game.
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1 Introduction

Equilibrium analysis is often blamed for its low predictive power. A leading example

is Rubinstein’s (1989) email game. In the email game, players never reach cooperation,

no matter how many confirmations they send, because of a grain of uncertainty in the

information structure. This theoretical prediction is, however, not only intuitively unap-

pealing, but has also rarely been supported by empirical evidence. For instance, Camerer

(2003) reports that in an experimental setting less experienced players tend to choose a

cooperative action when at most 6 or 7 emails are exchanged.

One of the most widely accepted non-equilibrium analyses is the depth of reasoning

model, special cases of which include the Level-k and Cognitive Hierarchy models (e.g.,

Nagel 1995; Stahl and Wilson 1995; Camerer et al. 2004).1 In the depth of reasoning

model, players follow the decision rule under which each player has a non-negative inte-

ger, interpreted as his reasoning level, and believes that other players have strictly lower

reasoning levels than him. For instance, a level-1 player believes that his opponents are

level-0 players with probability 1. A major distinction between the Level-k and the Cog-

nitive Hierarchy models is their way of specifying players’ beliefs about other players’

reasoning levels. In the Level-k model, a player with level k always believes that his op-

ponents have a reasoning level exactly one lower than him; that is, k − 1. On the other

hand, the Cognitive Hierarchy model assumes that players commonly know the population

distribution of reasoning levels (say Poisson distribution), and given his own level, each

player calculates the conditional probability of opponents’ levels induced by the distribu-

tion. Though players’ beliefs are modeled differently, both share the following procedure

to obtain a solution. First, specify level-0 players’ actions and assume that they are com-

mon knowledge. Then their actions work as an anchor for players with higher reasoning

levels, so that, by iterating best responses to that anchor, the actions of higher-level play-

ers are determined inductively. Thus a level-k player knows what action his opponents

will choose as long as their reasoning levels are strictly lower than k, and best responds

to those actions under his belief as if he were the smartest among others.

While the depth of reasoning model obtains more consistent predictions with empiri-

cally observed data than the equilibrium analysis in a certain class of games (e.g., Keynes’

Beauty Contest game; Hide and Seek game), the validity of assumptions made in the

model has been challenged in recent literature.2 In particular, how to identify the level-0

players’ actions has been one of the central issues as the situations to which the depth

of reasoning model is applied become diverse. Most of the existing literature assumes

that level-0 players are näıve or non-strategic, and choose their actions randomly. Let us

1For the comprehensive survey, see Crawford et al. (2012)
2For instance, Agranov et al. (2012) show that individual choices crucially depend on his belief about

other players’ reasoning levels, which necessitates in considering each player’s reasoning level as private

information. This implies that experimental models should carefully specify players’ beliefs about other

players’ reasoning levels.

2



consider a 2/3 guessing game, in which each player chooses one number from 0 to 100

and the player who has chosen the closest number to the 2/3 of the group average wins a

prize. In this game, level-0 players are mostly supposed to choose uniformly randomly (i.e.,

choose 50 on average). While this choice seems natural at first, Burchardi and Penczynski

(2011) identify that approximately one third of the participants were classified as level-0

players and the level-0 actions were not uniformly distributed in this guessing game.3 In

addition, as the complexity of games increases, the specification of level-0 players’ actions

for an outside observer becomes more subtle.4 Crawford and Iriberri (2007) analyze the

auction environment in which players follow the Level-k decision rule, and they allow two

possibilities for level-0 players’ action: Either bid uniformly between the lowest and high-

est possible values or bid their value truthfully. Although these flexible specifications are

effective to obtain robust predictions to the misspecification of level-0 players’ actions,

the need for such robustness inherently cast doubt on the common knowledge assumption

of level-0 players’ actions. That is, it is hard to believe that level-0 players’ actions are

common knowledge among players if the choice of level-0 players’ actions is not so evident

for the outside observer. In fact, Penczynski (2011) experimentally finds that players did

not share the belief on the level-0 actions in the Hide and Seek game.

The purpose of this paper is to investigate how predictions in the depth of reasoning

model depend on the common knowledge assumption of level-0 players’ actions in two-

player case. This question can be analogously understood to the classic question of game

theory: “How sensitive the conclusions of game theory are to the common knowledge of

payoff assumptions.” Hence, we take an approach which examines how those predictions

are robust to incomplete information á la Kajii and Morris (1997). Kajii and Morris (1997)

consider the situation in which an outside analyst knows which game players will play with

high probability but, with small probability, he does not know and the players can play a

totally different game in terms of its payoff structure. Analogously, this paper considers

the situation in which level-0 players’ actions are given as a primitive of games, and the

outside analyst knows which game players will play with high probability; however, with

small probability, players can play a totally different game in terms of its payoff structure

and level-0 players’ actions. In this way, we answer the question: “How sensitive the

predictions of depth of reasoning model are to the common knowledge assumption of

level-0 players’ actions.”

Specifically, we formulate the depth of reasoning model as a complete information

game with depth of reasoning space, in which each player is assigned a reasoning level

and his belief about other players’ reasoning levels satisfies the assumption we explained.

Also, a solution of this game called prediction is the one we described above, and assume

3They find that the average number level-0 players chose was about 65 which is higher than 50. They

explain this by pointing out the salience of 66 in this game.
4Arad and Rubinstein (2011) insist that the level-0 type specification should be intuitively appealing

in games used for studying the Level-k theory.
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that level-0 players’ actions are given as a primitive of this game.5 We fix a prediction of

this game, and say that it is robust to incomplete information if behavior of all reasoning

levels of each player which is close to it constitutes a Bayesian prediction of every nearby

incomplete information game with depth of reasoning space.6 The word “nearby” means

that the sets of players and actions are the same with original complete information game,

and with high probability, each player knows that his payoffs and level-0 players’ actions

are the same. Thus, our robustness concept is different from the robustness of Kajii and

Morris (1997) (henceforth, KM robustness) especially in the solution concept and the way

of perturbation.

Among the sufficient conditions for KM robust equilibria, we focus on the sufficient con-

dition that clarifies a relationship between players’ higher order beliefs and p-dominance.7

An action pair is said to be p-dominant if for both players, the action specified in it con-

stitutes a best response whenever he believes that the other player also chooses the action

specified in it with at least probability p. We say a p-dominant action pair induces a

p-dominant prediction in the depth of reasoning model if level-0 players’ actions are given

by that p-dominant action pair. Kajii and Morris (1997) show that if p < 1/2, then a

p-dominant action pair is KM robust. This paper examines how this sufficient condition

would be changed in the depth of reasoning model. A theoretical motivation underly-

ing this argument stems from the observation that players’ limited depth of reasoning

has a non-negligible effect on their strategic interaction through higher order beliefs. To

the best of our knowledge, Strzalecki (2010) is the first who formulates a game theoretic

model which includes the Level-k and Cognitive Hierarchy models as special cases.8 He

introduces a “cognitive type space” into a complete information game in which each cog-

nitive type assigns a reasoning level to each player and requires him to believe others have

cognitive types which give them strictly lower reasoning levels than him.9 He analyzes

the email game with the cognitive type space, and shows that there exists a (cognitive)

equilibrium in which both players choose cooperation after exchanging a certain number

of emails, which cannot be attained without players’ limited depth of reasoning.

To obtain a sufficient condition for robust predictions, this paper takes the following

steps. Take any p-dominant prediction s∗ and the p-dominant action pair a∗ which induces

5In this solution, Level-0 players’ actions are common knowledge and higher level players iterate his

best response to that anchor under his belief about other players’ reasoning levels.
6As we will define later, Bayesian prediction is a natural incomplete information extension of prediction

in complete information setting.
7Kajii and Morris (1997) also show that if a complete information game has a unique correlated equi-

librium, then that equilibrium is KM robust. Ui (2001), for instance, shows that the Nash equilibrium

which maximizes the potential of the game is KM robust.
8In relation to our paper, Kneeland (2012) analyzes the global game under limited depth of reasoning,

and shows that her model can explain the anomalies in experiments reported by Heinemann (2004), for

instance.
9Strzalecki’s cognitive type space is more general than our depth of reasoning space in the sense that

his model allows players with the same reasoning level to have different beliefs about other players’ levels.
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s∗. Construct events (E(i,ki))
ki
i=1,2 such that for player i with level ki, a

∗
i is a best response

at any states not in E(i,ki). By using the known result in Oyama and Tercieux (2012), we

can provide an upper bound for the ex ante probability of E(i,ki), which is uniform to ki

for any i = 1, 2. Since this upper bound can be arbitrarily small as long as the degree of

incomplete information perturbation is small, we can conclude that s∗ is robust. From the

fact that assigning a certain condition on players’ decision rules slows down the increase of

E(i,ki) in ki, our main theorem shows that even a p-dominant prediction with p ≥ 1/2 can

be robust. This result also implies that the Level-k model has the smallest set of robust

equilibria and the Cognitive Hierarchy model has the largest with respect to p-dominance,

since the size of the set of robust predictions depends on which decision rule we choose.

Thus, we now know that these two prominent models are quite different with respect to

the set of robust equilibria.

The rest of the paper is organized as follows. In Section 2, we formulate the framework.

Section 3 introduces two preliminary concepts, p-dominance and p-belief. Section 4 derives

a sufficient condition for a p-dominant prediction being robust, and Section 5 concludes.

2 Framework

2.1 Complete Information Game with Depth of Reasoning Space

In this section, we formulate the depth of reasoning model as a complete information

game with depth of reasoning space (henceforth, DR space), which is a special case of

the cognitive type space introduced in Strzalecki (2010).10 Let us introduce a complete

information game given by (I, (Ai)i∈I , (gi)i∈I), where I is the finite set of players, and for

each player i ∈ I, Ai is the finite set of actions, and gi : A → R is the (bounded) payoff

function where A = ×i∈IAi. Let ∆(A) denote a collection of probability measure on A.

We use similar notational conventions whenever they are clear from the context. Then

our depth of reasoning model is defined as follows.

Definition 1. A complete information game with DR space denoted by G is given by

G = (I, (Ai)i∈I , (Ki)i∈I , (µi)i∈I , (gi)i∈I), where for each i ∈ I, Ki = Z+ is the set of

reasoning levels, and µi : Ki → ∆(K−i) is his belief about other players’ reasoning levels

that satisfies µi(ki)({k−i ∈ K−i : kj < ki for each j ∈ I with j ̸= i}) = 1 whenever ki > 0.

Remark 1. The restriction on (µi(ki))i∈I requires that player i with reasoning level ki

(>0) believes that other players must have strictly lower reasoning levels than ki with

probability 1. This strictness of inequality is crucial since, if not, we need to deal with

such fixed-point arguments as “ I best respond to players who best respond to me.”

Remark 2. In this setting, at least one player has an incorrect perception of the real world;

hence, the following analysis is often referred as a nonequilibrium analysis (Crawford et

al. 2009, 2012; Crawford and Iriberri 2007).
10Cognitive type space with Property 1 in Strzalecki (2010) reduces to our DR space.
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Remark 3. Note that we do not allow payoff functions to depend on reasoning levels. For

this reason, we call ki player i’s reasoning level to distinguish from the type in incomplete

information games.

Remark 4. Our DR space considerably restricts the existence of common prior on rea-

soning levels. We say that µ ∈ ∆(K) is a common prior on K if µi(ki)(k−i) = µ(ki)(k−i)

for all k ∈ K. If there exists a common prior µ, the restriction on (µi(ki))i∈I implies that

µ(k) = 0 for all k ∈ K whenever at least two coordinates of k being strictly larger than 0.

2.2 Solution Concept

Let us denote player i’s (pure) strategy in G by si : Ki → Ai for each i ∈ I. For our

purpose, we assume that actions of level-0 players, (si(0))i∈I , are common knowledge. The

game G is now redefined as G = (I, (Ai)i∈I , (Ki)i∈I , (µi)i∈I , (gi)i∈I , (si(0))i∈I) with slight

abuse of notation.

We propose a solution concept in which level-0 players’ actions are common knowledge

so that their actions work as an anchor for the players with higher reasoning levels. In this

solution, each player determines his action by the following inductive algorithm. Level-1

players best respond to level-0 players’ actions which are given exogenously. Level-2 players

best respond to the mixture of level-0 and level-1 players’ actions under his belief on the

likelihood of each level. Actions of players with higher reasoning levels are determined

in the same way. Our solution concept only requires that, given his reasoning level, each

player (except level-0 players) best responds to other players’ strategies under his belief

so that he has no incentive to change his behavior.11

Definition 2. A strategy profile s∗ constitutes a prediction of G if, for any i ∈ I, ki ∈ N,
and ai ∈ Ai,∑

k−i∈K−i

gi(s
∗(ki, k−i))µi(ki)(k−i) ≥

∑
k−i∈K−i

gi(ai, s
∗
−i(k−i))µi(ki)(k−i).

Given (µi)i=1,2, at least one prediction must exists in G, and the uniqueness is ensured

generically in payoffs. This solution concept is the most frequently used one in experi-

mental literature. Two typical depth of reasoning models, the Level-k and the Cognitive

Hierarchy, are translated into our framework as follows.

Example 1. (Level-k Model)

In the Level-k model, each player believes that other players’ reasoning levels are exactly

one lower than his reasoning level. That is, a player with reasoning level ki believes that

others have a reasoning level, ki−1, with probability 1. Formal representation is as follows:

for each i ∈ I and ki ∈ N,

µi(ki)(ki − 1, ki − 1, ..., ki − 1) = 1.
11By construction, players must have mutually inconsistent beliefs in the solution.
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The Level-k prediction is a prediction of G in which all players have the Level-k type belief

described above.

Example 2. (Cognitive Hierarchy Model)

The Cognitive Hierarchy model assumes that each player’s reasoning level is identically

and independently distributed with a common distribution, say, λ ∈ ∆(Z+). Camerer et

al. (2004) assume that λ follows Poisson distribution. Given this λ, each player’s belief is

constructed as follows: for each i ∈ I and ki ∈ N,

µi(ki)(k−i) =
Πj ̸=iλ(kj)

(
∑ki−1

l=0 λ(l))|I|−1

if kj < ki for each j ∈ I with j ̸= i, otherwise µi(ki)(k−i) = 0.

The Cognitive hierarchy prediction is a prediction of G in which all players have the Cog-

nitive Hierarchy type belief described above.

2.3 Embedded Incomplete Information Game with DR Space

We introduce a private information into the complete information game with DR space,

G. An incomplete information game with DR space, U , is given by U = (I, (Ai)i∈I ,
(Ki)i∈I , (µi)i∈I , (ui)i∈I ,Θ, (Πi)i∈I , P, (si(0,Θ))i∈I), where Θ is a countable set of payoff

states, P is a probability measure defined on the σ-field generated by Θ, and for each

player i ∈ I, Πi is the set of information partitions of Θ, and ui : A×Θ → R is the payoff

function. With slight abuse of notation, for each i ∈ I, player i’s (pure) strategy in U is

given by si : Ki × Θ → Ai. Here we also assume that the strategies of level-0 players,

(si(0,Θ))i∈I , are common knowledge in U . Let us assume si and ui are measurable with

respect to Πi for any i ∈ I. We write P (θ) for the probability of the singleton event {θ}
and πi(θ) for the element of Πi containing θ. Furthermore, assume that P (πi(θ)) > 0 for

any θ ∈ Θ and i ∈ I to make the conditional probability well defined. If U satisfies all

the above properties, we say that U embeds G. We write E(G) for the set of incomplete

information games with DR space which embed G. A solution in U is defined as an

incomplete information extension of the prediction of G.

Definition 3. A strategy profile s∗ constitutes a Bayesian prediction of U if, for any

i ∈ I, ki ∈ N, θ ∈ Θ, and ai ∈ Ai,∑
(k−i, θ

′ ) ∈ K−i×πi(θ)

ui(s
∗(k, θ

′
), θ

′
)P (θ

′ | πi(θ))µi(ki)(k−i)

≥
∑

(k−i, θ
′ ) ∈ K−i×πi(θ)

ui(ai, s
∗
−i(k−i, θ

′
), θ

′
)P (θ

′ | πi(θ))µi(ki)(k−i).

2.4 Robustness

We say that a prediction of G is robust to incomplete information if that prediction is

played with high probability in some Bayesian prediction for any U ∈ E(G) whenever U is
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sufficiently close to G. To formally express this notion, let us firstly introduce a “distance”

of two different strategies in U .

Definition 4. Fix k ∈ K. An action distribution for k induced by a strategy profile in

U , s(k,Θ), is given by αk(a) =
∑

θ∈Θ 1s(k,θ)(a)P (θ) for any a ∈ A, where 1s(k,θ)(a) is an

indicator function which takes 1 if a is chosen given θ under s(k,Θ). In particular, we

say an action distribution profile (αk)k∈K is a prediction action distribution profile of U if

there exists a Bayesian prediction s∗ of U such that αk(a) =
∑

θ∈Θ 1s∗(k,θ)(a)P (θ) for any

a ∈ A and k ∈ K.

Then the following measure defines the “distance” between two action distribution profiles,

α and β:

∥ α− β ∥= sup
k∈K

max
a∈A

| αk(a)− βk(a) |

Secondly, a complete information game with DR space G is said to be close to an

incomplete information game with DR space U , if the strategies of level-0 players and

payoff functions under U are equal to those under G with high probability and players know

that. For each incomplete information game U ∈ E(G), write ΩU for a collection of such

payoff states: ΩU ≡ {θ ∈ Θ : si(0, θ
′) = si(0) and ui(a, θ

′) = gi(a) for all a ∈ A, θ′ ∈ πi(θ)

and i ∈ I}. An incomplete information game with DR space, U , is an ε-elaboration of G
if U ∈ E(G) and P (ΩU ) = 1− ε. Let E(G, ε) be the set of all ε-elaborations of G. At last,
we are ready to define the robustness of a prediction to incomplete information.

Definition 5. An action distribution profile α is robust to incomplete information in G
if, given (µi)i∈I , for every δ > 0, there exists a ε̄ > 0 such that every U ∈ E(G) has a

prediction action distribution profile β such that ∥ α− β ∥≤ δ for all ε ≤ ε̄.

3 Preliminaries: p-Dominance and p-Belief

Following Monderer and Samet (1989) and Morris et al. (1995), this section introduces

two concepts, the p-dominance and the p-belief operator. In the following analysis, we

only consider two-player case, that is, I = {1, 2}. Note that, if we use i and j at the same

time, the j means “not i”.

3.1 p-Dominance

We need the concept of the p-dominance to measure the “strength” of each action pair.

Fix a complete information game with DR space G. Let λi ∈ ∆(Aj) for i = 1, 2 and

denote the probability assigned to aj ∈ Aj under λi by λi(aj).

Definition 6. An action pair a∗ ∈ A is said to be p-dominant in G if, for any i = 1, 2,
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ai ∈ Ai, and λi ∈ ∆(Aj) with λi(a
∗
j ) ≥ p, we have∑

aj∈Aj

λi(aj)gi(a
∗
i , aj) ≥

∑
aj∈Aj

λi(aj)gi(ai, aj).
12

Thus, a∗i becomes a best response for player i if he believes that a∗j is played by player j

with at least probability p. Let us say that a prediction, s∗, of G is a p-dominant prediction

if level-0 players’ actions in s∗ constitute a p-dominant action pair. Also, let us say that a

p-dominant action pair a∗ induces a p-dominant prediction s∗, if (s∗1(0), s
∗
2(0)) = (a∗1, a

∗
2).

Clearly, p-dominant action pair is played by any levels of both players in the induced

p-dominant prediction.

3.2 p-Belief Operator

Let Fi denote the σ-algebra generated by Πi for each i = 1, 2, and let F1 ⊕ F2 ≡ {E ⊆
Θ : E = E1 ∪ E2 for some Ei ∈ Fi for each i = 1, 2}. To characterize player’s conditional

belief at given payoff state, let us define the p-belief operator as in Monderer and Samet

(1989).

Definition 7. For any E ∈ F1⊕F2, the p-belief operator for player i is given by Bp
i (E) ≡

{θ ∈ Θ : P (E | πi(θ)) ≥ p}.

Thus, Bp
i (E) is the collection of states in which player i believes the event E with

probability at least p. Following Morris et al. (1995), it is convenient for us to de-

fine Cpi (E) = Bp
i (B

p
j (E)) ∪ E as a contagion operator, and let us inductively define

[Cpi ]
k(E) = Cpi ([C

p
i ]
k−1(E)) for k ≥ 1 with [Cpi ]

0(E) = E, and [Cpi ]
∞(E) =

∪∞
k=1[C

p
i ]
k(E).

Lemma A.4. of Oyama and Tercieux (2012), which is a key to our results, yields an upper

bound of the ex-ante probability of [Cpi ]
k(E).

Lemma A.4. of Oyama and Tercieux (2012). For any p ∈ (0, 1], and any event

E ∈ F1 ⊕F2, we have

P ([Cpi ]
K(E)) ≤ P (E)

2K∑
k=0

(1− p

p

)k
(1)

for all i = 1, 2.13

Note that, if p > 1/2, the right hand side of (1) converges to P (E) · p/(2p− 1) as K → ∞.

12In a complete information game without DR space, each p-dominant action pair constitutes a Nash

equilibrium.
13The original lemma gives an upper bound of P ([Hp

∗ ]
K(E)), where Hp

∗ (E) = Bp
1 (E) ∪ Bp

2 (E) and

[Hp
∗ ]

k(E) = Hp
∗ ([H

p
∗ ]

k−1(E)) for k ≥ 1 with [Hp
∗ ]

0(E) = E. To derive the result here, we use the fact that

[Cp
i ]

K(E) ⊆ [Hp
∗ ]

2K(E). Also, the original lemma allows non-common priors but we do not.
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4 Robust Predictions under Limited Depth of Reasoning

4.1 Motivating Example

To begin with, the following simple example gives us an intuition about how player’s

limited of depth of reasoning relates to the robustness of predictions. Consider a 2 × 2

coordination game. There are two players, and each player chooses one of the two actions,

L or R. The payoffs are given by

L R

L 1− p, 1− p 0, 0

R 0, 0 p, p

For the moment, let us assume p ∈ [1/2, 1). Then playing L is a best response for

each player if he believes that his opponent will also choose L with probability larger

than p. On the other hand, R becomes a best response for each player if he believes

that his opponent will also choose R with probability larger than 1 − p. Hence, this

game has a p-dominant action pair (L,L) and a (1 − p)-dominant action pair (R,R).

Let us consider the following incomplete information game that embeds this game. The

information structure is given by the triple (Θ, (Πi)i=1,2, P ) where Θ = {1, 2, 3, ...} is the

set of states, Π1 = {{1}, {2, 3}, {3, 4}, ...} and Π2 = {{1, 2}, {3, 4}, {5, 6}, ...} are partition

structures for each player, and P is a common prior given by P (n) = ε(1− ε)n−1 for any

n ∈ N. Thus, the posteriors are given by

Π1 1 1
2−ε

1−ε
2−ε

1
2−ε

1−ε
2−ε ...

Θ 1 2 3 4 5 ...

Π2
1

2−ε
1−ε
2−ε

1
2−ε

1−ε
2−ε ...

Table 1: Partitions and posteriors.

Now suppose thatR becomes both players’ strict dominant action in the event E = {1}.
Then R becomes player 2’s unique best response in {1, 2} since he believes that player 1

plays R with at least (interim) probability 1/(2 − ε) > 1 − p. But in turn, R becomes

player 1’s unique best response in {2, 3} since he believes that player 2 plays R with at

least probability 1/(2 − ε) > 1 − p. Continuing this argument yields that playing (R,R)

everywhere is a unique Bayesian equilibrium in this game (Morris et al. 1995). That is,

though (L,L) is a strict Nash equilibrium in the original game, (L,L) is never played in

any Bayesian equilibrium of the embedding incomplete information game once (R,R) is

played. In other words, this complete information game has a ε(2−ε)-elaboration in which

(L,L) is never played in any equilibria. Since ε is arbitrary, we can conclude that (L,L)

is not KM robust.

Next, we introduce the DR space into the original complete information game, and

suppose that level-0 players choose L. Then, any levels of both players choose L in any

predictions of this game. On the other hand, let us introduce the information structure
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as we defined above, and suppose that R is a strictly dominant action for any levels of

both players and level-0 players choose R in E = {1}. Then R becomes a unique best

response for player 2 in {1, 2} since he believes that any levels of player 1 play R with at

least probability 1/(2− ε) > 1− p.

k1 = 2 R R L L L ...

k1 = 1 R R L L L ...

k1 = 0 R L L L L ...

1 2 3 4 5 6 7 8 9 ...

k2 = 0 R L L L ...

k2 = 1 R L L L ...

k2 = 2 R L L ...

Table 2: Level 0, 1, and 2 actions when all levels of both players play R in E.

Consider player 2 with reasoning level 2. In the event {3, 4}, his best response varies

with his belief about player 1’s reasoning level. Unlike the previous analysis, a simple

calculation yields that, if he believes that player 1 will be a level-1 player with probability

strictly smaller than (1−p)(2−ε), choosing L becomes his unique best response. However,

this condition is not enough to prevent the action R from spreading over the entire payoff

states as players’ reasoning levels get higher. This is because player 2 with reasoning level

3 can choose R in {3, 4} if he believes that player 1’s reasoning level will be 1 or 2 with

sufficiently high probability. For this particular type of information structure, Strzalecki

(2010) shows that if both players’ beliefs satisfy Nondivergent beliefs property, which says,

for any strictly increasing sequence (km) ∈ N∞, infm µi(k
m)(km−1 ≤ kj) < (1− p)(2− ε),

then there exists a number N such that any levels of both players choose L for any payoff

state θ ≥ N .14 This result indicates that, depending on the specification of player’s beliefs

about other player’s reasoning level, a p-dominant prediction with p ≥ 1/2 may be robust

to incomplete information.15 The following analysis starts with formalizing our intuition

here for any information structure and derives a sufficient condition for robust predictions

in relation to p-dominance.

4.2 Robustness and p-Dominance

Given a complete information game with DR space G and beliefs (µi)i=1,2, we investigate

the robustness of a p-dominant prediction s∗, where p ∈ [0, 1). Let us denote by a∗ a

p-dominant action pair which induces s∗. Our proof proceeds as follows: Let us define

inductively the events (E(i,ki))
ki
i=1,2 such that a p-dominant action a∗i is a (interim) best

response in Θ\E(i,ki) for player i with level ki. By construction, it is easily shown that, for

14In Appendix A, we further investigate the effect of limited depth of reasoning on so called contagion

and provide a generalized version of this result.
15Trivially, if any levels of both players surely believe his opponent is a level-0 player, a p-dominant

prediction with p ≥ 1/2 is robust.
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any ε-elaboration of the original game, there exists a Bayesian Prediction in which a∗i is

played in Θ \E(i,ki) by player i with level ki. Then we find an upper bound of the ex ante

probability of E(i,ki) using Lemma A.4. of Oyama and Tercieux (2012), which is uniform

with respect to ki. Since that upper bound can be arbitrarily small as long as the degree

of perturbation ε is sufficiently small, we have obtained the robustness of s∗ as desired.

Fix U ∈ E(G, ε) and let E(i,0) = E = Θ \ ΩU for any i = 1, 2. We inductively define

the event E(i,ki) as follows:

E(i,ki) =
{
θ ∈ Θ :

ki−1∑
t=0

µi(ki)(t)P (E(j,t) | πi(θ)) ≥ 1− p
}
∪ E

for any ki ∈ N and i = 1, 2.

Lemma 1. Suppose s∗ is a p-dominant prediction of G and a∗ induces s∗. Then for any

U ∈ E(G, ε), there exists a Bayesian Prediction s′ in which player i with level ki plays a
∗
i

in Θ \ E(i,ki) for any ki ∈ Ki and i = 1, 2.

Proof. Fix U ∈ E(G, ε). Suppose player j follows s′j , that is, player j with level kj plays

a∗j in Θ \ E(j,kj) for any kj ∈ Kj . Take any ki ∈ Ki. If ki = 0, we must have s′i(0, θ) = a∗i
for any θ ∈ ΩU = Θ \ E(i,0) by construction. Suppose ki ≥ 1. Then since a∗ is p-

dominant, a∗i becomes a best response at θ ∈ Θ \ E for player i with level ki if we have∑ki−1
t=0 µi(ki)(t)P (Θ \ E(j,t) | πi(θ)) ≥ p. But then

Θ \ E(i,ki) = {θ ∈ Θ :

ki−1∑
t=0

µi(ki)(t)P (E(j,t) | πi(θ)) < 1− p} \ E

= {θ ∈ Θ :

ki−1∑
t=0

µi(ki)(t)P (Θ \ E(j,t) | πi(θ)) > p} \ E

⊆ {θ ∈ Θ :

ki−1∑
t=0

µi(ki)(t)P (Θ \ E(j,t) | πi(θ)) ≥ p} \ E.

Thus, a∗i is a best response in Θ \ E(i,ki) for player i with level ki. Since ki is arbitrary

and players are symmetric, we have the result.

Our construction of (E(i,ki))
ki
i=1,2 is tight in the sense that there exists a class of complete

information games with DR space such that, for some U ∈ E(G, ε) and any Bayesian

prediction s′ of U , we have s′i(ki, θ) = a∗i if and only if θ ∈ Θ \ E(i,ki) for any ki ∈ Ki and

i = 1, 2. In fact, our leading example with the Level-k type belief falls into this class of

games.

4.3 A Sufficient Condition for Robustness when p < 1/2

This section investigates an upper-bound of (E(i,ki))
ki
i=1,2 through looking at the case

of both players having the Level-k type belief, that is, for each i = 1, 2 and ki ∈ N,

12



µi(ki)(kj) = 1 if kj = ki − 1, otherwise µi(ki)(kj) = 0. It reveals that this specification of

beliefs yields the “worst-case” of robustness in the sense that, if a p-dominant prediction

s∗ is robust when both players have the Level-k type belief, then s∗ is robust for any

beliefs. Observe that when both players have the Level-k type belief, (E(i,ki))
ki
i=1,2 can be

written as

E(i,ki) = {θ ∈ Θ : P (E(j,ki−1) | πi(θ)) ≥ 1− p} ∪ E = B1−p
i (E(j,ki−1)) ∪ E

for all ki ∈ N and i = 1, 2. Let us especially denote this by Ê(i,ki) for all ki ∈ N and

let Ê(i,0) = E(i,0) for any i = 1, 2. The following Lemma 2 states that Ê(i,ki) is an upper

bound of E(i,ki) in the sense of set inclusion.

Lemma 2. For any i = 1, 2 and ki ∈ Ki, E(i,ki) ⊆ Ê(i,ki).

Proof. See Appendix B.

By Lemma 1 and Lemma 2, we know that for any (µi)i=1,2 and U ∈ E(G, ε), there exists

a Bayesian prediction of U such that the upper bound of the ex ante probability of player

i with level ki playing other actions than a∗i is given by P (Ê(i,ki)). Hence, if p < 1/2, the

robustness of a p-dominant prediction follows from Lemma A.4. of Oyama and Tercieux

(2012).

Proposition 1. Suppose s∗ is a p-dominant prediction of G with p < 1/2. Then, for any

beliefs (µi)i=1,2, s
∗ is robust to incomplete information.

Proof. Let a∗ denote a p-dominant action pair which induces s∗. Note that the prediction

action distribution profile α induced by s∗ is given by αk(a) = 1 if a = a∗ and αk(a) = 0

otherwise for any k ∈ K. For notational simplicity, let q = 1 − p. Fix any δ > 0, and

let ε < δ(2q − 1)/2q. Take any U ∈ E(G, ε). By Lemma 2, for any i = 1, 2 and ki ∈ Ki,

E(i,ki) ⊆ Ê(i,ki) ⊆ Ê(i,2ki). Straightforward calculation yields that for any k ∈ Ki and

i = 1, 2, Ê(i,k) = [Cqi ]
k
2 (E) if k is even and Ê(i,k) = Bq

i [C
q
j ]

k−1
2 (E)∪E if k is odd. But then

by applying Lemma A.4. of Oyama and Tercieux (2012), for any i = 1, 2 and ki ∈ Ki,

P (E(i,ki)) ≤ P (Ê(i,2ki)) = P ([Cqi ]
ki(E)) ≤ ε

∑2ki
k=0(

1−q
q )k. Since q > 1/2 and Ê(i,ki) is

increasing in ki, by letting ki → ∞, we have P (E(i,ki)) ≤ εq/(2q−1) < δ/2 for any ki ∈ Ki

and i = 1, 2. Then by Lemma 1, there exists a Bayesian prediction s′ of U such that

P
(
{θ ∈ Θ : (s′1(k1, θ), s

′
2(k2, θ)) ̸= (a∗1, a

∗
2)}

)
≤ P (E(1,k1)) + P (E(2,k2)) < δ for any k ∈ K.

Thus, the prediction action distribution profile β induced by s′ satisfies βk(a
∗) > 1− δ for

any k ∈ K. Therefore, ∥ α− β ∥≤ δ as desired.

4.4 A Sufficient Condition for Robustness

We now know the robustness of a p-dominant prediction whenever p < 1/2. But Propo-

sition 1 does not tell us anything about the robustness of p-dominant prediction with
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p ≥ 1/2, since the inequality in Lemma A.4. of Oyama and Tercieux (2012) becomes use-

less as ki → ∞ if p ≥ 1/2. The following Proposition 2 yields a negative result, that is,

there exists a class of complete information games in which a p-dominant prediction with

p ≥ 1/2 is not robust when both players have the Level-k type belief. As we implied, the

example in Section 4.1 falls into this class.

Proposition 2. If players have the Level-k type belief, then there exists a class of complete

information games with DR space in which a p-dominant prediction cannot be robust if

p ≥ 1/2.

Proof. See Appendix B.

By Proposition 2, we can see that, in a certain class of games, the Level-k type belief

does not allow a p-dominant prediction to be robust if p ≥ 1/2. This observation is natural

since players in the Level-k model increases the number of best response iteration as their

reasoning levels get higher, and then a p-dominant action pair is contagiously played in a

certain class of games (Morris et al. 1995). However, the following Theorem 1 shows that,

under a certain condition on the specification of beliefs about his opponent’s reasoning

level, p-dominant prediction with p ≥ 1/2 can be robust to incomplete information. This

occurs since each player believes that his opponent has sufficiently lower reasoning level

than him and this decreases the size of (E(i,ki))
ki
i=1,2 as Lemma 2 suggests.

Theorem 1. Suppose s∗ is a p-dominant prediction of G with p ∈ [0, 1). Then, if there

exists a n ∈ N such that supk≥2n

∑k−1
t=2n−1 µi(k)(t) < 2(1 − p) for any i = 1, 2, then s∗ is

robust to incomplete information.

Proof. See Appendix B.

Theorem 1 implies that the size of the set of robust predictions varies with how we specify

the players’ beliefs about other players reasoning levels. Since it is easy to verify the

Cognitive Hierarchy type belief satisfies the assumption in Theorem 1 for any p ∈ [0, 1),

Corollary 1 immediately follows.

Corollary 1. If players have the Cognitive Hierarchy type belief, then a p-dominant pre-

diction is robust to incomplete information for any p ∈ [0, 1).

Combining this corollary with the result in Proposition 2, we now know that two prominent

models, the Level-k and the Cognitive Hierarchy, give two contrasting examples with

respect to the size of robust predictions. Finally, let us consider a mixture of the Level-k

and Cognitive Hierarchy type beliefs.

Example 3. (A mixture of the Level-k and Cognitive Hierarchy type beliefs)

Let α ∈ [0, 1] and λ ∈ ∆(Z+) be a fixed and full supported distribution. For any ki ∈ Ki,

define

µi(ki)(kj) =

α+ (1− α)λ(kj) if kj = ki − 1

(1− α)λ(kj) if kj < ki − 1.
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As Strzalecki (2010) argues, it is easy to verify that this belief specification satisfies the

assumption in Theorem 1 if α < 2(1−p). Figure 1 shows the set of p-dominant predictions

which are robust to incomplete information whenever they exist, as α varies.

Figure 1. Set of robust predictions.

5 Conclusion

As a concluding remark, we discuss some future extensions. First, this paper restricts

its attention only to DR space for simplicity. But we believe that the results here can

be extended to the cognitive type space without much difficulty. Second, it is essential

to extend our results to the many player case. Finally, recent papers such as Kets and

Heifetz (2012) consider the type space in which players can do reasoning at most finitely

many times and investigate a direct implication of such restriction on higher order be-

liefs. A relation to papers which take the higher order belief approach should be further

investigated.

Appendix A: Contagion under Limited Depth of Reasoning

This section investigates the effect of players’ limited depth of reasoning on so called conta-

gion by utilizing the techniques in the previous analysis. In the sequel, fix an incomplete

information game with DR space U , where | Θ |= ∞, and |πi| < ∞ for any πi ∈ Πi

and i = 1, 2. We say that an action pair a∗ is strict p-dominant at θ ∈ Θ if, for any

i = 1, 2, ai ∈ Ai, and λi ∈ ∆(Aj) with λi(a
∗
j ) > p, we have

∑
aj∈Aj

λi(aj)ui(a
∗
i , aj , θ) >∑

aj∈Aj
λi(aj)ui(ai, aj , θ).

16 Thus, a∗i becomes a (interim) unique best response for player

i at θ if he believes at θ that a∗j is played by player j with at least probability p. We

say that an action pair a is played contagiously under (µi)i=1,2 if, given (µi)i=1,2, once

a is played by any levels of both players in some finite event E ∈ F1 ⊕ F2, then for any

Bayesian prediction s∗ of U , we have | {θ ∈ Θ : (s∗1(k1, θ), s
∗
2(k2, θ)) = (a1, a2)} |→ ∞ as

k1, k2 → ∞. In incomplete information games without DR space, the belief potential of

event E tells us whether such contagion occurs or not (Morris et al. 1995). The belief

16A strict p-dominant action pair is also a p-dominant action pair by continuity.
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potential of event E is the largest probability p with which, at any states, such argument

that player i believes that player j believes ... the event E holds for any i = 1, 2.

Definition 8. The belief potential of event E is given by σ(E) = mini=1,2 σi(E), where

σi(E) = sup{p ∈ [0, 1] | [Cpi ]∞(E) = Θ}.

The main theorem of Morris et al. (1995) states that, suppose a∗ is strict p-dominant

at any states in U . Then once a∗ is played in some finite event E and if we have p < σ(E),

then a∗ is played at any states in any equilibrium. In contrast, in our setting, we can

show that even if a∗ is played in E and p < σ(E), under a certain condition on (µi)i=1,2,

a∗ cannot be played contagiously. Before stating this result formally, let us introduce the

marginal belief potential of event in order to characterize the process of contagion.

A.1 The Marginal Belief Potential of Event

The belief potential of event is useful to know whether an action pair would be played

contagiously once it is played in E; however, it provides us with little information about

the process of contagion. To see this, consider the following two information structures.

First, recall the information structure given in Section 4.1: Θ = {1, 2, 3, ...}, Π1 =

{{1}, {2, 3}, {3, 4}, ...} and Π2 = {{1, 2}, {3, 4}, {5, 6}, ...}, and P (n) = ε(1 − ε)n−1. Let

E = {1}. Then the belief potential of event E can be calculated as 1/(2 − ε). Next,

consider a slightly different information structure in which all elements but P (3) and P (4)

are defined same as before. Let P (3) = ε(1−ε)2/2 and P (4) = ε(1−ε)3+ε(1−ε)2/2. Table
3 shows the conditional probability P ({n}|{n, n+1}) for each n ∈ N. Since P (3)/(P (3)+

player 1 1 2
3−ε

3−2ε
2ε2−6ε+5

1
2−ε ...

1 2 3 4 5 6 7 ...

player 2 1
2−ε

1
2(2−ε)

1
2−ε ...

Table 3: Partitions and posteriors of the second example

P (4)) = 1/2(2 − ε), the belief potential of event E is now given by 1/2(2 − ε). But the

conditional probability P ({n} | {n, n + 1}) is same for any n ≥ 5 and i = 1, 2. In this

sense, the marginal process of contagion seems to be unchanged between two information

structures for any n ≥ 5. To be more precise, let us introduce the marginal belief potential

defined as follows.

Definition 9. Given event E ∈ F1 ⊕F2 and σi(E), the marginal belief potential of event

E for player i is defined by ξp(i,n)(E) ≡ sup{q ∈ [0, 1] : Bq
i (B

p
j [C

p
i ]
n−1(E)) ∩ [Cpi ]

n(E) ̸= ∅}
for any p ∈ [0, σi(E)], n ∈ N, and i = 1, 2. For our later use, let ξpi (E) = supn ξ

p
(i,n)(E).

Remark 5. ξp(i,n)(E) is well defined since p ∈ {q ∈ [0, 1] : Bq
i (B

p
j [C

p
i ]
n−1(E))∩ [Cpi ]

n ̸= ∅}
for any p ∈ [0, σi(E)], n ∈ N, and i = 1, 2.
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Remark 6. ξp(i,n)(E) ≥ σi(E) holds for any p ∈ [0, σi(E)] and i = 1, 2.

In the first example, we have ξp(i,n)(E) = 1/(2 − ε) for any p ∈ [0, 1/(2 − ε)], n ∈ N, and
i = 1, 2. On the other hand, ξp(1,1)(E) = 2/(3 − ε), ξp(1,2)(E) = (3 − 2ε)/(2ε2 − 6ε + 5),

ξp(1,3)(E) = 1/(2− ε), ... , and ξp(2,1)(E) = 1/(2− ε), ξp(2,2)(E) = 1/2(2− ε), and ξp(2,3)(E) =

1/(2 − ε), ... for any p ∈ [0, 1/2(2 − ε)] in the second example. Thus, the marginal

belief potential yields more detailed information about the generating process of the belief

hierarchies.

A.2 Contagion under Limited Depth of Reasoning

Consider an incomplete information game with DR space U such that, at any θ ∈ Θ, a∗ is

strict p-dominant and ā is strict (1 − p)-dominant. Suppose ā is played by any levels of

both players in some finite event E ∈ F1 ⊕ F2. The following Proposition 3 shows that,

even if p < σ(E), a∗ cannot be played contagiously provided that level-0 players play ā in

Θ \E and player’s belief about other player’s reasoning level satisfies a certain condition.

Our proof proceeds as follows: Let E(i,0) = E for any i = 1, 2 and define inductively

E(i,ki) = {θ ∈ Θ :
∑ki−1

t=0 µi(ki)(t)P (E(j,t) | πi(θ)) ≥ p} ∪ E. Note that in this setting, for

player i with level ki, āi is a unique (interim) best response in Θ \ E(i,ki). We show that

under a certain condition on players’ decision rules, the event E(i,ki) stops increasing at

some ki = k for any i = 1, 2. Then in any Bayesian Prediction of U , other actions than āi
is played at at most finitely many states.

Proposition 3. Suppose p ∈ (0, σ(E)] and si(0, θ) = āi for any θ ∈ Θ \ E and i = 1, 2.

If, for any i = 1, 2, there exists a n ∈ N such that
∑k−1

t=2n−1 µi(k)(t) < p/ξpi (E) for any

k ≥ 2n, then a∗ cannot be played contagiously under (µi)i=1,2.

Proof. See Section A.4.

Remark 7. For a mixture of the Level-k and Cognitive Hierarchy type beliefs, this as-

sumption is satisfied as long as α < p/ξpi (E).

A.3 Application: Rubinstein’s (1989) Email Game

Consider a version of email game as in Strzalecki (2010). Facing an enemy, each player

must choose an action either Attack or Not Attack, and there are two possibilities: the

enemy is strong or weak. For each case, a payoff matrix is given by

Attack Not Attack

Attack -2, -2 -2, 0

Not Attack 0, -2 0, 0

(a) When enemy is strong

Attack Not Attack

Attack 1, 1 -2, 0

Not Attack 0, -2 0, 0

(b) When enemy is weak

Table 4: Payoffs in the email game.
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The information structure is specified as follows: The enemy is strong or weak equally

likely. Only player 1 knows the strength of his enemy and send an email to let player 2

know whether the enemy is strong or not. If each player gets an email, he/she will send a

confirmation. But each email gets lost with small probability, say ε > 0, and he/she can

not distinguish whether his/her email did not reach the other player or the other player’s

email has not delivered. Thus, their information partitions and posteriors are given by

Π1 1 1
2−ε

1−ε
2−ε

1
2−ε

1−ε
2−ε ...

Θ (0, 0) (1, 0) (1, 1) (2, 1) (2, 2) ...

Π2
1

1+ε
ε

1+ε
1

2−ε
1−ε
2−ε ...

Table 5: Partitions and posteriors of the email game.

Note that choosing Not Attack is dominant for player 1 if the enemy is strong, and (Not

Attack, Not Attack) is a 1/3-dominant action pair if the enemy is weak. Since the belief

potential of event {(0, 0)} is 1/(2 − ε), Not Attack is played by both players no matter

how many emails they exchange in any equilibrium of this game (Rubinstein 1989). Let

us introduce DR space into this game, and assume that level-0 players choose Attack at

any states other than (0, 0).17 We show that, under a certain condition on player’s belief,

there exists a number N such that after receiving N messages, any levels of both players

start choosing Attack. Before stating this result, we need to provide the following lemma.

Lemma 3. Take any constant M (> 0). For any i = 1, 2, there exists a n ∈ N such that∑k−1
t=2n−1 µi(k)(t) < M for any k ≥ 2n if and only if inf(m) µi(k

m)({kj ≥ km−1}) < M for

any strictly increasing sequence (km) ∈ N∞

Proof. See Section A.4.

Corollary 2. (Theorem 4 in Strzalecki 2010)

If inf(m) µi(k
m)(km−1 ≤ kj) < (2−ε)/3 for any strictly increasing sequence (km) ∈ N∞ and

i = 1, 2, there exists a number of messages, say N , such that after receiving N messages

all levels of both players choose Attack.

Proof. Define the event E = {(0, 0)}. Then we have (1) σ(E) = 1/(2− ε); (2) Not Attack

is 1/3-dominant; (3) ξ
1/3
1 (E) = ξ

1/3
2 (E) = 1/(2 − ε). Then by Lemma 3 and Proposition

3, there exists a T ∈ N such that E(i,ki) ⊆ Ê(i,T ) for any ki ∈ Ki and i = 1, 2. That is,

there exists a number of messages, say Ni, such that after receiving Ni messages player

i chooses Attack for any ki ∈ Ki. Therefore, letting N = max{N1, N2} yields that after

receiving N messages any levels of both players choose Attack.

17Same result follows if we assume level-0 players choose Attack after receiving a certain number of

messages.
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A.4 Remaining Proofs of Appendix A

Proof of Proposition 3

Proof. Let E(i,0) = E for any i = 1, 2. Construct the events (E(i,ki))
ki
i=1,2 as we mentioned.

Then, for any player i = 1, 2 with level ki, playing āi is his unique best response for any

θ ∈ Θ \ E(i,ki). Thus it suffices to show that there exists some finite event F such that

E(i,ki) ⊆ F for any ki ∈ Ki and i = 1, 2. Recall that Ê(i,2n−1) = Bp
i ([C

p
j ]
n−1(E) ∪ E and

Ê(i,2n) = [Cpi ]
n(E) for any n ∈ N and i = 1, 2. Note that [Cpi ]

n(E) is finite for any n ∈ Z+

and i = 1, 2 by our assumption, so that Ê(i,ki) < ∞ for any ki ∈ Ki and i = 1, 2. Since

p ≤ σ(E), Ê(i,ki) is strictly increasing in ki for all ki ∈ Ki and i = 1, 2.

Claim 1: For any i = 1, 2, there exists a Ki ∈ N such that, for all N ≥ Ki, we have

P (Ê(j,2n−2) | πi(θ)) = 0 for any θ ∈ Ê(i,2N) \ Ê(i,2N−1).

∵) Suppose not. Then ∃i ∈ {1, 2}, ∀Ki ∈ N, ∃N ≥ Ki such that P (Ê(j,2n−2) | πi(θN )) > 0

for some θN ∈ Ê(i,2N) \ Ê(i,2N−1). Define inductively N1 = min{N ≥ 1 : P (Ê(j,2n−2) |
πi(θN )) > 0 for some θN ∈ Ê(i,2N) \ Ê(i,2N−1)}, N2 = min{N ≥ N1 + 1 : P (Ê(j,2n−2) |
πi(θN )) > 0 for some θN ∈ Ê(i,2N)\Ê(i,2N−1)},... This infinite sequence (Nm) is well defined

by our assumption, and Nm ̸= Nl if m ̸= l by construction. This implies that θNm ̸= θNl

and πi(θNm)∩πi(θNl
) = ∅ for any θNm ∈ Ê(i,2Nm)\Ê(i,2Nm−1) and θNl

∈ Ê(i,2Nl)\Ê(i,2Nl−1)

with m ̸= l. But then, since P (Ê(j,2n−2) | πi(θNm)) > 0 for all m ∈ N, we must have

| Ê(j,2n−2) |= ∞. On the other hand, since | E |< ∞ and | πi |< ∞ for all πi ∈ Πi and

i = 1, 2, we have | Ê(j,2n−2) |<∞, contradicting. □

Define K = max{K1,K2}. Then we have, for any i = 1, 2 and N ≥ K, P (Ê(j,2n−2) |
πi(θ)) = 0 for any θ ∈ Ê(i,2N) \ Ê(i,2N−1).

Claim 2: P (Ê(j,2K−1) | πi(θ)) ≤ ξpi (E) for any θ ∈ Ê(i,2K) \ Ê(i,2K−1).

∵) Suppose not. Note that P (Ê(j,2K−1) | πi(θ)) = P (Bp
j [C

p
i ]
K−1(E) | πi(θ)) by definition.

Hence, if we have P (Ê(j,2K−1) | πi(θ)) > ξpi (E) for some θ ∈ Ê(i,2K) \ Ê(i,2K−1), then

P (Bp
j [C

p
i ]
K−1(E) | πi(θ)) > ξpi (E). Thus, there exists a δ > 0 such that P (Bp

j [C
p
i ]
K−1(E) |

πi(θ)) > ξpi (E) + δ. Hence, we have θ ∈ B
ξpi (E)+δ
i (Bp

j [C
p
i ]
K−1(E)) and θ ∈ Ê(i,2K) =

[Cpj ]
K(E). That is, ξp(i,K)(E) ≥ ξpi (E) + δ, contradicting the definition of ξpi (E). □

Take any θ ∈ Ê(i,2K) \ Ê(i,2K−1). Remember that since Ê(i,ki) is increasing in ki and

constitutes an upper bound of E(i,k), we must have P (E(j,k) | πi(θ)) = 0 for any k ≤ 2n−2

by Claim 1. Then, by Claim 1 and 2,

2K−1∑
t=0

µi(2K)(t)P (E(j,t) | πi(θ)) =

2K−1∑
t=2n−1

µi(2K)(t)P (E(j,t) | πi(θ))

≤
2K−1∑
t=2n−1

µi(2K)(t)P (Ê(j,2K−1) | πi(θ))

<
p

ξpi (E)
· ξpi (E) = p.
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Hence, θ /∈ E(i,2K), so that we can conclude E(i,2K) ⊆ Ê(i,2K−1) for i = 1, 2.

Claim 3: E(i,N) ⊆ Ê(i,2K−1) for any N ≥ 2K and i = 1, 2.

∵) We show this by induction. We have just shown this for the case of N = 2K. Assume

that E(i,N) ⊆ Ê(i,2K−1) for any 2K ≤ N ≤ M and i = 1, 2. Suppose, in negation,

that there exists a θ̄ ∈ E(i,M+1) \ Ê(i,2K−1). Observe that, by our induction hypothesis,

θ̄ ∈ E(i,M+1) ⊆ Bq
i (Ê(j,2K−1))∪E = Ê(i,2K). Hence, θ̄ ∈ Ê(i,2K)\Ê(i,2K−1). But then by the

previous argument, we have P (Bq
j [C

q
i ]
K−1(E) | πi(θ̄)) ≤ ξpi (E) and P (E(j,k) | πi(θ̄)) = 0

for any k ≤ 2n− 2. Hence,

M∑
t=0

µi(M + 1)(t)P (E(j,t) | πi(θ̄)) =

M∑
t=2n−1

µi(M + 1)(t)P (E(j,t) | πi(θ̄))

≤
M∑

t=2n−1

µi(M + 1)(t)P (Ê(j,2K−1) | πi(θ̄))

<
p

ξpi (E)
· ξpi (E) = p.

Thus, we have θ̄ /∈ E(i,M+1), a contradiction. □

By Claim 3, we have E(i,ki) ⊆ Ê(i,2K−1) for any ki ∈ Ki and i = 1, 2. Thus, letting

F =
∪
i=1,2 Ê(i,2K−1) yields the desired result.

Proof of Lemma 3

Proof. (If part) To derive a contradiction, suppose, ∀n ∈ N, ∃k ≥ 2n,
∑k−1

t=2n−1 µi(k)(t) ≥
M. Inductively define a sequence (km) ∈ N∞ as follows: k1 = min{k ≥ 2 |

∑k−1
t=1 µi(k)(t) ≥

M}, k2 = min{k ≥ 2k1 |
∑k−1

t=2k1−1 µi(k)(t) ≥M}, k3 = min{k ≥ 2k2 |
∑k−1

t=2k2−1 µi(k)(t) ≥
M}, ... This (km) is well defined by our hypothesis and strictly increasing by its construc-

tion. But then µi(k
m)({kj ≥ km−1}) ≥

∑km−1
t=2k(m−1)−1

µi(k)(t) ≥ M for any m ∈ N,
contradicting.

(Only if part) Suppose ∃n ∈ N such that
∑k−1

t=2n−1 µi(k)(t) < M for any k ≥ 2n. Take

any strictly increasing sequence (km) ∈ N∞. By definition, ∃m′ such that km
′−1 ≥

2n − 1. Hence,
∑km

′−1
t=2n−1 µi(k

m′
)(t) < M , so that

∑km
′−1

t=km′−1 µi(k
m′
)(t) < M . That is,

µi(k
m′
)({kj ≥ km

′−1}) < M .

Appendix B: Omitted Proofs

Proof of Lemma 2

Proof. We show this by induction. First, E(i,0) = Ê(i,0) for any player i = 1, 2 by definition.

Next, suppose that for any i = 1, 2, we have E(i,ki) ⊆ Ê(i,ki) for all 0 ≤ ki ≤ k ∈ N. Then
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since E(j,kj) ⊆ Ê(j,kj) for any 0 ≤ kj ≤ k,

E(i,k+1) =
{
θ ∈ Θ :

k∑
t=0

µi(k + 1)(t)P (E(j,t) | πi(θ)) ≥ 1− p
}
∪ E

⊆
{
θ ∈ Θ :

k∑
t=0

µi(k + 1)(t)P (Ê(j,t) | πi(θ))} ≥ 1− p
}
∪ E

⊆ {θ ∈ Θ : P (Ê(j,k) | πi(θ)) ≥ 1− p} ∪ E

= Ê(i,k+1).

The third inequality follows since Ê(i,ki) is increasing in ki for any i = 1, 2. By our

induction hypothesis the result follows.

Proof of Proposition 2

Proof. Our proof is by construction. Consider the class of games in which there exists a

(1− p)-dominant prediction with p ≥ 1/2, and both players have the Level-k type belief.

For notational simplicity, let q = 1 − p. Let us denote a p-dominant prediction by s∗,

and a q-dominant prediction by s̄. Also, let us denote the corresponding p-dominant

action pair by a∗, and the corresponding q-dominant action pair by ā respectively. Take

any ε′-elaboration U ∈ E(G, ε′) as in the example in Section 4.1.18 By our choice of ε′-

elaboration, the conditional probability P ({n} | {n, n + 1}) = 1/(2 − ε) > 1/2 for any

n ≥ 1. Hence, level k of player 1 plays ā1 in {2n, 2n+1} if level k− 1 of player 2 plays ā2

in {2n−1, 2n}. Thus, the set of states Ē(1,k) in which playing ā1 is a unique best response

for level k of player 1 is given by Ē(1,2k) = Ē(1,2k+1) = {1, 2, ..., 2k + 1} for any k ∈ Ki.

Hence, Ē(1,k) ↑ Θ as k → ∞, so that every prediction action distribution profile β in U
satisfies, infk∈K βk(a

∗) = 0. Since the prediction action distribution profile α induced by

s∗ satisfies αk(a
∗) = 1 for any k ∈ K, we have ∥ α− β ∥= 1, so that s∗ is not robust.

Proof of Theorem 1

Proof. By Proposition 1, it suffices to show the case where p ∈ [1/2, 1). For notational

convenience, let q = 1 − p, then q ∈ (0, 1/2]. Suppose there exists a n ∈ N such that

supk≥2n

∑k−1
t=2n−1 µi(k)(t) < 2(1− p) for any i = 1, 2. Then there exists a ω > 0 such that∑k−1

t=2n−1 µi(k)(t) < (2 − ω)q for any k ≥ 2n. Define ψ = ωq/(4 − ω){1 − (2 − ω)q}, and
σ = 2/(4− ω). It is easy to check that 0 < ψ < 1 always holds, and we have ψ < σ. Take

any δ > 0, and let

ε =
δψ(2σ − 1)

4σ(1 + ψ)
∑2n−2

k=0 (1−qq )k
.

18That is, Θ = {1, 2, 3, ...}, Π1 = {{1}, {2, 3}, {3, 4}, ...} and Π2 = {{1, 2}, {3, 4}, {5, 6}, ...}, and P (n) =

ε(1 − ε)n−1 for any n ∈ N. For any player i = 1, 2, āi is strictly dominant for any levels and level-0 of

player i plays āi in E = {1}. Let ε′ = ε(2− ε).
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Take any U ∈ E(G, ε). We construct a collection of events which gives an upper bound for

the ex-ante probability of (E(i,ki))
ki
i=1,2. First, defineH =

∪
i=1,2{B

ψ
i (Ê(j,2n−2))∪Ê(i,2n−2)}.

Observe that by Lemma A.4. of Oyama and Tercieux (2012), we have

P (H) ≤ 2ε
(
1 +

1

ψ

) 2n−2∑
k=0

(1− q

q

)k
.19

Next, let us inductively define F(1,0) = F(2,0) = H and F(i,k) = Bσ
i (F(j,k−1)) ∪H for any

k ∈ N and i = 1, 2. Straight forward calculation yields that F(i,2n) = [Cσi ]
n(H) for any

n ∈ Z+.

Claim: E(i,2n−2+k) ⊆ F(i,k) for any k ∈ Z+ and i = 1, 2.

∵) We show this by induction. By definition of H, we have E(i,2n−2) ⊆ F(i,0) for any

i = 1, 2. Suppose E(i,2n−2+k) ⊆ F(i,k) for any 0 ≤ k ≤ m and i = 1, 2. We want to

show E(i,2n−1+m) ⊆ F(i,m+1) for any i = 1, 2. Suppose, in negation, that there exists a

θ ∈ E(i,2n−1+m) \ F(i,m+1) for some i = 1, 2. Then we have

2n−2+m∑
t=0

µi(2n− 1 +m)(t)P (E(j,t) | πi(θ))

=

2n−2∑
t=0

µi(2n− 1 +m)(t)P (E(j,t) | πi(θ)) +
2n−2+m∑
t=2n−1

µi(2n− 1 +m)(t)P (E(j,t) | πi(θ))

≤
2n−2∑
t=0

µi(2n− 1 +m)(t)P (Ê(j,2n−2) | πi(θ)) +
2n−2+m∑
t=2n−1

µi(2n− 1 +m)(t)P (F(j,m) | πi(θ))

< [1− (2− ω)q] · ψ + (2− ω)q · σ = q.

The third inequality follows since θ /∈ Bψ
i (Ê(j,2n−2)), θ /∈ Bσ

i (F(j,m)) ⊆ F(i,m+1), and

(F(j,k)) is increasing in k. Hence, θ /∈ E(i,2n−1+m), a contradiction.□

Since F(i,k) is increasing in k and σ > 1/2, the above claim and Lemma A.4. of Oyama

and Tercieux (2012) imply P (E(i,2n−2+k)) ≤ P (F(i,k)) ≤ P (H) ·σ/(2σ− 1) for any k ∈ Z+

and i = 1, 2. But then

P (E(i,ki)) ≤ P (F(i,ki)) <
2σε

2σ − 1

(
1 +

1

ψ

) 2n−2∑
k=0

(1− q

q

)k
=
δ

2

for any ki ∈ Ki and i = 1, 2. By Lemma 1, there exists a Bayesian prediction s′ of U that

satisfies P
(
{θ ∈ Θ | (s′1(k1, θ), s′2(k2, θ)) ̸= (a∗1, a

∗
2)}

)
< δ for any k ∈ K. Therefore, we are

done.
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