Lecture 23: Progress Verification

Huan Zhang huan@huan-zhang.com

Slides adapted from Prof. Sayan Mitra's slides in Fall 2021

Homework and final presentations

HW 3 due **4/27**

HW 4 due 5/11

Final project presentation slides due 4/30, 8 am (hard deadline, since presentations will start at 11 am)

Final project presentations:

Tuesday 11 am - 12:20 pm, ECEB 3015 (lecture time)

Friday 2 pm - 3:30 pm, ECEB 2015

Schedule will be announced by the end of this week. If you cannot present on Friday, please let me and the TA Sanil (schawla7@illinois.edu) know by Thursday (4/25)

Final project report due: 5/11

Visualizing CTL semantics

Progress properties

- Every behavior system *A* will *eventually* reach a goal **goal**
- CTL: AF goal
- Dijkstra: From any state, (possibly >1 tokens) all executions get to a state with 1 token

Invariance/safety

- No behavior of A goes outside of unsafe
- CTL: AG unsafe
- Dijkstra: Starting a state with a 1 token, all executions have 1 token
- Finding a counterexample to safety does <u>not</u> prove progress

Proving termination for automata

- Automaton $\mathcal{A} = (V, \Theta, D)$
- Recall $\boldsymbol{D} \subseteq val(V) \times val(V)$
- Automaton terminates if it does not have any infinite executions
- Definition: A well-founded relation < on a set S is a binary relation < ⊆ S × S such that every subset S' ⊆ S has a least element.
- In other words, there are no infinite decreasing chains of elements $s_0, s_1, ..., with s_{i+1} < s_i$.
- Example: totally order set, e.g., {1, 2, 3, ...} with the usual order
- Example: $S = \mathbb{Z}^+$ a < b iff a divides b and a \neq b
- Example: $S = \{0,1\}^*$ a < b iff a is a proper substring of b
- Example: $S = \{-1, -2, -3, ...\}$, < is the usual order, then < is **not** a well-founded relation

Proving termination for automata

Theorem. Automaton $\mathcal{A} = (V, \Theta, D)$ terminates iff there exists a well-founded relation R such that $D \cap Reach_{\mathcal{A}} \times Reach_{\mathcal{A}} \subseteq R$.

Proof. If there exists R and automaton does not terminate.

Then there exists an infinite sequence of states $s_0, s_1, ..., with s_i D s_{i+1}$. Since these are reachable states, $s_i R s_{i+1}$. This violates the definition of a well-founded relation.

Suppose \mathcal{A} is terminating, we define

 $R = \mathbf{D} \cap Reach_{\mathcal{A}} \times Reach_{\mathcal{A}}$

check that *R* is indeed well-founded (because *D* does not permit infinite sequences)

Ranking functions

Often the well-founded relation is defined in terms of a *ranking* function $f: val(V) \rightarrow \mathbb{N}$ such that for any reachable $v \in val(V)$ and v' such that $(v, v') \in D$, f(v') < f(v)

Here < is a the usual comparison on integers

Instead of \mathbb{N} , the ranking function could use any other range set with a lower bound

Example

2 signature	transitions	8
internal up(d:Nat), down	internal $up(d)$ where $d = 1$	
4	pre $x > 0 \land y > 0$	10
variables	$\mathbf{eff} \ x := \ x \ -1$	
internal x, y : Int	y := y + d	12
	internal down	14
	$\mathbf{pre} \ y > 0$	
	eff $y := y - 1$	16

Example

2 signature	transitions	8
internal up(d:Nat),	internal $up(d)$ where $d = 1$	
4	pre $x > 0 \land y > 0$	10
variables	eff $x := x - 1$	
6 internal x, y : Int	y := y + d	12
	internal down	14
	pre $y > 0$	
	eff $y := y - 1$	16

Consider the ranking function f(x, y) = 2x + y

Check that for any transition $(x, y) \rightarrow (x', y')$ Up(1) 2x' + y' = 2(x - 1) + y + 1 = 2x + y - 1 = f(x, y) - 1 < f(x, y)Down: 2x' + y' = 2x + y - 1 = f(x, y) - 1 < f(x, y)Hence, the automaton terminates

What if d > 1?

Recall Stability

- Time invariant autonomous systems (closed systems, systems without inputs)
- $\dot{x}(t) = f(x(t)), x_0 \in \mathbb{R}^n, t_0 = 0$ (Eq. 1)
- $\xi(t)$ is the solution
- $|\xi(t)|$ norm
- $x^* \in \mathbb{R}^n$ is an **equilibrium point** if $f(x^*) = 0$.
- For analysis we will assume **0** to be an equilibrium point of (1) with out loss of generality

Lyapunov stability

Lyapunov stability: The system (1) is said to be *Lyapunov stable* (at the origin) if for every $\varepsilon > 0$ there exists $\delta_{\varepsilon} > 0$ such that for every if $|\xi(0)| \leq \delta_{\varepsilon}$ then for all $t \geq 0$, $|\xi(t)| \leq \varepsilon$.

Asymptotically stability

The system (1) is said to be **Asymptotically stable** (at the origin) if it is Lyapunov stable and there exists $\delta_2 > 0$ such that for every if $|\xi(0)| \le \delta_2$ then $t \to \infty$, $|\xi(t)| \to 0$.

If the property holds for any δ_2 then **Globally Asymptotically Stable**

Verifying Stability for one dynamical system

Theorem. (Lyapunov) Consider the system (1) with state space $\xi(t) \in \mathbb{R}^n$ and suppose there exists a positive definite, continuously differentiable function $V: \mathbb{R}^n \to \mathbb{R}$. The system is:

- 1. Lyapunov stable if $\dot{V}(\xi(t)) := \frac{\partial V}{\partial x} f(x) \le 0$, for all $x \ne 0$
- 2. Asymptotically stable if $\dot{V}(\xi(t)) < 0$, for all $x \neq 0$

3. It is globally AS if V is also radially unbounded. (V is radially unbounded if $||x|| \to \infty \Rightarrow V(x) \to \infty$)

Defining stability of hybrid systems

- Hybrid automaton: $\mathbf{A} = \langle V, A, D, T \rangle$
 - $V = X \cup \{\ell\}$
- Execution $\alpha = \tau_0 a_1 \tau_1 a_2 \dots$
- Notation $\alpha(t)$: denotes the valuation β . *lstate* where β is the longest prefix with β . ltime = t
- $|\alpha(t)|$: norm of the continuous state X
- **A** is **Lyapunov stable** (at the origin) if for every $\varepsilon > 0$ there exists $\delta_{\varepsilon} > 0$ such that for every if $|\alpha(0)| \le \delta_{\varepsilon}$ then for all $t \ge 0$, $|\alpha(t)| \le \varepsilon$.
- Asymptotically stable if it is Lyapunov stable and there exists $\delta_2 > 0$ such that for every if $|\alpha(0)| \le \delta_2$ then $t \to \infty$, $|\alpha(t)| \to 0$.

Question:Stability Verification

• If each mode is asymptotically stable then is **A** also asymptotically stable?

Question:Stability Verification

- If each mode is asymptotically stable then is **A** also asymptotically stable?
- *No*

Common Lyapunov Function

- If there exists positive definite continuously differentiable function $V: \mathbb{R}^n \to \mathbb{R}$ and a positive definite function $W: \mathbb{R}^n \to \mathbb{R}$ such that for each mode $i, \frac{\partial V}{\partial t} f_i(x) < -W(x)$ for all $x \neq 0$ then V is called a common Lyapunov function for A.
- V is called a common Lyapunov function
- **Theorem.** *A* is globally asymptotically stable if there exists a common Lyapunov function.

Multiple Lyapunov Functions

- In the absence of a common lyapunov function the stability verification has to rely of the discrete transitions.
- The following theorem gives such a stability in terms of *multiple Lyapunov function*.
- **Theorem** [Branicky] If there exists a family of positive definite continuously differentiable **Lyapunov** functions $V_i: \mathbb{R}^n \to \mathbb{R}$ and a positive definite function $W_i: \mathbb{R}^n \to \mathbb{R}$ such that for any execution α and for any time $t_1 t_2$ $\alpha(t_1)$. $\ell = \alpha(t_2)$. $\ell = i$ and for all time $t \in (t_1, t_2)$, $\alpha(t)$. $\ell \neq i$ • $V_i(\alpha(t_2).x) - V_i(\alpha(t_1).x) \leq -W_i(\alpha(t_1).x)$

- Average Dwell Time (ADT) characterizes rate of mode switches
- Definition: H has ADT T if there exists a constant N_0 such that for every execution α , the number of mode switches in α :

 $N(\alpha) \leq N_0 + duration(\alpha)/T$.

- Average Dwell Time (ADT) characterizes rate of mode switches
- Definition: H has ADT T if there exists a constant N₀ such that for every execution α , the number of mode switches in α : N(α) \leq N₀ + duration(α)/T.

N(α): **Theorem** [HM`99] H is asymptotically stable if its modes have a set of Lyapunov functions (μ , λ_0) and ADT(H) > log μ/λ_0 .

Dwell time is long enough so energy can decrease sufficiently in each mode

Remarks about ADT theorem assumptions

- 1. If f_i is globally asymptotically stable, then there exists a Lyapunov function V_i that satisfies $\frac{\partial V_i}{\partial x} \leq -2\lambda_i V_i(x)$ for appropriately chosen $\lambda_i > 0$
- 2. If the set of modes is finite, choose λ_0 independent of *i*
- 3. The other assumption restricts the maximum increase in the value of the current Lyapunov functions over any mode switch, by a factor of μ .
- 4. We will also assume that there exist strictly increasing functions β_1 and β_2 such that $\beta_1(|x|) \le V_i(x) \le \beta_2(|x|)$

Proof sketch

Suppose α is any execution of A.

Let $T = \alpha$. *ltime* and $t_1, ..., t_{N(\alpha)}$ be instants of mode switches in α .

We will find an upper-bound on the value of $V_{\alpha(T).l}(\alpha(T), x)$

Define $W(t) = e^{2\lambda_0 t} V_{\alpha(t).l}(\alpha(t), x)$

$$\begin{split} W \text{ is non-increasing between mode switches} \left[\begin{array}{l} \frac{\partial V_i}{\partial x} \leq -2\lambda_0 V_i(x) \right] \\ \text{That is, } W(t_{i+1}^-) \leq W(t_i^-) \\ W(t_{i+1}) \leq \mu W(t_{i+1}^-) \leq \mu W(t_i) \\ \text{Iterating this } N(\alpha) \text{ times: } W(T) \leq \mu^{N(\alpha)} W(0) \\ e^{2\lambda_0 T} V_{\alpha(T),l}(\alpha(T).x) \leq \mu^{N(\alpha)} V_{\alpha(0),l}(\alpha(0).x) \\ V_{\alpha(T),l}(\alpha(T).x) \leq \mu^{N(\alpha)} e^{-2\lambda_0 T} V_{\alpha(0),l}(\alpha(0).x) = e^{-2\lambda_0 T + N(\alpha)\log\mu} V_{\alpha(0),l}(\alpha(0).x) \\ \text{If } \alpha \text{ has ADT } \tau_a \text{ then, recall, } N(\alpha) \leq N_0 + T/\tau_a \text{ and } V_{\alpha(T),l}(\alpha(T).x) \leq \end{split}$$

 $e^{-2\lambda_0 T + (N_0 + T/\tau_a)\log\mu} V_{\alpha(0),l}(\alpha(0), x) \le C e^{T(-2\lambda_0 + \log\mu/\tau_a)}$

If $\tau_a > \log \mu / 2\lambda_0$ then second term converges to 0 as $T \to \infty$ then from assumption 4 it follows that α converges to 0.

Our goals in this course

Write programs (tools) that prove correctness

• Understand fundamental limits of creating such tools

• Learn models of CPS at different levels of abstractions

• Gain research experience

What we have learned in this course

- Satisifiability problems:
 - SAT (DPLL)
 - SMT (DPLL-T)
 - Neural network verification (CROWN bound propagation, branch-and-bound)
- Computation Tree Logic
 - CTL model checking
- Dynamical systems (reachability & invariance):
 - Linear/nonlinear systems, LTI systems
 - stability verification, Lyapunov functions
- Verification of hybrid automata and timed automata
 - Abstractions
 - Composition
 - Progress Analysis
 - Common/Multiple Lyapunov functions