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Homework and final presentations

HW 3 due 4/27
HW 4 due 5/11
Final project presentation slides due 4/30, 8 am (hard deadline, since presentations will start at 11 am)
Final project presentations:
Tuesday 11 am - 12:20 pm, ECEB 3015 (lecture time)
Friday 2 pm - 3:30 pm, ECEB 2015

Schedule will be announced by the end of this week. If you cannot present on Friday, please let me and
the TA Sanil (schawlaZ@illinois.edu) know by Thursday (4/25)

Final project report due: 5/11



Visualizing CTL semantics
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Path quantifiers
E: Exists some path
A: All paths

Temporal operators
X: Next state
U: Until
F: Eventually
G: Globally (Always)
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Progress properties

* Every behavior system  will
eventually reach a goal goal

* CTL: AF goal

 Dijkstra: From any state, (possibly >1
tokens) all executions get to a state
with 1 token

Invariance/safety

* No behavior of A goes outside of
unsafe

e CTL: AG unsafe

* Dijkstra: Starting a state with a 1 token,
all executions have 1 token

* Finding a counterexample to safety
does not prove progress



Proving termination for automata

 Automaton =( ,0, )
* Recall ()x ()

* Automaton terminates if it does not have any infinite executions

» Definition: A well-founded relation < on a set S is a binary relation < X such that every subset
has a least element.

* In other words, there are no infinite decreasing chains of elements g, 1,..., with 1 <

* Example: totally order set, e.g., {1, 2, 3, ...} with the usual order

e« Example: = * a<biffadividesbandazb
e Example: = 0,1 a<biff ais a proper substring of b
e Example: = —1, —2, —3,... ,<istheusual order, then < is not a well-founded relation



Proving termination for automata

Theorem. Automaton = ( ,0, ) terminates iff there exists a well-founded
relation suchthat n X

Proof. If there exists and automaton does not terminate.

Then there exists an infinite sequence of states g, 1,..., with +1. Since
these are reachable states, +1 - This violates the definition of a well-founded
relation.

Suppose is terminating, we define
— N X

check that is indeed well-founded (because does not permit infinite
sequences)



Ranking functions

Often the well-founded relation is defined in terms of a ranking
function :val( ) - such that for any reachable ( )and

(.Y ()< ()

Here < is a the usual comparison on integers

Instead of , the ranking function could use any other range set with a
lower bound



Example
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automaton UpDown
signature
internal up(d:Nat ), down

variables
internal x, y : Int

transitions
internal up(d) where d = 1
prex=0ayv=0
eff x:= x-1
yi=y+d

internal down
prey =0
effl y:= y-1
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automaton UpDown
:  signature
internal up(d:Nat ), down
4
variables
f internal x, y: Int

Example
Consider the ranking function (, ) =2 +

Check that for any transition ( , ) = ( , )
Up(1)2 "+ =2( -1+ +1=2 +

transitions
internal up(d) where d = 1
prex>0Av>0
eff x:= x-1
yi= y+d

internal down

prey =0
eff y = y-I1

—1=(,)-1< (,)

Down:2 + =2 + —1= (,)—-1< (,)

Hence, the automaton terminates

Whatifd>1"7?



Recall Stability

* Time invariant autonomous systems (closed systems, systems without
inputs)

()= (0. o , 0=0 (Eq. 1)
* ()isthe solution

*| ()] norm

. is an equilibrium pointif ( ) =0.

* For analysis we will assume 0 to be an equilibrium point of (1) with
out loss of generality



Lyapunov stability

Lyapunov stability: The system (1) is said to be Lyapunov stable (at the
origin) if for every > 0 there exists = 0O such that for every if

| (0)|]< thenforallt=0,| ()| = .




Asymptotically stability

The system (1) is said to be Asymptotically stable (at the origin) if it is

Lyapunov stable and there exists 5 > 0 such that for everyif | (0)| < >
thent - oo, | ()l -

If the property holds for any > then Globally Asymptotically Stable



Veritying Stability for one dynamical system

Theorem. (Lyapunov) Consider the system (1) with state space ()
and suppose there exists a positive definite, continuously
differentiable function —~ . The system is:

1. Lyapunov stableif () :=— () <0, forall #0
2. Asymptotically stableif () <O, forall #0

3. Itis globally AS if Vis also radially unbounded.
( is radially unboundedif | | - o () - o)



Defining stability of hybrid systems

Pre 12 Eff 12( )

 Hybrid automaton: = , , | T @ @
. = e

* Execution = 5 11 2.
* Notation ( ): denotes the valuation . where is the longest prefix with
time =

| ( )|: norm of the continuous state

* Ais Lyapunov stable (at the origin) if for every > 0O there exists > 0 such that
foreveryif| (0)]< thenforallt=0,| ()| = .

* Asymptotically stable if it is Lyapunov stable and there exists > > 0 such that for
everyif| (0)]< ,thent - oo, | ()] -



Question:Stability Verification

* |f each mode is asymptotically stable
then is A also asymptotically stable?
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Question:Stability Verification

* |f each mode is asymptotically stable
then is A also asymptotically stable?

* No
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Common Lyapunov Function

* If there exists positive definite continuously differentiable function
' —~ and a positive definite function W: -~  such that for

eachmode ,— ( )<— ( )forall # OthenViscalleda
common Lyapunov function for A.

* s called a common Lyapunov function

* Theorem. A is globally asymptotically stable if there exists a common
Lyapunov function.



Multiple Lyapunov Functions

* In the absence of a common lyapunov function the stability verification has
to rely of the discrete transitions.

* The following theorem gives such a stability in terms of multiple Lyapunov
function.

 Theorem [Branicky] If there exists a family of positive definite continuously
differentiable Lyapunov functions -~ and a positive definite
function W;: -~ such that for any execution and foranytime ; »

(1).€= (,).€= andforalltime (4, 2), ().€Z
- ((2-)— (- )= (()



Stability Under Slow Switching

V(1) [Hespanha and Morse 99]
\.
~ I*—-—*’/ | | tirTJE
mode I1 mode 2 | mode 1 | mode 2 |

* Average Dwell Time (ADT) characterizes rate of mode switches

e Definition: H has ADT T if there exists a constant N, such that for every execution
o, the number of mode switches in a:

N(a) < Ny + duration(a)/T.



Stability Under Slow Switching

Hespanha and Morse 99
Stable in each mode Vi‘_(t) [ g ]
—=-2,9 ()
“Energy” may increase x\\\
when switch but up to}/, < V]/ | ~_ - - time
a factor of mode1 mode2  model mode2

Average Dwell Time (ADT) characterizes rate of mode switches

Definition: H has ADT T if there exists a constant N, such that for every execution
a, the number of mode switches in a: N(a) < Ny + duration(a)/T.

N(a): Theorem [HM 99] H is asymptotically stable if its modes have a set of
Lyapunov functions ( , ) and|ADT(H) >log / of.

Dwell time is long enough so energy can decrease
sufficiently in each mode




Remarks about ADT theorem assumptions

If is globally asymptotically stable, then there exists a Lyapunov

function that satisfies — < —2 ( ) for appropriately chosen
>0

If the set of modes is finite, choose ( independent of

3. The other assumption restricts the maximum increase in the value of
the current Lyapunov functions over any mode switch, by a factor of p.

. We will also assume that there exist strictly increasing functions and
osuchthat (] )< ()< o |)



Proof sketch

Suppose is any execution of A.
Let = . and 1, .., () beinstants of mode switches in

We will find an upper-bound on the valueof (y ( (). )
Define () = 20 ()(())

is non-increasing between mode switches —< -2 5 ()
Thatis, ( 1) <

1 S (_+1)S ( )

lterating this ( )times: ()< () (0)

20, (())s O 4 ((.)

O (())s O 20 (). )= 20*Olg 5 ((0). )
If has ADT then,recall, ()< o+ / and (y( (). )=
—2 o +( o+ / )log ). ( (O) )S (=2 otlog 7/ )

If >log /2 thensecondterm convergestoOas - oothen from assumption 4 it follows that
converges to 0.



Our goals in this course

Write programs (tools) that prove correctness
e Understand fundamental limits of creating such tools
* learn models of CPS at different levels of abstractions

* Gain research experience



What we have learned in this course

e Satisifiability problems:
e SAT (DPLL)
 SMT (DPLL-T)
* Neural network verification (CROWN bound propagation, branch-and-bound)

* Computation Tree Logic
* CTL model checking

* Dynamical systems (reachability & invariance):
* Linear/nonlinear systems, LTI systems
e stability verification, Lyapunov functions

* Verification of hybrid automata and timed automata
* Abstractions
* Composition
* Progress Analysis
 Common/Multiple Lyapunov functions



