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Homework and final presentations
HW 3 released last week, due 4/27

HW 4 will be released this week, due 5/6

Final project presentation slides due 4/30, 8 am (hard deadline, since presentations will start at 11 am)

Final project presentations: Last week of instruction (schedule TBA)

Final project report due: 5/11 (hard deadline due to final grades uploading requirement)



 Review: reachability of Integral Time Automaton

Region Automaton

Integral Time Automaton



Abstractions and Simulations

Consider models that have the same external interface (input/output variables and actions)

We would like to approximate one (hybrid) automaton �1 with another one �2

• We can over-approximate the reachable states of �1 with those of �2

• This would ensure that invariants of �2 carry over to �1

We would like to go beyond invariants, and want to have more general requirements (e.g., CTL) carry over

�2 should be simpler (smaller description, fewer states, transitions, linear dynamics, etc.) and preserve some 
properties of �1 (and not others)

Verifying some requirements of �� can then carry over requirements to ��
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Finite state examples
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TracesA= (01)*

TracesB= 01*

TracesC= {0,1}*
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Trace := sequence of actions for some execution
Traces := set of all trace



Finite state examples
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B simulates A and vice versa. 
A and B are bisimilar. 

C simulates both A and B. 
C is an abstraction of both A and B.

A implements C.
B implements C.

A

B

C
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Definitions
Let �,  ℬ,  and � be comparable (identical I/O varaibles and actions) HA. 
If R1 is a forward simulation from � to ℬ and R2 is a forward simulation 
from ℬ to �, then R1 ∘ R2 is a forward simulation from � to �

If �1 and �2 are comparable and 푇푟�����1 ⊆ 푇푟�����2 , we say �1 
implements �2 , and �2 is an abstraction of �1

The implementation relation is a preorder of the set of all 
(comparable) hybrid automata

(A preorder is a reflexive and transitive relation)
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How to prove B simulates A? 

Show there exists a simulation relation from states of A to states of B. 
Say, �  =  ((�0, �02),  (�2, �02),  (�1,  �13),  (�3,  �13))

Show that for every transition ��→���′ and (��, ��) ∈ � there exists ��′ such that 
1. ��→���′
2. (��′, ��′) ∈ � (also written as ��′ � ��′ )
3. 푇푟���(��→���′) = 푇푟���(��→���′)
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Forward simulation relation

Consider a pair of automata �1 = ⟨�1,  Θ1, �1, �1⟩ and �2 = ⟨�2,  Θ2, �2, �2⟩.  
Recall trace of an execution preserves the visible part of an execution

Definition. A relation � ⊆ �1 × �2 is a forward simulation relation from �1 to �2 if 
1. For every �1 ∈ Θ1 there exists a �2 ∈ Θ2 such that �1��2
2. For every transition �1→1

�1�1′  and �1��2 there exists q2′ , �2 such that 
• �2→2

�2  �2′  
• �1′  � �2′
• 푇푟���(�1, �1, �1′ ) = 푇푟���(�2, �2, �2′)

Theorem. If there exists a forward simulation from �1 to �2 then 푇푟�����1 ⊆푇푟�����2.
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Finite state examples
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Check that A also simulates B 
and that C simulates both A and B.

Therefore, TracesA = TracesB ⊆ 푇푟�����?

Does A simulate C?

A

B

C

0

Slides adapted from Prof. Sayan Mitra's slides in Fall 2021 



A Simulation Example

• Is there a forward simulation 
from � to ℬ ? 1
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A Simulation Example

• Is there a forward simulation 
from � to ℬ ?

• Consider the forward simulation 
relation
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A Simulation Example

• Is there a forward simulation 
from � to ℬ ?

• Consider the forward simulation 
relation
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� : 2→� 4 cannot be simulated by ℬ 
from 2’ although (2,2’) are related. 



Simulations for hybrid systems
Forward simulation relation from �1 to  �2 is a relation R ⊆ 푣��(�1) ×  푣��(�2)  
such that

1. For every x1 ∈ Θ1 there exists x2 ∈ Θ2 such that x1 R x2

2. For every x1 →��  x1’ ∈ � and x2 such that x1 R x2, there exists x2’ such that 
• x2 →�� x2’ and 

• x1’ R x2’

3. For every �� ∈ �1 and x2 such that �1. 푓�푡�푡� R x2, there exists �2 ∈ �2 that 
• x2 = �2. 푓�푡�푡� and 
• x1’ R �2. ��푡�푡�
• �2. dom = �1. 푑��

Theorem. If there exists a forward simulation relation from hybrid automaton �1 
to �2 then  for every execution of �1 there exists a corresponding execution of �2. 
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Simulation relations for hybrid automata
• Recall condition 3 in definition of simulation relation: 푇푟���(��→���′) =
푇푟���(��→���′)

• Hybrid automata have transitions and trajectories 

• Different types of simulation depending on different notions for “Trace” 

• Match for all variable values, action names, and time duration of trajectories 

(abstraction)

• Match variables but not time (time abstract simulation)

• Match a subset (external) of variables and actions (trace inclusion) 

• Match single action/trajectory of A with a sequence of actions and trajectories of B
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Timer simulates Ball (w.r.t. timing of bounce actions) 

Automaton Ball(c,v0,g)
   variables: 
      x: Reals := 0 
      v: Reals := v0

   actions: bounce
      transitions:
          bounce

pre x = 0 /\ v < 0
eff v := -cv

      trajectories:
evolve d(x) = v; d(v) = -g
invariant � ≥ �

Automaton Timer(c, v0, g)
   variables: analog 
   timer: Reals := 2푣0/�,

   n:Naturals=0;
   actions: bounce
      transitions:
          bounce

pre timer = 0

eff n:=n+1; timer := 
2�0
���

      trajectories:
evolve d(timer) = -1
invariant timer ≥ 0
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Some nice properties of Forward Simulation

Let �,  ℬ,  and � be comparable (identical I/O varaibles and actions) HA. 

If R1 is a forward simulation from � to ℬ and R2 is a forward simulation 

from ℬ to �, then R1 ∘ R2 is a forward simulation from � to �

If R is a forward simulation from � to ℬ and R-1 is a forward simulation 

from  ℬ to � then R is called a bisimulation and ℬ are � bisimilar 

Bisimilarity is an equivalence relation

(reflexive, transitive, and symmetric)
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Remark on Simulations and Stability

Stability not preserved by ordinary simulations and bisimulations 
[Prabhakar, et. al 15]

time time
Stability Preserving Simulations and Bisimulations for Hybrid Systems, Prabhakar, Dullerud, 
Viswanathan IEEE Trans. Automatic Control 2015
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Backward Simulations
Backward simulation relation from �1 to  �2 is a relation R ⊆  �1 ×  �2 such that

1. If x1 ∈ Θ1 and x1 R x2 then x2 ∈ Θ2 such that

2. If x’1 R x’2 and x1—a x1’ then there exists an execution fragment �
• x2 –� x2’ and 

• x1 R x2

• Trace(�) = a

3. For every � ∈ � and x2 ∈ Q2  such that x1’ R x2’, there exists x2 such that 

• x2 –� x2’ and 

• x1 R x2

• Trace(�) = �

Theorem. If there exists a backward simulation relation from �1 to �2 then  ClosedTraces1 ⊆ ClosedTraces2
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“Closed” means: Finite execution with final trajectory with closed domain �0 �1 �1�2�2 …�� and ��. 푑�� = [0, 푇]



Abstraction recap

• Defined what it means for �2 to be abstraction of�1
• 푇푟�����1 ⊆ 푇푟�����2

• �1≼��2

• If �1≼��2  and �2≼��1 then �1≼��3

• Transitive, ≼� defines a preordering on compatible 
automata

• We saw methods for proving  �1≼��2
• Forward simulation and backward simulation

• ≼� defines a preorder

�1 �2≼



Counter-example guided 
abstraction-refinement



Counterexample guided abstraction 
refinement (CEGAR)
• A general algorithmic framework  for automatically constructing and 

verifying property-specific abstractions [Clarke:2000]

• CEGAR has been applied to discrete automata, software, and hybrid 
systems [Holzman 00,Ball 01, Alur 2006,Clarke 2003, Fehnker2005, 
Prabhakar 15, Roohi 17]

• We will discuss  the basic idea of the CEGAR and the key design 
choices, and their implications.



Start with coarse 
abstraction B0

Check Bi 
satisfies S ?

 counter-
example for 

A?

Refine Bi to get Bi+1

 = q0 q1 q2 … qn

A is 
safe

Yes

No

A 
unsafe

Yes

No

Idea of CEGAR



Key design choices

• Space of the abstract automata 
(finite, timed, linear)

• Model checker for abstract 
automaton (decidable?)

• Counter-example validation 
procedure

• Refinement strategy

Start with coarse 
abstraction B0

Check Bi 
satisfies S ?

 counter-
example for 

A?

Refine Bi to get Bi+1

 = q0 q1 q2 … qn

A is 
safe

Yes

No

A 
unsafe

Yes

No



Θ

푈푛��푓�

(0,0)

�0

Example: dynamical systems with elliptical orbits

Abstraction: maps a box in state space to a discrete state �� 

Verification goal: will we reach unsafe regions on the top?

Initial states

Grid abstraction of 
initial states



Θ

푈푛��푓�

�0

(0,0)

1-step Reachable sets 
under abstraction

2-step Reachable sets 
under abstraction



Θ

푈푛��푓�

�0

(0,0)

�1

�4

�5

�2 �3
�5 =  �−1 (�5)

�4 =  푃푟��(�5) ∩  �−1 (�4) ≠ ∅
�3 =  푃푟��(�4) ∩ �−1 (�3) ≠  ∅
�2 =  푃푟�� (�3) ∩  �−1(�2) ≠ ∅
�1 =  푃푟�� (�2) ∩  �−1 (�1)  = ∅

Counterexample with abstraction: q0 q1 q2 q3 q4 q5 (unsafe)

Is it a real counterexample?
Check using  backward-reachability 

Impossible from q2 to q1!

�−1 (��) is the box region in original dynamical system state space, 
corresponding to the discrete state ��


