
Lecture 9: Neural Network Verification with
Bound Propagation Algorithms (Part II)

Prof. Huan Zhang

huan@huan-zhang.com

ECE598HZ: Advanced Topics in Machine Learning and Formal Methods

Review: NN verification as an optimization problem

z(2)

x1

x2

ẑ1
(1)

ẑ2
(1)

ẑ3
(1)z3

(1)

z2
(1)

z1
(1) ẑ(2)

y=f(x)

∃ x ∈ S ∧ y ≤ 0 ∧ y = f(x)

Negation of the
desired property

Input domain under
consideration

Speed
Limit

Stop

0.9

0.1

MILP and LP

Review: bound propagation with linear bounds (CROWN)

Simple example: linear -> ReLU -> linear

x1

x2

z1

z2

ẑ1

ẑ2

y

Goal: bound y using symbolic linear functions of x
(linear inequalities)

Review: bound propagation with linear bounds (CROWN)

Prerequisite: all pre-activation bounds (can be computed using CROWN by
treating z1 and z2 as the output neuron)

Pre-activation bounds needed for linear bounds
of ReLU or other non-linear functions

Review: bound propagation with linear bounds (CROWN)

Propagation starts from the output y.

Step 1: bound y using linear functions of y (base case): y <= y, y >= y

Step 2: bound y using linear functions of ẑ: simply plugin the definition of the
second linear layer: y = ẑ1 - ẑ2

 y <= ẑ1 - ẑ2, y >= ẑ1 - ẑ2x1

x2

z1

z2

ẑ1

ẑ2

y
Linear layer: simple substitution

Review: bound propagation with linear bounds (CROWN)

Step 3: bound y using linear functions of z: need linear bounds for ReLU
functions, which allows us to replace ẑ with z

 y <= 1· ẑ1 + (-1) · ẑ2
 y >= 1· ẑ1 + (-1) · ẑ2

x1

x2

z1

z2

ẑ1

ẑ2

y

ReLU layer: use linear bound
Check sign of coefficients and take
the lower or upper bound

ẑ=ReLU(z)

z

Review: bound propagation with linear bounds (CROWN)

Step 4: bound y using linear functions of x

x1

x2

z1

z2

ẑ1

ẑ2

y

Linear layer: simple substitution

Review: bound propagation with linear bounds (CROWN)

Step 5: concretize linear bounds

x1

x2

z1

z2

ẑ1

ẑ2

y

How to improve bound propagation

Bound propagation is fast, but what if the bounds are not tight enough?

Goal: use more time to “refine” the bounds. Two techniques:

● Bound optimization (previous lecture)
● Branch and bound (this lecture)

Bound optimization (α-CROWN)

In the previous lecture, we discussed the possibility of making the lower bound of
a ReLU function optimizable. α can be optimization used gradient descent.

Branch and bound

General idea: split (branch) the original problem into easier subproblems; obtain
bounds on each subproblem

Define LB(S) as the lower bound obtained using bound propagation for

All leaf nodes

Branch and bound: why the lower bounds become tighter?

Branch and bound

If LB(Si) > 0, it can be removed from our problem since the property is verified on
this subdomain Si; branch and bound is needed for unverified subdomains only.

List of unverified subproblems

{S}

{S1 , S2}

{S3 , S4}

{S5 , S6}

LB(S2) > 0

LB(S3) > 0

Branch and bound on input

Split each into domain S, typically by

S = {x1 ∈ [-1, 1], x2 ∈ [-1, 1]} =>

S1 = {x1 ∈ [-1, 0], x2 ∈ [-1, 1]}, S2 = {x2 ∈ [0, 1], x2 ∈ [-1, 1]}

Implementation is easy

Does not work well when input dimension is very high (e.g., image inputs)

Branch and bound on ReLU

Implicitly split input domain S by considering a ReLU neuron in two cases: active
and inactive.

ReLU becomes linear in both subproblems

Works best when the number of unstable
neurons is not very large

Branch and bound on ReLU

Implicitly split input domain S by considering a ReLU neuron in two cases: active
and inactive.

S = {x1 ∈ [-1, 1], x2 ∈ [-1, 1]} =>

S1 = {x1 ∈ [-1, 1], x2 ∈ [-1, 1], z(i)
j(x1, x2) ≥ 0},

S2 = {x2 ∈ [-1, 1], x2 ∈ [-1, 1], z(i)
j(x1, x2) ≤ 0}

E.g., for our example

Splitting z1 essentially consider two cases x1 - x2 ≥ 0 and x1 - x2 ≤ 0

z is a function of input x

Let’s go over our example again with split

Prerequisite: all pre-activation bounds

Pre-activation bounds for z1 updated!

Split constraint:

CROWN with neuron split

Let’s look at the lower bound only (since only lower bound is needed)

Step 1: bound y using linear functions of y (base case): y <= y, y >= y

Step 2: bound y using linear functions of ẑ: simply plugin the definition of the
second linear layer: y = ẑ1 - ẑ2

 y >= ẑ1 - ẑ2x1

x2

z1

z2

ẑ1

ẑ2

y
Linear layer: simple substitution

CROWN with neuron split (changed with the split)

Step 3: bound y using linear functions of z: need linear bounds for ReLU
functions, which allows us to replace ẑ with z

 y >= 1· ẑ1 + (-1) · ẑ2

x1

x2

z1

z2

ẑ1

ẑ2

y

ReLU layer: use linear bound
Check sign of coefficients and take
the lower or upper bound

ẑ2

z2

ẑ1

z1

CROWN with neuron split (changed with the split)

Step 4: bound y using linear functions of x

x1

x2

z1

z2

ẑ1

ẑ2

y

Linear layer: simple substitution

CROWN with neuron split (changed with the split)

Step 5: concretize linear bounds

x1

x2

z1

z2

ẑ1

ẑ2

y

Recall that without the split, we have y >= -3
With the split we expect the lower bound to

improve??

What is going wrong with CROWN?

The split constraint is not fully used during the process.

x1

x2

x1

x2

What is going wrong with CROWN?

In the concretization step, we still consider the worst case scenario in the larger
box, rather than the green triangle.

x1

x2

How to address the problem?

Instead we should solve this optimization problem during concretization:

x1

x2

CROWN cannot handle this constraint!

β-CROWN: bound propagation with split constraint

We use Lagrangian multipliers to handle this constraint.

To solve a constrained optimization problem:

We can define Lagrangian with λi ≥ 0:

So the optimization problem can be written as

β-CROWN: bound propagation with split constraint

It is hard to solve directly. But we can then apply weak duality, which gives a lower
bound

It has an intuitive game-theoretic explanation: whoever plays second may have an
advantage, because they know the move of the first player.

Closed form solution exist for the inner minimization
(basically the concretization process without constraints)

β-CROWN with neuron split

Step 3: bound y using linear functions of z: need linear bounds for ReLU
functions, which allows us to replace ẑ with z

 y >= 1· ẑ1 + (-1) · ẑ2

x1

x2

z1

z2

ẑ1

ẑ2

y

ReLU layer: use linear bound
Check sign of coefficients and take
the lower or upper bound

ẑ2

z2

ẑ1

z1

Change in bound propagation: add β for each split constraint

β-CROWN with neuron split

Step 4: bound y using linear functions of x, Now our bound has a parameter β

x1

x2

z1

z2

ẑ1

ẑ2

y

Linear layer: simple substitution

β-CROWN with neuron split

Step 5: concretize linear bounds

Concretization depends on the sign of the coefficients, so we must discuss three
cases:

β-CROWN with neuron split

Step 5: concretize linear bounds

The optimal β to maximize y is 2/3, with objective = -10/3

The optimal β is 4/3, with objective = -8/3

The optimal β is 4/3, with objective = -8/3

Geometric interpretation

x1

x2

No constraint, obj = -6

x1

x2

With constraint, obj = -8/3, improved!

Which dimension/which neuron to branch?

Similar to the backtracking process in DPLL, the selection of which dimension (for
input split) or which neuron (ReLU split) is very important.

Strong branching: try every possible branch and choose the one with actual
largest improvements in lower bound

Heuristic branching: estimate how good a branch is, and choose the
neuron/dimension with highest score.

Example branching heuristic

S = {x1 ∈ [-1, 1], x2 ∈ [-1, 1]} =>

S1 = {x1 ∈ [-1, 0], x2 ∈ [-1, 1]}, S2 = {x2 ∈ [0, 1], x2 ∈ [-1, 1]}

OR

S1 = {x1 ∈[-1, 1] x2 ∈ [-1, 0]}, S2 = {x2 ∈ [-1, 1], x2 ∈ [0, 1]}

We can estimate the impact on lower bound given changes on x1 and x2

Given the CROWN linear bound y>= a1 x1 + a2 x2+c, we branch on dimension i
where |ai| is largest.

Benchmarks: CROWN-family bound propagation algorithms

34

Key enablers: specialized bound propagation solver + GPU acceleration + BaB

Model size: ~5k neurons Integer programming and semidefinite
programming not plotted (~1 day)

Verified images%
(higher is better)

Avg. time (s)
(lower is better)

Upper bound 76.5%

53.0%

Pixel perturbation magnitude:
0.3 for MNIST, 2/255 for CIFAR

1 day -> 1 minute

Theoretical Connections: CROWN vs MIP/LP

35

Linear programming (primal)

Linear programming (dual)

Mixed integer programming

Neural network verification problem

β-CROWN, GCP-CROWN

α-CROWN

CROWN

relaxed

special case

relaxed

[SYZHZ NeurIPS 2020] A Convex Relaxation Barrier to Tight
Robustness Verification of Neural Networks

1000x speedup

Prove:

Simplex algorithm on CPU

Linear bound propagation on GPU

