ECES98HZ: Advanced Topics in Machine Learning and Formal Methods

Lecture 9: Neural Network Verification with
Bound Propagation Algorithms (Part |l)

Prof. Huan Zhang

huan@huan-zhang.com

Review: NN verification as an optimization problem

0.9
T X4
@ 0.1
Mxﬁﬁ
Stop Speed
X Limit

SxesS Ays0 A y=fx) Y =minf(z)

/ \ rcS

i MILP and LP
Input dqmaln .under N&gation of the
consideration

desired property

Review: bound propagation with linear bounds (CROWN)

Simple example: linear -> RelLU -> linear
Ty € [—1,2], 2 € [-2,1]

21 = T1 — T9 Z9 = 21 — X9

y y = ReLU(21) — ReLU(z23)

Goal: bound y using symbolic linear functions of x -7
(linear inequalities)

Review: bound propagation with linear bounds (CROWN)

Prerequisite: all pre-activation bounds (can be computed using CROWN by
treating z, and z, as the output neuron)

r1 € [—1,2], zo € [—2,1] 21 = &1 — T2 29 = 21 — X9

z1 € [—2,4] 2z € [-3,6]

Pre-activation bounds needed for linear bounds
of ReLU or other non-linear functions

Review: bound propagation with linear bounds (CROWN)

Propagation starts from the output y.
Step 1: bound y using linear functions of y (base case). y <=y, y>=y

Step 2: bound y using linear functions of z: simply plugin the definition of the
second linear layer: y=2. -2,

Yy<EZ1-24pY¥ 2= 447,

Linear layer: simple substitution

Review: bound propagation with linear bounds (CROWN)

Step 3: bound y using linear functions of z: need linear bounds for ReLU
functions, which allows us to replace z with z
z=RelLU(z

ReLU layer: use linear bound
Check sign of coefficients and take

the lower or upper bound
Z Z
1 z1 <ReLU(z1) < 22 + %/ y4

Review: bound propagation with linear bounds (CROWN)

Step 4: bound y using linear functions of x
Zl—(Z2—|—2)<y<(21 +)—Zz
21 — L1 — T2
29 = 2.’131 — L9

1 1
1 y—§$1—§$2—2<y<——$1‘|‘ 332—|——

2 Linear layer: simple substitution

Review: bound propagation with linear bounds (CROWN)

Step 5: concretize linear bounds

1 1 4 1 4
35131 §$2 Zgyg §$1—|—§ZE2+§

r1 € [-1,2], z2 € [-2,1]

Yy c :_37 3]

How to improve bound propagation

Bound propagation is fast, but what if the bounds are not tight enough?
Goal: use more time to “refine” the bounds. Two techniques:

e Bound optimization (previous lecture)
e Branch and bound (this lecture)

Bound optimization (a-CROWN)

In the previous lecture, we discussed the possibility of making the lower bound of
a RelLU function optimizable. a can be optimization used gradient descent.

-

/ |
z1 <ReLU(z) <

i

Z9 < ReLU 252

Zdaz (0<a<1l)

wlm oolm

4
1ty
2 + 2

Branch and bound

General idea: split (branch) the original problem into easier subproblems; obtain
bounds on each subproblem

Define LB(S) as the lower bound obtained using bound propagation for fgggl f(z)

/ace S LB(S)
€S \a: c Sy S1US =8 min(LB(S1), LB(S2))
reS; xcS, S3US USy =85 min(LB(S3), LB(S:), LB(S2))

All leaf nodes

Branch and bound: why the lower bounds become tighter?

Af(x)

x €S x € 59

CEGSg T €Sy

Af(z)

S1US =S

S3USLUS, =85

Af(z)

—

/

-
-

—>

-—

Sy

LB(S)

min(LB(S1), LB(S2))

min(LB(S3), LB(S4), LB(S2))

Branch and bound

If LB(S,) > O, it can be removed from our problem since the property is verified on

this subdomain S;; branch and bound is needed for unverified subdomains only.

List of unverified subproblems

/g;e S {S}

AN (s, 8y

r €S x € Sy 1 SX
LB(S,) >0 {S&’ 84}

T € 53 T € S4
LB(S,) > 0

x €Sy x € Sg {85,86}

Branch and bound on input

Af(=)

Af(z)

Split each into domain S, typically by

S={x, € [1,1],x, € [-1, 1]}
S, ={x, € [-1,0],x, € [-1,1]}, S, = {x, € [0, 1], x, € [-1, 1]}

Implementation is easy

=>

Af(z)

Does not work well when input dimension is very high (e.g., image inputs)

Branch and bound on RelLU

Implicitly split input domain S by considering a ReLU neuron in two cases: active
and inactive.

RelLU becomes linear in both subproblems

5 Works best when the number of unstable
. neurons is not very large

Branch and bound on RelLU

Implicitly split input domain S by considering a ReLU neuron in two cases: active
and inactive.

S={x, € [-1,1,x, € [-1,1} =>

S, ={x, €[-1,1],x, € [1,1], 2% (x,, x,) = 0},
1= % € EL L X, € 1] 25, %) 2 03 z is a function of input x

82 = {X2 € [_11 1]1 X, € [_1a 1]a Z(i)j(x1’ X2) = O}
E.g., for our example z; € [—1,2], z2 € [-2,1] 21 = T1 — T2

Splitting z, essentially consider two cases x, - x, 20 and x,-x,<0

Let’'s go over our example again with split

Prerequisite: all pre-activation bounds

zr1 € [—1,2], 3 € [—2,1] 21 = X1 — X2 Z9 = 21 — X9

Split constraint: z1 <0

2 € [—@ 2 € [~3,6]

Pre-activation bounds for z, updated!

CROWN with neuron split

Let’s look at the lower bound only (since only lower bound is needed)
Step 1: bound y using linear functions of y (base case): y <=y, y >=y

Step 2: bound y using linear functions of z: simply plugin the definition of the
second linear layer: y=2. -2,

y>=2,-4,

Linear layer: simple substitution

CROWN with neuron split (changed with the split)

Step 3: bound y using linear functions of z: need linear bounds for ReLU Z.

functions, which allows us to replace z with z

RelLU layer: use linear bound y>=1-2+(1) -2
Check sign of coefficients and take
the lower or upper bound 0 < ReLU(z;) < 0

Zy 2 2 < ReLU(z) < 225 +2

N>

CROWN with neuron split (changed with the split)

Step 4: bound y using linear functions of x

2

3Z2—2

Yy > —
21 — L1 — T2
22:2.’131—$2

y y> —3T1 4 23y — 2

2 Linear layer: simple substitution

CROWN with neuron split (changed with the split)

Step 5: concretize linear bounds

y> %14— .’132—2

r1 € [-1,2], z2 € [-2,1]

X

Y y > —6

N
N>

X Recall that without the split, we have y >= -3
With the split we expect the lower bound to
improve??

What is going wrong with CROWN?

The split constraint is not fully used during the process.

21<0 = x1 —292 <0

r1 —x2 <0

z1 € [—1,2], 2 € [-2,1]

What is going wrong with CROWN?

In the concretization step, we still consider the worst case scenario in the larger
box, rather than the green triangle.

yZ—%$1—|—%$2—2

21 € [-1,2], 25 € [~2,1] -z <0 |

How to address the problem?

Instead we should solve this optimization problem during concretization:

) 4 n 2 5
min ——x — X9 —
T1,T2 3 1 3 2 X
r1 — x93 <0 |72
s.t.z1 <0 ' -

r1 € [-1,2], z2 € [-2,1]

CROWN cannot handle this constraint!

B-CROWN: bound propagation with split constraint

We use Lagrangian multipliers to handle this constraint.
To solve a constrained optimization problem:
min fo(z)

such that f;(z) <0 Viel,...,m

We can define Lagrangian with A. 2 O:

L(z,A) = fo(x) + Z Aifi()

So the optimization problem can be written as

min max Lo 2%)

B-CROWN: bound propagation with split constraint

min max Lo 2%)

It is hard to solve directly. But we can then apply weak duality, which gives a lower
bound

max min L(z, \)|< min max LX)

It has an intuitive game-theoretic explanation: whoever plays second may have an
advantage, because they know the move of the first player.

Closed form solution exist for the inner minimization
(basically the concretization process without constraints)

B-CROWN with neuron split

Step 3: bound y using linear functions of z: need linear bounds for ReLU
functions, which allows us to replace z with z

N>

RelU layer: use linear bound y>=1-2,+(1) 2,
Check sign of coefficients and take
the lower or upper bound 0 < ReLU(z;) < 0

2y 4 2z <ReLU(23) < 225 + 2

N>
D

Change in bound propagation: add 3 for each split constraint

B-CROWN with neuron split

Step 4: bound y using linear functions of x, Now our bound has a parameter 8

yZ—%zz—Q—l—le
2] — X1 — L2

Z9 = 201 — X9

X1

y yZ(ﬁ—%)wl—F(%—ﬁ)wz—?

Linear layer: simple substitution

B-CROWN with neuron split

Step 5: concretize linear bounds y > (-’131 @ Bz — 2

ZIZ1€[12] $2€

Concretization depends on the sign of the coefficients, so we must discuss three
cases:

IA A

win O
IA A
M) NI INCU

= T ®

1V

B-CROWN with neuron split

Step 5: concretize linear bounds y > (;131 @ Bz — 2

ZIZ1€[12] $2€

2
0<pf=3 y>(B-4)-2+ (G -B)-(-2)-2
The optimal 3 to maximize y is 2/3, with objective = -10/3
2 4
3SP=3 y>(B-3)2+(3 -5 1-2

The optimal 3 is 4/3, with objective = -8/3
B>z y>(B=5) (D+(5-8)-1-2

The optimal 3 is 4/3, with objective = -8/3

Geometric interpretation

.4 2
min ——x; + —x9 — 2
L1,22 3 3
X2 4 2 2
T, —x9 <0 0 X2 —§$1+§IE2:—§
—%3314—%332:—4 o=
X

No constraint, obj = -6 With constraint, obj = -8/3, improved!

Which dimension/which neuron to branch?
Similar to the backtracking process in DPLL, the selection of which dimension (for
input split) or which neuron (RelLU split) is very important.

Strong branching: try every possible branch and choose the one with actual
largest improvements in lower bound

Heuristic branching: estimate how good a branch is, and choose the
neuron/dimension with highest score.

Example branching heuristic

S={x,€[-1,1,x, € [-1,1]} =>

S,={x, €[1,0,x, € [-1,11},S,={x, € [0, 1], x, € [-1, 1]}

OR

81 - {X1 E[-1a 1] X2 = [-1, O]}’ S2 = {X2 = [-11 1], X, € [Oa 1]}

We can estimate the impact on lower bound given changes on x, and x,

Given the CROWN linear bound y>= a, x, + a, X,+c, we branch on dimension i
where |a| is largest.

Benchmarks: CROWN-family bound propagation algorithms

Verified images% Avg. time (s)
(higher is better) \ ((lower is better) \
Linear Programming
(Salman et al. 2019) 80 Upper bound 76.5% 125
= Semidefinite
Programming 100
(Dathathri et al. 2020) | | 60 53.0%
= Integer Programming =5
(Tieng et al. 2017) .
40 1 day -> 1 minute
CROWN %0
a-CROWN 20 -
p-CROWN I |
k MNIST CNN CIFAR CNN / k MNIST CNN CIFAR CNN /

Integer programming and semidefinite

Model size: ~5k neurons programming not plotted (~1 day)

Key enablers: specialized bound propagation solver + GPU acceleration + BaB

Theoretical Connections: CROWN vs MIP/LP

Prove: Ve S , f(a:) > 0 Neural network verification problem
B-CROWN, GCP-CROWN — Mixed integer programming
M 1000x speedup
relaxed e @ relaxed

Linear programming (primal)

1

1

1
1 1
1 1
1 1
e e e e m - == — 1 ol et R e 1 1
,’ \\ 1 I
; N \ | .
| 1 1

a-CROWN R — Linear programming (dual)
@ special case i\ Simplex algorithm on CPU ,5
| CROWN |

| - - | [SYZHZ NeurlIPS 2020] A Convex Relaxation Barrier to Tight
'\\ Linear bound propagation on GPU ,:' Robustness Verification of Neural Networks
