
Lecture 22: Composition of Hybrid Automata

Huan Zhang
huan@huan-zhang.com

Slides adapted from Prof. Sayan Mitra’s slides in Fall 2021

Homework and final presentations
HW 3 due 4/27

HW 4 due 5/11

Final project presentation slides due 4/30, 8 am (hard deadline, since presentations will start at 11 am)

Final project presentations:

Tuesday 11 am - 12:20 pm, ECEB 3015 (lecture time)

Friday 2 pm - 3:30 pm, ECEB 2015

Schedule will be announced by the end of this week. If you cannot present on Friday, please let me and

the TA Sanil (schawla7@illinois.edu) know by Thursday (4/25)

Final project report due: 5/11

What is composition?
• Complex models and systems are built by

putting together components or modules

• Composition is the mathematical operation
of putting together

• Leads to precise definition of module
interfaces

• What properties are preserved under
composition?

model of a network of oscillators [Huang et. al 14]

Powertrain model from Toyota [Jin et al. 15]

• Give an example of how you’ve built something more complex from
simple components

• Throughout the lecture, think if your notion of composition is
captured by what we define

Outline

• Composition operation
• Input/output interfaces

• I/O automata

• hybrid I/O automata

• Examples

• Properties of composition

Composition of (discrete) automata

• Complex systems are built by “putting together” simpler subsystems

• Recall � = ⟨�, Θ, �, �⟩
• � = �1||�2

• �1, �2 are the component automata and
• � is the composed automaton
• || symbol for the composition operator

Composition: asynchronous modules

a

b

c

�

d

e

f

ℬ
�||ℬ

a d

a e

a f

b d

b e

b f

c d

c e

c f

composition: modules synchronize

a d

a e

a f

b d

b e

b f

c d

c e

c f

a

b

c

�

d

e

f

ℬ

Composition of (discrete) automata

• More generally, some transitions of � and ℬ may synchronize, while others may not
synchronize

• Further, some transitions may be controlled by� which when occurs forces the
corresponding transition of ℬ

• Thus, we will partition the set of actions � of � = ⟨�, Θ, �, �⟩ into
• �: internal (do not synchronize)

• �: output (synchronized and controlled by �)

• �: input (synchronized and controlled by some other automaton)

• � = � ∪ � ∪ �

• This gives rise to I/O automata [Lynch, Tuttle 1996]

Reactivity: Input enabling
• Consider a shared action brakeOn controlled by �1 and listend-to or read

by �2

• Input enabling ensures that when �1 and �2 are composed then �2 can
react to brakeOn

Definition. An input/output automaton is a tuple � = 〈�, Θ, �, �〉 where

• � is a set of names of variables

• Θ ⊆ 푣��(�) is the set of initial states

• � = � ∪ � ∪ � is a set of names of actions

• � ⊆ 푣��(�) × � × 푣��(�) is the set of transitions and � satisfies the input
enabling condition (E1):

E1. For each � ∈ 푣��(�), � ∈ � there exists �′ ∈ 푣��(�) such that �→��′

Controller
�1

Vehicle

�2

푏푟�����
Pre ProxSensorCrit
Eff (do nothing)

푏푟�����
Pre ???
Eff accel := -5

Move
Pre …
Eff …

푏푟�����

E1 ensures that the transition is well defined for every input action at any state

Compatibility IOA
A pair of I/O automata �1 and �2 are
compatible if

�� ∩ �� = ∅ no unintended interactions

�� ∩ �� = ∅ no duplication of authority

Extended to collection of automata in the
natural way

�1

�2
d

e

f

a

b

c

�3

�4

Composition of I/O automaton
Definition. For compatible automata �1 and �2 their

composition �1 || �2 is the structure �= (�, Θ, �, �)
• � = �1 ∪ �2

• Θ = � ∈ 푣��(�)| ∀ � ∈ 1,2 : �⌈�� ∈ Θ�

• � = �1 ∪ �2

• O = �1 ∪ �2

• I = �1 ∪ �2 ∖ �

• (�, �, �′) ∈ � iff for � ∈ 1,2
• � ∈ �� and (�⌈��, �, �′⌈��) ∈ ��

• � ∉ �� �⌈�� = �⌈��

� = � ∪ � ∪ �

Theorem. The class of IO-automata is closed under composition. If �1
and �2 are compatible I/O automata then� = �1||�2 is also an I/O
automaton.

Proof. Only 2 things to check

- (1) Input, output, and internal actions are disjoint---by construction

- (2) � satisfies E1. Consider any state � ∈ 푣��(�1 ∪ �2) and any
input action a ∈ �1 ∪ �2 ∖ � such that a is enabled in �.

- Suppose, w.lo.g. a ∈ �1

- We know by E1 of �1 that there exists ��
′ ∈ 푣��(�1) such that

�⌈�1→� ��
′

- � ∉ �2, �2, �2 (by compatibility)

- Therefore, �→� (��
′ , �⌈�2) is a valid transition of � (by definition of

composition)

Example: Sending process and channel

Automaton Sender(u)

variables internal

 failed:Boolean := F

output send(m:M)

input fail

transitions:

 output send(m)

 pre ~failed

 eff

 input fail

 pre true

 eff failed := T

Loc 1

failed

send(m)
~failed

fail
true

failed := T

Sender
Channel

send(m) receive(m)fail
Receiver

System

Does this automaton satisfy input

enabling condition (E1)?

FIFO channel & Simple Failure Detector

Automaton Channel(M)

 variables internal queue: Queue[M] := {}

 actions input send(m:M)

 output receive(m:M)

 transitions:

 input send(m)

 pre true

 eff queue := append(m, queue)

 output receive(m)

 pre head(queue)=m

 eff queue := queue.tail

Automaton System(M)

 variables queue: Queue[M] := {}, failed: Bool

 actions input fail

 output send(m:M), receive(m:M)

 transitions:

 output send(m)

 pre ~failed

 eff queue := append(m, queue)

 output receive(m)

 pre head(queue)=m
 eff queue := queue.tail

 input fail

 pre true

 eff failed := true

Automaton Sender(u)

variables internal

 failed:Boolean := F

output send(m:M)

input fail

transitions:

 output send(m)

 pre ~failed

 eff

 input fail

 pre true

 eff failed := T

composing hybrid systems

Hybrid IO Automaton
In addition to interaction through shared actions hybrid
input/output automata (HIOA) will allow interaction
through shared variables

Recall a hybrid automaton � = ⟨�, Θ, �, �, �⟩

We will partition the set of variables � of � into

• �: internal or state variables (do not interact)

• �: output variables

• �: input variables

• � = � ∪ � ∪ �

This gives rise to hybrid I/O automata (HIOA) [Lynch,

Segala, Vaandrager 2002]

Plant

�1 = �1(�1, �2)
�1 = �1

Controller

�2 = �(�2, �1)
�2 = �2

�1�2

Reactivity: Input trajectory enabling
Consider a shared variable throttle controlled by �1 and listened-to or read by �2

Input trajectory enabling ensures that when �1 and �2 are composed then �2 can react to any signal

generated by �1

If the trajectories of �2 are defined by ordinary differential equations, then input enabling is guaranteed if

�1 only generates piece-wise continuous signals (throttle)

Definition. An hybrid input/output automaton is a tuple � = 〈�, Θ, �, �, �〉 where

• � = � ∪ � ∪ � is a set of variables

• Θ ⊆ 푣��(�) is the set of initial states

• � = � ∪ � ∪ � is a set of actions

• � ⊆ 푣��(�) × � × 푣��(�) is the set of transitions

• � is a set of trajectories for � closed under prefix, suffix, and concatenation

E1. For each � ∈ 푣��(�), � ∈ � there exists �′ ∈ 푣��(�) such that �→��′

E2. For each � ∈ 푣��(�), � should be able to react to any trajectory � of �.

i.e, ∃ � ∈ � with �. �푠푡�푡� = � such that � ↓ � is a prefix of �, and either (a) � ↓ � = � or (b) � is closed

and some � ∈ � ∪ � is enabled at �. �푠푡�푡�. (the HA cannot restrict its input trajectories)

Controller
�1

Vehicle

�2

푡ℎ푟표푡푡��

Compatibility of hybrid automata
• For the interaction of hybrid

automata �1 and �2 to be well-
defined we need to ensure that
they have the right interfaces

• compatibility conditions

Controller

�1

Vehicle

�2

Output �푐푐�� Input �푐푐��
�푐푐��

푏푟�����
Output 푏푟����� Input 푏푟�����

푝표푠�푡�표�

Compatibility HIOA
A pair of hybrid I/O automata �1 and �2 are compatible if

�� ∩ �� = ∅ no unintended discrete interactions

�� ∩ �� = ∅ no duplication of discrete authority

�� ∩ �� = ∅ no unintended continuous interactions

�� ∩ �� = ∅ no duplication of continuous authority

Extended to collection of automata in the natural way and
captures most common notions of composition in, for
example, Matlab/Simulink

Composition
• For compatible �1 and �2 their composition �1 || �2 is the structure

�= (�, Θ, �, �, �)

• Variables � = � ∪ � ∪ �

• � = �1 ∪ �2, Y = �1 ∪ �2 ,� = �1 ∪ �2 ∖ �

• Θ = � ∈ 푣��(�)| ∀ � ∈ 1,2 : �⌈�� ∈ Θ�

• Actions � = � ∪ � ∪ �
• � = �1 ∪ �2, O = �1 ∪ �2 ,I = �1 ∪ �2 ∖ �,

• (�, �, �′) ∈ � iff for � ∈ 1,2
• � ∈ �� and (�⌈��, �, �′⌈��) ∈ ��

• � ∉ �� �⌈�� = �⌈��

• �: set of trajectories for V
• � ∈ � iff ∀ � ∈ 1,2 , � ↓ �� ∈ �i

�2

�1 = �(�1, �2)

e

f

�3

�4

a1

a1

a1

a1

u2

e

f

u2

Closure under composition?

• Conjecture. The class of HIOA is closed under composition. If �1 and
�2 are compatible HIOA then �1||�2 is also a HIOA.

• Can we ensure that input trajectory enabled condition is satisfied in
the composed automaton?

• No, in general (E2 does not always satisfy)
• See "Hybrid I/O automata",

by Nancy Lynch, Roberto Segala, Frits Vaandrager Plant
Input ��
�1 = ��

output �� = �1

Controller
Input yp

�2 = �� + 1
Output �� = �2

����

Example 2: Periodically Sending Process
Automaton PeriodicSend(u)

variables internal

clock: Reals := 0, z:Reals, failed:Boolean := F

signature output send(m:Reals)

input fail

transitions:

output send(m)

pre clock = u /\ m = z /\ ~failed

eff clock := 0

input fail

pre true

eff failed := T

trajectories:

evolve d(clock) = 1, d(z) = f(z)

invariant failed \/ clock≤u

Loc 1
�(푐�표푐�) = 1
�(�) = �(�)

~failed⇒
풄풍�풄� ≤ �

send(m)
clock = u /\ m = z /\ ~failed

clock := 0

clock:= 0

fail
true

failed := T

Time bounded channel & Simple Failure Detector
Automaton Timeout(u,M)
 variables internal suspected: Boolean := F,

clock: Reals := 0
 signature input receive(m:M)

output timeout
 transitions:
 input receive(m)
 pre true
 eff clock := 0; suspected := false;
 output timeout
 pre ~suspected /\ clock = u
 eff suspected := true
 trajectories:
 evolve d(clock) = 1
 invariant clock ≤ u \/ suspected

Automaton Channel(b,M)
 variables internal queue: Queue[M,Reals] := {}

clock: Reals := 0
 signature input send(m:M)

output receive(m:M)
 transitions:
 input send(m)
 pre true
 eff queue := append(<m, clock+b>, queue)
 output receive(m)
 pre head(queue)[1]=m ∧

head(queue)[2]=clock
 eff queue := queue.tail
 trajectories:
 evolve d(clock) = 1
 invariant ∀<m,d>∈ queue: d ≥ clock

Example 3: Oscillator and pulse generator

pulseGen

Oscillator

pr
e:
�표

�
≥

� �
��

ef
f:

 �
표�

≔
0

Composed automaton
On,Mode

�(�표�) = 1
�(�1) =− �1(�1

2 + 0.9�1 + 0.9) − �2 + 1
�(�2) = �1 − 2�2
�표� ≤ ���

Off,Mode
�(�표�) = 1
�(�1) =− �1(�1

2 + 0.9�1 + 0.9) − �2 + 0
�(�2) = �1 − 2�2
�표� ≤ ����

pr
e:
�표

�
≥

� �
�

ef
f:

 �
표�

≔
0

Cardiac oscillator network models, Grosu et al. CAV, HSCC 2007-2015

Restriction operation on exections

• Sometimes it is useful to restrict our attention to only some subset of variables and
actions in an execution

• Recall the restriction operations �⌈� ��� � ↓ �

• Let � = �0�1�1�2 be an execution fragment of a hybrid automaton with set of variables
� and set of actions �. Let �′ be a set of actions and �′ be a set of variables.

• Restriction of � to (�′, �′), written as �⌈(�′, �′) is the sequence defined inductively as:
• �⌈(�′, �′) = � ↓ �′ if � = �
• � � � ⌈(�′, �′) =

• � ⌈(�′, �′) � (� ↓ �′) if a ∈ �′
• � ⌈(�′, �′) 푐표�푐�푡 (� ↓ �′) if a ∉ �′

• From the definition it follows �. �푠푡�푡� ⌈�′ = �⌈(�′, �′). �푠푡�푡� for any �′, �′

Properties of Compositions
Proposition. Let � = �1||�2. � is an execution fragment of � iff

 �⌈(��, ��), � ∈ 1,2 are both execution fragments of ��.

• Proof of the forward direction. Fix � and i. We prove this by induction on the length of �.

• Base case: � = �. �⌈(��, ��) = � ↓ �� by definition of composition � ↓ �� ∈ ��. So, � ↓ �� ∈ 퐹푟���

• � = �′ � � ⌈(��, ��) and � ∈ �� and by induction hypothesis �′⌈(��, ��) ∈ 퐹푟���. Let �′⌈(��, ��). lstate = 푣. By the definition of
composition: � ↓ �� ∈ ��.

• It remains to show that 푣⌈��→�(� ↓ ��). �푠푡�푡�. Since � ∈ ��, by the definition of composition: �′⌈(��, ��). lstate →�� ↓ ��. �푠푡�푡�

• � = �′ � � ⌈(��, ��) and � ∉ �� and by induction hypothesis �′⌈(��, ��) ∈ 퐸��푐�. Let �′ be the last trajectory in that execution.

• Since � ∉ ��, by the definition of composition:�′. �푠푡�푡� = � ↓ ��. �푠푡�푡� . By concatenation closure of Τ�, it follows that �′푐표�푐�푡 � ↓ �� ∈ Τ�.
Therefore �⌈(��, ��) ∈ 퐸��푐�.

properties of executions of composed automata

• � is an execution iff �⌈(��, ��), � ∈ 1,2 are both executions.

• � is time bounded iff �⌈(��, ��), � ∈ 1,2 are both time bounded.

• � is admissible (infinite duration) iff �⌈(��, ��), � ∈ 1,2 are both admissible.

• � is closed (finite time with final trajectory) iff �⌈(��, ��), � ∈ 1,2 are both closed.

• � is non-Zeno iff �⌈(��, ��), � ∈ 1,2 are both time non-Zeno.

Summary

• Composition operation
• I/O interfaces: actions and variables
• Reactivity/input enabling
• (non) Closure under composition

• Properties of executions preserved under composition

• Inductive invariants

