
Lecture 23: Progress Verification

Huan Zhang
huan@huan-zhang.com

Slides adapted from Prof. Sayan Mitra’s slides in Fall 2021 



Homework and final presentations
HW 3 due 4/27

HW 4 due  5/11

Final project presentation slides due 4/30, 8 am (hard deadline, since presentations will start at 11 am)

Final project presentations: 

Tuesday 11 am - 12:20 pm, ECEB 3015 (lecture time)

Friday 2 pm - 3:30 pm, ECEB 2015

Schedule will be announced by the end of this week. If you cannot present on Friday, please let me and 

the TA Sanil (schawla7@illinois.edu) know by Thursday (4/25)

Final project report due: 5/11



Visualizing CTL semantics
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Path quantifiers
E: Exists some path
A: All paths

Temporal operators
X: Next state
U: Until
F: Eventually
G: Globally (Always)
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Progress properties Invariance/safety

• Every behavior system � will 
eventually reach a goal goal

• CTL: AF goal

• Dijkstra: From any state, (possibly >1 
tokens) all executions get to a state 
with 1 token

• No behavior of A goes outside of 
unsafe

• CTL: AG unsafe

• Dijkstra: Starting a state with a 1 token, 
all executions have 1 token

• Finding a counterexample to safety 
does not prove progress



Proving termination for automata

• Automaton � = (�, Θ,  �)

• Recall � ⊆ 푣��(�) × 푣��(�)

• Automaton terminates if it does not have any infinite executions

• Definition: A well-founded relation < on a set S is a binary relation <   ⊆ �  × � such that every subset �′ ⊆
� has a least element. 

• In other words,  there are no infinite decreasing chains of elements �0, �1, …,  with ��+1 < ��.

• Example: totally order set, e.g., {1, 2, 3, ...} with the usual order

• Example: � = ℤ+     a < b iff a divides b and a ≠ b

• Example: � =  0,1 ∗     a < b iff a is a proper substring of b

• Example: � =  −1,  − 2,  − 3, . . .  , < is the usual order, then < is not a well-founded relation



Proving termination for automata 

Theorem. Automaton � = (�, Θ,  �) terminates iff there exists a well-founded 
relation � such that � ∩ ����ℎ� × ����ℎ� ⊆ �.

Proof. If there exists � and automaton does not terminate. 

Then there exists an infinite sequence of states �0, �1, …,  with �� � ��+1. Since 
these are reachable states, �� � ��+1 . This violates the definition of a well-founded 
relation. 

Suppose � is terminating, we define 

� =  � ∩ ����ℎ� × ����ℎ� 

check that � is indeed well-founded (because � does not permit infinite 
sequences)



Ranking functions

Often the well-founded relation is defined in terms of a ranking 
function �: val(�) → ℕ such that for any reachable � ∈ 푣��(�) and 
 �′ ���ℎ �ℎ�� (�, �′) ∈ �,  �(�′) < �(�)

Here < is a the usual comparison on integers

Instead of ℕ, the ranking function could use any other range set with a 
lower bound



Example



Example

Consider the ranking function �(�, �) = 2� + �

Check that for any transition (�, �) → (�′, �′)
Up(1) 2�′ + �′ = 2(� − 1) + � + 1 = 2� + � − 1 = �(�, �) − 1 < �(�, �)
Down: 2�′ + �′ = 2� + � − 1 = �(�, �) − 1 < �(�, �)
Hence, the automaton terminates

What if d > 1 ?



Recall Stability

• Time invariant autonomous systems (closed systems, systems without 
inputs) 

• �(�) = � �(�) ,  �0 ∈ ℝ�,  �0 = 0             (Eq. 1)
• �(�) is the solution

• |�(�)| norm

• �∗ ∈ ℝ� is an equilibrium point if �(�∗) = 0.
• For analysis we will assume 0 to be an equilibrium point of (1) with 

out loss of generality
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Lyapunov stability

Lyapunov stability: The system (1) is said to be Lyapunov stable (at the 
origin) if for every � > 0 there exists �� > 0 such that for every if 
|�(0)| ≤ �� then for all t ≥ 0,  |�(�)| ≤ �.

��

�
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Asymptotically stability

The system (1) is said to be Asymptotically stable (at the origin) if it is 
Lyapunov stable and there exists �2 > 0 such that for every if |�(0)| ≤ �2 
then t → ∞,  |�(�)| → �.

If the property holds for any �2 then Globally Asymptotically Stable
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Verifying Stability for one dynamical system

Theorem. (Lyapunov) Consider the system (1) with state space �(�) ∈
ℝ� and suppose there exists a positive definite, continuously 
differentiable function �:ℝ� → ℝ. The system is: 

1. Lyapunov stable if � �(�) : = ��
��

�(�) ≤ 0, for all � ≠ 0

2. Asymptotically stable if � �(�) < 0, for all � ≠ 0
3. It is globally AS if V is also radially unbounded. 

(� is radially unbounded if  |�| → ∞ ⇒ �(�) → ∞)



Defining stability of hybrid systems

• Hybrid automaton: � = ⟨�, 퐴,  �, Τ⟩
• � = � ∪  ℓ 

• Execution � = �0�1�1�2…
• Notation �(�): denotes the valuation �. ������ where � is the longest prefix with 

�. ltime = �

• |�(�)|: norm of the continuous state �
• A is Lyapunov stable (at the origin) if for every � > 0 there exists �� > 0 such that 

for every if |�(0)| ≤ �� then for all t ≥ 0,  |�(�)| ≤ �.
• Asymptotically stable if it is Lyapunov stable and there exists �2 > 0 such that for 

every if |�(0)| ≤ �2 then t → ∞,  |�(�)| → �.

mode 1
�(�) = �1(�)

mode 2
�(�) = �2(�)

Pre �12 Eff � ≔ �12(�)
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Question:Stability Verification

• If each mode is asymptotically stable 
then is A also asymptotically stable? 

Proof Techniques: Stability
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Question:Stability Verification

• If each mode is asymptotically stable 
then is A also asymptotically stable? 

• No

Proof Techniques: Stability
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Common Lyapunov Function

• If there exists positive definite continuously differentiable function 
�:ℝ� → ℝ and a positive definite function W: ℝ� → ℝ  such that for 
each mode �, ��

��
��(�) <− �(�) for all � ≠ 0 then V is called a 

common Lyapunov function for A. 

• � is called a common Lyapunov function

• Theorem. A is globally asymptotically stable if there exists a common 
Lyapunov function.
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Multiple Lyapunov Functions

• In the absence of a common lyapunov function the stability verification has 
to rely of the discrete transitions. 

• The following theorem gives such a stability in terms of multiple Lyapunov 
function. 

• Theorem [Branicky] If there exists a family of positive definite continuously 
differentiable Lyapunov functions ��: ℝ� → ℝ and a positive definite 
function Wi: ℝ� → ℝ  such that for any execution � and for any time �1 �2   
�(�1). ℓ = �(�2). ℓ = � and for all time � ∈ (�1, �2), �(�). ℓ ≠ �

• ��(�(�2). �) −  ��(�(�1). �) ≤− ��(�(�1). �)
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time

)(tVi

• Average Dwell Time (ADT) characterizes rate of mode switches
• Definition: H has ADT T if there exists a constant N0 such that for every execution 

α, the number of mode switches in α: 

N(α)  N0 + duration(α)/T. 

Stability Under Slow Switching

mode 1 mode 2 mode 2mode 1

[Hespanha and Morse`99]

Proof Techniques: Stability



time

)(tVi

V2  � V1

• Average Dwell Time (ADT) characterizes rate of mode switches
• Definition: H has ADT T if there exists a constant N0 such that for every execution 

α, the number of mode switches in α: N(α)  N0 + duration(α)/T. 

N(α): Theorem [HM`99] H is asymptotically stable if its modes have a set of 
Lyapunov functions (�, �0) and ADT(H) > log �/�0 .

Stability Under Slow Switching

mode 1 mode 2 mode 2mode 1

[Hespanha and Morse`99]

Proof Techniques: Stability

���

��
≤ −2�0��(�)

“Energy” may increase 
when switch but up to 
a factor of �

Dwell time is long enough so energy can decrease 
sufficiently in each mode

Stable in each mode



Remarks about ADT theorem assumptions

1. If �� is globally asymptotically stable, then there exists a Lyapunov 
function �� that satisfies 

���
��

≤ −2����(�) for appropriately chosen 
�� > 0

2. If the set of modes is finite, choose �0 independent of �
3. The other assumption restricts the maximum increase in the value of 

the current Lyapunov functions over any mode switch, by a factor of μ. 

4. We will also assume that there exist strictly increasing functions �1and 
�2 such that �1(|�|) ≤ ��(�) ≤ �2(|�|) 
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Proof sketch
Suppose � is any execution of A. 

Let � = �. ����� and �1,  …, ��(�) be instants of mode switches in �.

We will find an upper-bound on the value of ��(�).�(�(�). �)

Define �(�) = �2�0���(�).�(�(�). �)

� is non-increasing between mode switches    ���
��

≤ −2�0��(�) 

That is, �(��+1
− ) ≤ � ��  

� ��+1 ≤ ��(��+1
− ) ≤ ��(��) 

Iterating this �(�) times: �(�) ≤ ��(�)�(0)

�2�0���(�).�(�(�). �) ≤ ��(�)��(0).�(�(0). �)
��(�).�(�(�). �) ≤ ��(�)�−2�0���(0).�(�(0). �) = �−2�0�+�(�)log ���(0).�(�(0). �)

If � has ADT �� then, recall, �(�) ≤ �0 + �/�� and ��(�).�(�(�). �) ≤
�−2�0�+(�0+�/��)log ���(0).�(�(0). �) ≤ � ��(−2�0+log � /��) 

If �� >log �/2�0 then second term converges to 0 as � → ∞ then from assumption 4 it follows that � 
converges to 0.
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Our goals in this course
Write programs (tools) that prove correctness

• Understand fundamental limits of creating such tools

• Learn models of CPS at different levels of abstractions

• Gain research experience



What we have learned in this course
• Satisifiability problems: 

• SAT (DPLL)
• SMT (DPLL-T)
• Neural network verification (CROWN bound propagation, branch-and-bound)

• Computation Tree Logic
• CTL model checking

• Dynamical systems (reachability & invariance): 
• Linear/nonlinear systems, LTI systems
• stability verification, Lyapunov functions

• Verification of hybrid automata and timed automata
• Abstractions
• Composition
• Progress Analysis
• Common/Multiple Lyapunov functions


