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Review: NN verification as an optimization problem
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Review: bound propagation with linear bounds (CROWN)

Simple example: linear -> ReLU -> linear
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Goal: bound y using symbolic linear functions of x
(linear inequalities)



Review: bound propagation with linear bounds (CROWN)

Prerequisite: all pre-activation bounds (can be computed using CROWN by 
treating z1 and z2 as the output neuron)

Pre-activation bounds needed for linear bounds
of ReLU or other non-linear functions



Review: bound propagation with linear bounds (CROWN)

Propagation starts from the output y.

Step 1: bound y using linear functions of y (base case): y <= y, y >= y

Step 2: bound y using linear functions of ẑ: simply plugin the definition of the 
second linear layer:  y = ẑ1 - ẑ2

                                                              y <= ẑ1 - ẑ2, y >=  ẑ1 - ẑ2x1
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Linear layer: simple substitution



Review: bound propagation with linear bounds (CROWN)

Step 3: bound y using linear functions of z: need linear bounds for ReLU 
functions, which allows us to replace ẑ with z

                                                                   y <= 1· ẑ1 + (-1) · ẑ2
                                                                   y >= 1· ẑ1 + (-1) · ẑ2
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ReLU layer: use linear bound
Check sign of coefficients and take 
the lower or upper bound

ẑ=ReLU(z)

z



Review: bound propagation with linear bounds (CROWN)

Step 4: bound y using linear functions of x
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Linear layer: simple substitution



Review: bound propagation with linear bounds (CROWN)

Step 5: concretize linear bounds
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How to improve bound propagation

Bound propagation is fast, but what if the bounds are not tight enough?

Goal: use more time to “refine” the bounds. Two techniques:

● Bound optimization (previous lecture)
● Branch and bound (this lecture)



Bound optimization (α-CROWN)

In the previous lecture, we discussed the possibility of making the lower bound of 
a ReLU function optimizable. α can be optimization used gradient descent.



Branch and bound

General idea: split (branch) the original problem into easier subproblems; obtain 
bounds on each subproblem

Define LB(S) as the lower bound obtained using bound propagation for 

All leaf nodes



Branch and bound: why the lower bounds become tighter?



Branch and bound

If LB(Si) > 0, it can be removed from our problem since the property is verified on 
this subdomain Si; branch and bound is needed for unverified subdomains only.

List of unverified subproblems 

{S}

{S1 , S2}

{S3 , S4}

{S5 , S6}

LB(S2) > 0

LB(S3) > 0



Branch and bound on input

Split each into domain S, typically by 

S = {x1 ∈ [-1, 1], x2 ∈ [-1, 1]}    =>   

S1 = {x1 ∈ [-1, 0], x2 ∈ [-1, 1]}, S2 = {x2 ∈ [0, 1], x2 ∈ [-1, 1]}

Implementation is easy

Does not work well when input dimension is very high (e.g., image inputs)



Branch and bound on ReLU

Implicitly split input domain S by considering a ReLU neuron in two cases: active 
and inactive.

ReLU becomes linear in both subproblems

Works best when the number of unstable 
neurons is not very large



Branch and bound on ReLU

Implicitly split input domain S by considering a ReLU neuron in two cases: active 
and inactive.

S = {x1 ∈ [-1, 1], x2 ∈ [-1, 1]}    =>   

S1 = {x1 ∈ [-1, 1], x2 ∈ [-1, 1], z(i)
j(x1, x2) ≥ 0}, 

S2 = {x2 ∈ [-1, 1], x2 ∈ [-1, 1], z(i)
j(x1, x2) ≤ 0}

E.g., for our example

Splitting z1 essentially consider two cases x1 - x2 ≥ 0 and x1 - x2 ≤ 0

z is a function of input x



Let’s go over our example again with split

Prerequisite: all pre-activation bounds

Pre-activation bounds for z1 updated!

Split constraint:



CROWN with neuron split

Let’s look at the lower bound only (since only lower bound is needed)

Step 1: bound y using linear functions of y (base case): y <= y, y >= y

Step 2: bound y using linear functions of ẑ: simply plugin the definition of the 
second linear layer:  y = ẑ1 - ẑ2

                                                              y >= ẑ1 - ẑ2x1
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Linear layer: simple substitution



CROWN with neuron split (changed with the split)

Step 3: bound y using linear functions of z: need linear bounds for ReLU 
functions, which allows us to replace ẑ with z

                                                                   y >= 1· ẑ1 + (-1) · ẑ2
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ReLU layer: use linear bound
Check sign of coefficients and take 
the lower or upper bound
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CROWN with neuron split (changed with the split)

Step 4: bound y using linear functions of x                                                           
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Linear layer: simple substitution



CROWN with neuron split (changed with the split)

Step 5: concretize linear bounds
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Recall that without the split, we have y >= -3
With the split we expect the lower bound to 

improve??



What is going wrong with CROWN?

The split constraint is not fully used during the process.
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What is going wrong with CROWN?

In the concretization step, we still consider the worst case scenario in the larger 
box, rather than the green triangle.
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How to address the problem?

Instead we should solve this optimization problem during concretization:
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CROWN cannot handle this constraint!



β-CROWN: bound propagation with split constraint

We use Lagrangian multipliers to handle this constraint.

To solve a constrained optimization problem:

We can define Lagrangian with λi ≥ 0:

So the optimization problem can be written as 



β-CROWN: bound propagation with split constraint

It is hard to solve directly. But we can then apply weak duality, which gives a lower 
bound

It has an intuitive game-theoretic explanation: whoever plays second may have an 
advantage, because they know the move of the first player.

Closed form solution exist for the inner minimization 
(basically the concretization process without constraints)



β-CROWN with neuron split

Step 3: bound y using linear functions of z: need linear bounds for ReLU 
functions, which allows us to replace ẑ with z

                                                                   y >= 1· ẑ1 + (-1) · ẑ2
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ReLU layer: use linear bound
Check sign of coefficients and take 
the lower or upper bound
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Change in bound propagation: add β for each split constraint



β-CROWN with neuron split

Step 4: bound y using linear functions of x,  Now our bound has a parameter β
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Linear layer: simple substitution



β-CROWN with neuron split

Step 5: concretize linear bounds

Concretization depends on the sign of the coefficients, so we must discuss three 
cases:
                                                            



β-CROWN with neuron split

Step 5: concretize linear bounds

                                                            
The optimal β to maximize y is 2/3, with objective = -10/3

The optimal β is 4/3, with objective = -8/3

The optimal β is 4/3, with objective = -8/3



Geometric interpretation

x1

x2

No constraint, obj = -6 
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With constraint, obj = -8/3, improved! 



Which dimension/which neuron to branch?

Similar to the backtracking process in DPLL, the selection of which dimension (for 
input split) or which neuron (ReLU split) is very important.

Strong branching: try every possible branch and choose the one with actual 
largest improvements in lower bound

Heuristic branching: estimate how good a branch is, and choose the 
neuron/dimension with highest score.



Example branching heuristic

S = {x1 ∈ [-1, 1], x2 ∈ [-1, 1]}    =>   

S1 = {x1 ∈ [-1, 0], x2 ∈ [-1, 1]}, S2 = {x2 ∈ [0, 1], x2 ∈ [-1, 1]}

OR

S1 = {x1 ∈[-1, 1] x2 ∈ [-1, 0]}, S2 = {x2 ∈ [-1, 1], x2 ∈ [0, 1]}

We can estimate the impact on lower bound given changes on x1 and x2

Given the CROWN linear bound y>= a1 x1 + a2 x2+c, we branch on dimension i 
where |ai| is largest.



Benchmarks: CROWN-family bound propagation algorithms

34

Key enablers: specialized bound propagation solver + GPU acceleration + BaB

Model size: ~5k neurons Integer programming and semidefinite 
programming not plotted (~1 day)

Verified images%
(higher is better)

Avg. time (s)
(lower is better)

Upper bound 76.5%

53.0%

Pixel perturbation magnitude:
0.3 for MNIST, 2/255 for CIFAR

1 day -> 1 minute



Theoretical Connections: CROWN vs MIP/LP

35

Linear programming (primal)

Linear programming (dual)

Mixed integer programming

Neural network verification problem

β-CROWN, GCP-CROWN

α-CROWN

CROWN

relaxed

special case

relaxed

[SYZHZ NeurIPS 2020] A Convex Relaxation Barrier to Tight 
Robustness Verification of Neural Networks

1000x speedup

Prove:

Simplex algorithm on CPU

Linear bound propagation on GPU


