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Homework and final presentations
HW 3 due 4/27

HW 4 due  5/11

Final project presentation slides due 4/30, 8 am (hard deadline, since presentations will start at 11 am)

Final project presentations: 

Tuesday 11 am - 12:20 pm, ECEB 3015 (lecture time)

Friday 2 pm - 3:30 pm, ECEB 2015

Schedule will be announced by the end of this week. If you cannot present on Friday, please let me and 

the TA Sanil (schawla7@illinois.edu) know by Thursday (4/25)

Final project report due: 5/11



What is composition? 
• Complex models and systems are built by 

putting together components or modules

• Composition is the mathematical operation 
of putting together

• Leads to precise definition of module 
interfaces

• What properties are preserved under 
composition? 

model of a network of oscillators [Huang et. al 14]

Powertrain model from Toyota [Jin et al. 15]



• Give an example of how you’ve built something more complex from 
simple components

• Throughout the lecture, think if your notion of composition is 
captured by what we define



Outline

• Composition operation
• Input/output interfaces

• I/O automata

• hybrid I/O automata

• Examples

• Properties of composition



Composition of (discrete) automata

• Complex systems are built by “putting together” simpler subsystems

• Recall � = ⟨�, Θ, �, �⟩ 
• � =  �1||�2

• �1,  �2 are the component automata and 
• � is the composed automaton
• || symbol for the composition operator



Composition: asynchronous modules
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composition: modules synchronize
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Composition of (discrete) automata

• More generally, some transitions of � and ℬ may synchronize, while others may not 
synchronize

• Further, some transitions may be controlled by� which when occurs forces the 
corresponding transition of ℬ

• Thus, we will partition the set of actions � of  � = ⟨�, Θ, �,  �⟩ into
• �: internal (do not synchronize)

• �: output (synchronized and controlled by �)

• �: input (synchronized and controlled by some other automaton) 

• � = � ∪ � ∪ �

• This gives rise to I/O automata [Lynch, Tuttle 1996]



Reactivity: Input enabling
• Consider a shared action brakeOn controlled by �1 and listend-to or read 

by �2

• Input enabling ensures that when �1 and �2 are composed then �2 can 
react to brakeOn 

Definition. An input/output automaton is a tuple � = 〈�, Θ,  �,  �〉 where

• � is a set of names of variables

• Θ ⊆ 푣��(�) is the set of initial states

• � = � ∪ � ∪ �  is a set of names of actions

• � ⊆ 푣��(�) × � × 푣��(�) is the set of transitions and � satisfies the input 
enabling condition (E1):

E1. For each � ∈ 푣��(�),  � ∈ � there exists �′ ∈ 푣��(�) such that �→��′

Controller
�1

Vehicle

�2

푏푟�����
Pre ProxSensorCrit
Eff (do nothing)

푏푟�����
Pre ???
Eff accel := -5

Move
Pre  …
Eff …

푏푟�����

E1 ensures that the transition is well defined for every input action at any state



Compatibility IOA
A pair of I/O automata �1 and �2 are 
compatible if 

�� ∩ �� = ∅ no unintended interactions

�� ∩ �� = ∅ no duplication of authority

Extended to collection of automata in the 
natural way
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Composition of I/O automaton
Definition. For compatible automata �1 and �2 their 

composition �1 || �2 is the structure �= (�, Θ, �, �)
• � = �1 ∪ �2

• Θ =   � ∈ 푣��(�)| ∀ �  ∈  1,2 :  �⌈�� ∈ Θ� 

• � = �1  ∪ �2 

• O = �1  ∪ �2 

• I = �1  ∪ �2 ∖ � 

• (�, �, �′) ∈  � iff for � ∈  1,2 
• � ∈ �� and (�⌈��, �, �′⌈��) ∈  �� 

• � ∉ �� �⌈�� = �⌈��  

� = � ∪ � ∪ �



Theorem. The class of IO-automata is closed under composition. If �1 
and �2 are compatible I/O automata then� = �1||�2 is also an I/O 
automaton.

Proof. Only 2 things to check

- (1) Input, output, and internal actions are disjoint---by construction

- (2) �  satisfies E1. Consider any state � ∈ 푣��(�1 ∪ �2) and any 
input action a ∈ �1  ∪ �2 ∖ � such that a is enabled in �. 

- Suppose, w.lo.g. a ∈ �1 

- We know by E1 of �1 that there exists ��
′ ∈ 푣��(�1) such that 

�⌈�1→� ��
′

- � ∉ �2, �2, �2 (by compatibility)

- Therefore, �→� (��
′ , �⌈�2) is a valid transition of � (by definition of 

composition)



Example: Sending process and channel

Automaton Sender(u)

variables internal  

    failed:Boolean := F 

output send(m:M)

input fail

transitions:

    output send(m)

        pre ~failed

        eff 

    input fail

        pre true

        eff failed := T

Loc 1

failed

send(m)
~failed

fail
true

failed := T

Sender
Channel

send(m) receive(m)fail
Receiver

System

Does this automaton satisfy input 

enabling condition (E1)?



FIFO channel & Simple Failure Detector

Automaton Channel(M)

   variables internal queue: Queue[M] := {}

    actions input send(m:M)

        output receive(m:M)

   transitions:

        input send(m)

           pre true

           eff  queue := append(m, queue)

        output receive(m)

            pre head(queue)=m

           eff queue := queue.tail

Automaton System(M)

    variables queue: Queue[M] := {}, failed: Bool

    actions input fail

        output send(m:M), receive(m:M)

   transitions:

        output send(m)

           pre ~failed

           eff  queue := append(m, queue)

        output receive(m)

            pre head(queue)=m
           eff queue := queue.tail

         input fail

            pre true

            eff failed := true

Automaton Sender(u)

variables internal  

    failed:Boolean := F 

output send(m:M)

input fail

transitions:

    output send(m)

        pre ~failed

        eff 

    input fail

        pre true

        eff failed := T



composing hybrid systems



Hybrid IO Automaton
In addition to interaction through shared actions hybrid 
input/output automata (HIOA) will allow interaction 
through shared variables

Recall a hybrid automaton  � = ⟨�, Θ, �,  �, �⟩ 

We will partition the set of variables � of  � into

• �: internal or state variables (do not interact)

• �: output variables

• �: input variables

• � = � ∪ � ∪ �

This gives rise to hybrid I/O automata (HIOA) [Lynch, 

Segala, Vaandrager 2002]

Plant

�1 = �1(�1, �2)
�1 = �1

Controller

�2 = �(�2, �1)
�2 = �2

�1�2



Reactivity: Input trajectory enabling
Consider a shared variable throttle controlled by �1 and listened-to or read by �2

Input trajectory enabling ensures that when �1 and �2 are composed then �2 can react to any signal 

generated by �1

If the trajectories of �2 are defined by ordinary differential equations, then input enabling is guaranteed if 

�1 only generates piece-wise continuous signals (throttle)

Definition. An hybrid input/output automaton is a tuple � = 〈�, Θ,  �,  �, �〉 where

• � = � ∪ � ∪ �  is a set of variables

• Θ ⊆ 푣��(�) is the set of initial states

• � = � ∪ � ∪ �  is a set of actions

• � ⊆ 푣��(�) × � × 푣��(�) is the set of transitions

• � is a set of trajectories for � closed under prefix, suffix, and concatenation

E1. For each � ∈ 푣��(�),  � ∈ � there exists �′ ∈ 푣��(�) such that �→��′

E2. For each � ∈ 푣��(�),  � should be able to react to any trajectory � of �. 

i.e, ∃ � ∈ � with �. �푠푡�푡� = � such that � ↓ � is a prefix of �,   and either (a) � ↓ � = � or  (b) � is closed 

and some � ∈ � ∪ � is enabled at �. �푠푡�푡�. (the HA cannot restrict its input trajectories)

Controller
�1

Vehicle

�2

푡ℎ푟표푡푡��



Compatibility of hybrid automata
• For the interaction of hybrid 

automata �1  and �2 to be well-
defined we need to ensure that 
they have the right interfaces

• compatibility conditions

Controller

�1

Vehicle

�2

Output �푐푐�� Input �푐푐��
�푐푐��

푏푟�����
Output 푏푟����� Input 푏푟�����

푝표푠�푡�표�



Compatibility HIOA
A pair of hybrid I/O automata �1 and �2 are compatible if 

�� ∩ �� = ∅ no unintended discrete interactions

�� ∩ �� = ∅ no duplication of discrete authority

�� ∩ �� = ∅ no unintended continuous interactions

�� ∩ �� = ∅ no duplication of continuous authority

Extended to collection of automata in the natural way and 
captures most common notions of composition in, for 
example, Matlab/Simulink



Composition
• For compatible �1 and �2 their composition �1 || �2 is the structure 

�= (�, Θ, �, �, �)

• Variables � = � ∪ � ∪ � 

• � = �1  ∪ �2, Y = �1  ∪ �2 ,� = �1  ∪ �2 ∖ � 

• Θ =   � ∈ 푣��(�)| ∀ �  ∈  1,2 :  �⌈�� ∈ Θ� 

• Actions � = � ∪ � ∪ �
• � = �1  ∪ �2, O = �1  ∪ �2 ,I = �1  ∪ �2 ∖ �,  

• (�, �, �′) ∈  � iff for � ∈  1,2 
• � ∈ �� and (�⌈��, �, �′⌈��) ∈  �� 

• � ∉ �� �⌈�� = �⌈��  

• �: set of trajectories for V 
• � ∈  � iff  ∀ �  ∈  1,2 ,  � ↓ �� ∈ �i 
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Closure under composition?

• Conjecture. The class of HIOA is closed under composition. If �1 and 
�2 are compatible HIOA then  �1||�2 is also a HIOA.

• Can we ensure that input trajectory enabled condition is satisfied in 
the composed automaton? 

• No, in general (E2 does not always satisfy)
• See "Hybrid I/O automata", 

by Nancy Lynch, Roberto Segala, Frits Vaandrager Plant
Input ��
�1 = ��

output �� = �1

Controller
Input yp

�2 = �� + 1
Output �� = �2

����



Example 2: Periodically Sending Process
Automaton PeriodicSend(u)

variables internal  

clock: Reals := 0, z:Reals, failed:Boolean := F 

signature output send(m:Reals)

input fail

transitions:

output send(m)

pre clock = u /\ m = z /\ ~failed

eff clock := 0

input fail

pre true

eff failed := T

trajectories:

evolve d(clock) = 1, d(z) = f(z)

invariant failed \/ clock≤u

Loc 1
�(푐�표푐�) = 1 
�(�) = �(�)

~failed⇒
풄풍�풄� ≤ �

send(m)
clock = u /\ m = z /\ ~failed

clock := 0

clock:= 0

fail
true

failed := T



Time bounded channel & Simple Failure Detector
Automaton Timeout(u,M)
   variables internal suspected: Boolean := F, 

clock: Reals := 0
   signature input receive(m:M) 

output timeout
   transitions:
        input receive(m)
        pre true
        eff  clock := 0; suspected := false;
        output timeout
        pre ~suspected /\ clock = u
        eff suspected := true
   trajectories:
        evolve d(clock) = 1
        invariant clock ≤ u \/ suspected

Automaton Channel(b,M)
   variables internal queue: Queue[M,Reals] := {}

clock: Reals := 0
   signature input send(m:M)

output receive(m:M)
   transitions:
        input send(m)
        pre true
        eff  queue := append(<m, clock+b>, queue)
        output receive(m)
        pre head(queue)[1]=m ∧   

head(queue)[2]=clock
        eff queue := queue.tail
   trajectories:
        evolve d(clock) = 1
        invariant ∀<m,d>∈ queue: d ≥ clock



Example 3: Oscillator and pulse generator

pulseGen

Oscillator



pr
e:
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ef
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표�

≔
0

Composed automaton
On,Mode

�(�표�) = 1
�(�1) =− �1(�1

2 + 0.9�1 + 0.9) − �2 + 1
�(�2) = �1 − 2�2
�표� ≤ ���

Off,Mode
�(�표�) = 1
�(�1) =− �1(�1

2 + 0.9�1 + 0.9) − �2 + 0
�(�2) = �1 − 2�2
�표� ≤ ����
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�
≥
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�

ef
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표�

≔
0

Cardiac oscillator network models, Grosu et al. CAV, HSCC 2007-2015



Restriction operation on exections

• Sometimes it is useful to restrict our attention to only some subset of variables and 
actions in an execution

• Recall the restriction operations �⌈� ���  � ↓ �

• Let � = �0�1�1�2 be an execution fragment of a hybrid automaton with set of variables 
� and set of actions �. Let �′ be a set of actions and �′ be a set of variables. 

• Restriction of � to (�′, �′), written as �⌈(�′,  �′) is the sequence defined inductively as:
• �⌈(�′, �′) = � ↓ �′ if � = �
• � � � ⌈(�′, �′) = 

• � ⌈(�′, �′) � (� ↓ �′) if a ∈ �′
• � ⌈(�′, �′) 푐표�푐�푡  (� ↓ �′) if a ∉ �′

• From the definition it follows �. �푠푡�푡� ⌈�′ = �⌈(�′, �′). �푠푡�푡� for any �′, �′



Properties of Compositions
Proposition. Let � =  �1||�2.  � is an execution fragment of � iff

 �⌈(��, ��),  � ∈  1,2  are both execution fragments of ��.

• Proof of the forward direction. Fix � and i. We prove this by induction on the length of �.  

• Base case: � = �. �⌈(��, ��) = � ↓ �� by definition of composition � ↓ �� ∈ ��. So, � ↓ �� ∈ 퐹푟���

• � = �′ � � ⌈(��, ��) and � ∈ �� and by induction hypothesis �′⌈(��, ��) ∈ 퐹푟���. Let �′⌈(��, ��). lstate = 푣. By the definition of 
composition: � ↓ �� ∈ ��. 

• It remains to show that 푣⌈��→�(� ↓ ��). �푠푡�푡�.  Since � ∈ ��,  by the definition of composition: �′⌈(��, ��). lstate →�� ↓ ��. �푠푡�푡� 

• � = �′ � � ⌈(��, ��) and � ∉ �� and by induction hypothesis �′⌈(��, ��) ∈ 퐸��푐�.  Let �′ be the last trajectory in that execution.

• Since � ∉ ��,  by the definition of composition:�′. �푠푡�푡� = � ↓ ��. �푠푡�푡� . By concatenation closure of Τ�, it follows that �′푐표�푐�푡 � ↓ �� ∈ Τ�. 
Therefore �⌈(��,  ��) ∈ 퐸��푐�.



properties of executions of composed automata

• � is an execution iff �⌈(��, ��),  � ∈  1,2  are both executions.

• � is time bounded iff �⌈(��, ��),  � ∈  1,2  are both time bounded.

• � is admissible (infinite duration) iff �⌈(��, ��),  � ∈  1,2  are both admissible.

• � is closed (finite time with final trajectory) iff �⌈(��, ��),  � ∈  1,2  are both closed.

• � is non-Zeno iff �⌈(��, ��),  � ∈  1,2  are both time non-Zeno.



Summary

• Composition operation
• I/O interfaces: actions and variables
• Reactivity/input enabling
• (non) Closure under composition

• Properties of executions preserved under composition

• Inductive invariants


