
Lecture 21: Abstractions
Counterexample-guided abstraction refinement

Huan Zhang
huan@huan-zhang.com

Slides adapted from Prof. Sayan Mitra’s slides in Fall 2021

Homework and final presentations
HW 3 released last week, due 4/27

HW 4 will be released this week, due 5/6

Final project presentation slides due 4/30, 8 am (hard deadline, since presentations will start at 11 am)

Final project presentations: Last week of instruction (schedule TBA)

Final project report due: 5/11 (hard deadline due to final grades uploading requirement)

 Review: reachability of Integral Time Automaton

Region Automaton

Integral Time Automaton

Abstractions and Simulations

Consider models that have the same external interface (input/output variables and actions)

We would like to approximate one (hybrid) automaton �1 with another one �2

• We can over-approximate the reachable states of �1 with those of �2

• This would ensure that invariants of �2 carry over to �1

We would like to go beyond invariants, and want to have more general requirements (e.g., CTL) carry over

�2 should be simpler (smaller description, fewer states, transitions, linear dynamics, etc.) and preserve some
properties of �1 (and not others)

Verifying some requirements of �� can then carry over requirements to ��

Slides adapted from Prof. Sayan Mitra's slides in Fall 2021

Finite state examples

A0 A1

0

1

1

0

A2 A3

0

1

B02 B13

0

1

C03 0,1

TracesA= (01)*

TracesB= 01*

TracesC= {0,1}*

A

B

C

Slides adapted from Prof. Sayan Mitra's slides in Fall 2021

Trace := sequence of actions for some execution
Traces := set of all trace

Finite state examples

A0 A1

0

1

1

0

A2 A3

0

1

B02 B13

0

1

C03 0,1

B simulates A and vice versa.
A and B are bisimilar.

C simulates both A and B.
C is an abstraction of both A and B.

A implements C.
B implements C.

A

B

C

Slides adapted from Prof. Sayan Mitra's slides in Fall 2021

Definitions
Let �, ℬ, and � be comparable (identical I/O varaibles and actions) HA.
If R1 is a forward simulation from � to ℬ and R2 is a forward simulation
from ℬ to �, then R1 ∘ R2 is a forward simulation from � to �

If �1 and �2 are comparable and 푇푟�����1 ⊆ 푇푟�����2 , we say �1
implements �2 , and �2 is an abstraction of �1

The implementation relation is a preorder of the set of all
(comparable) hybrid automata

(A preorder is a reflexive and transitive relation)

Slides adapted from Prof. Sayan Mitra's slides in Fall 2021

How to prove B simulates A?

Show there exists a simulation relation from states of A to states of B.
Say, � = ((�0, �02), (�2, �02), (�1, �13), (�3, �13))

Show that for every transition ��→���′ and (��, ��) ∈ � there exists ��′ such that
1. ��→���′
2. (��′, ��′) ∈ � (also written as ��′ � ��′)
3. 푇푟���(��→���′) = 푇푟���(��→���′)

A0 A1

0

1

1

0

A2 A3

0

1
A

B02 B13

0

1

B

Slides adapted from Prof. Sayan Mitra's slides in Fall 2021

Forward simulation relation

Consider a pair of automata �1 = ⟨�1, Θ1, �1, �1⟩ and �2 = ⟨�2, Θ2, �2, �2⟩.
Recall trace of an execution preserves the visible part of an execution

Definition. A relation � ⊆ �1 × �2 is a forward simulation relation from �1 to �2 if
1. For every �1 ∈ Θ1 there exists a �2 ∈ Θ2 such that �1��2
2. For every transition �1→1

�1�1
′ and �1��2 there exists q2

′ , �2 such that
• �2→2

�2 �2
′

• �1
′ � �2

′

• 푇푟���(�1, �1, �1
′) = 푇푟���(�2, �2, �2′)

Theorem. If there exists a forward simulation from �1 to �2 then 푇푟�����1 ⊆
푇푟�����2.

Slides adapted from Prof. Sayan Mitra's slides in Fall 2021

Finite state examples

A0 A1

0

1

1

0

A2 A3

0

1

B02 B13

0

1

C03
1

Check that A also simulates B
and that C simulates both A and B.

Therefore, TracesA = TracesB ⊆ 푇푟�����?

Does A simulate C?

A

B

C

0

Slides adapted from Prof. Sayan Mitra's slides in Fall 2021

A Simulation Example

• Is there a forward simulation
from � to ℬ ? 1

2’
3

4

a
b

c

1 2

3

4

a

b

c

2

�

ℬ

a

Slides adapted from Prof. Sayan Mitra's slides in Fall 2021

A Simulation Example

• Is there a forward simulation
from � to ℬ ?

• Consider the forward simulation
relation

1

2’
3

4

a
b

c

1 2

3

4

a

b

c

2

�

ℬ

a

Slides adapted from Prof. Sayan Mitra's slides in Fall 2021

A Simulation Example

• Is there a forward simulation
from � to ℬ ?

• Consider the forward simulation
relation

1

2’
3

4

a
b

c

1 2

3

4

a

b

c

2

�

ℬ

a

Slides adapted from Prof. Sayan Mitra's slides in Fall 2021

� : 2→� 4 cannot be simulated by ℬ
from 2’ although (2,2’) are related.

Simulations for hybrid systems
Forward simulation relation from �1 to �2 is a relation R ⊆ 푣��(�1) × 푣��(�2)
such that

1. For every x1 ∈ Θ1 there exists x2 ∈ Θ2 such that x1 R x2

2. For every x1 →�� x1’ ∈ � and x2 such that x1 R x2, there exists x2’ such that
• x2 →�� x2’ and

• x1’ R x2’

3. For every �� ∈ �1 and x2 such that �1. 푓�푡�푡� R x2, there exists �2 ∈ �2 that
• x2 = �2. 푓�푡�푡� and
• x1’ R �2. ��푡�푡�
• �2. dom = �1. 푑��

Theorem. If there exists a forward simulation relation from hybrid automaton �1
to �2 then for every execution of �1 there exists a corresponding execution of �2.

Slides adapted from Prof. Sayan Mitra's slides in Fall 2021

Simulation relations for hybrid automata
• Recall condition 3 in definition of simulation relation: 푇푟���(��→���′) =

푇푟���(��→���′)

• Hybrid automata have transitions and trajectories

• Different types of simulation depending on different notions for “Trace”

• Match for all variable values, action names, and time duration of trajectories

(abstraction)

• Match variables but not time (time abstract simulation)

• Match a subset (external) of variables and actions (trace inclusion)

• Match single action/trajectory of A with a sequence of actions and trajectories of B
Slides adapted from Prof. Sayan Mitra's slides in Fall 2021

Timer simulates Ball (w.r.t. timing of bounce actions)

Automaton Ball(c,v0,g)
 variables:
 x: Reals := 0
 v: Reals := v0

 actions: bounce
 transitions:
 bounce

pre x = 0 /\ v < 0
eff v := -cv

 trajectories:
evolve d(x) = v; d(v) = -g
invariant � ≥ �

Automaton Timer(c, v0, g)
 variables: analog
 timer: Reals := 2푣0/�,

 n:Naturals=0;
 actions: bounce
 transitions:
 bounce

pre timer = 0

eff n:=n+1; timer :=
2�0
���

 trajectories:
evolve d(timer) = -1
invariant timer ≥ 0

Slides adapted from Prof. Sayan Mitra's slides in Fall 2021

Some nice properties of Forward Simulation

Let �, ℬ, and � be comparable (identical I/O varaibles and actions) HA.

If R1 is a forward simulation from � to ℬ and R2 is a forward simulation

from ℬ to �, then R1 ∘ R2 is a forward simulation from � to �

If R is a forward simulation from � to ℬ and R-1 is a forward simulation

from ℬ to � then R is called a bisimulation and ℬ are � bisimilar

Bisimilarity is an equivalence relation

(reflexive, transitive, and symmetric)

Slides adapted from Prof. Sayan Mitra's slides in Fall 2021

Remark on Simulations and Stability

Stability not preserved by ordinary simulations and bisimulations
[Prabhakar, et. al 15]

time time
Stability Preserving Simulations and Bisimulations for Hybrid Systems, Prabhakar, Dullerud,
Viswanathan IEEE Trans. Automatic Control 2015

Slides adapted from Prof. Sayan Mitra's slides in Fall 2021

Backward Simulations
Backward simulation relation from �1 to �2 is a relation R ⊆ �1 × �2 such that

1. If x1 ∈ Θ1 and x1 R x2 then x2 ∈ Θ2 such that

2. If x’1 R x’2 and x1—a x1’ then there exists an execution fragment �
• x2 –� x2’ and

• x1 R x2

• Trace(�) = a

3. For every � ∈ � and x2 ∈ Q2 such that x1’ R x2’, there exists x2 such that

• x2 –� x2’ and

• x1 R x2

• Trace(�) = �

Theorem. If there exists a backward simulation relation from �1 to �2 then ClosedTraces1 ⊆ ClosedTraces2

Slides adapted from Prof. Sayan Mitra's slides in Fall 2021

“Closed” means: Finite execution with final trajectory with closed domain �0 �1 �1�2�2 …�� and ��. 푑�� = [0, 푇]

Abstraction recap

• Defined what it means for �2 to be abstraction of�1
• 푇푟�����1 ⊆ 푇푟�����2

• �1≼��2

• If �1≼��2 and �2≼��1 then �1≼��3

• Transitive, ≼� defines a preordering on compatible
automata

• We saw methods for proving �1≼��2
• Forward simulation and backward simulation

• ≼� defines a preorder

�1 �2≼

Counter-example guided
abstraction-refinement

Counterexample guided abstraction
refinement (CEGAR)
• A general algorithmic framework for automatically constructing and

verifying property-specific abstractions [Clarke:2000]

• CEGAR has been applied to discrete automata, software, and hybrid
systems [Holzman 00,Ball 01, Alur 2006,Clarke 2003, Fehnker2005,
Prabhakar 15, Roohi 17]

• We will discuss the basic idea of the CEGAR and the key design
choices, and their implications.

Start with coarse
abstraction B0

Check Bi
satisfies S ?

 counter-
example for

A?

Refine Bi to get Bi+1

 = q0 q1 q2 … qn

A is
safe

Yes

No

A
unsafe

Yes

No

Idea of CEGAR

Key design choices

• Space of the abstract automata
(finite, timed, linear)

• Model checker for abstract
automaton (decidable?)

• Counter-example validation
procedure

• Refinement strategy

Start with coarse
abstraction B0

Check Bi
satisfies S ?

 counter-
example for

A?

Refine Bi to get Bi+1

 = q0 q1 q2 … qn

A is
safe

Yes

No

A
unsafe

Yes

No

Θ

푈푛��푓�

(0,0)

�0

Example: dynamical systems with elliptical orbits

Abstraction: maps a box in state space to a discrete state ��

Verification goal: will we reach unsafe regions on the top?

Initial states

Grid abstraction of
initial states

Θ

푈푛��푓�

�0

(0,0)

1-step Reachable sets
under abstraction

2-step Reachable sets
under abstraction

Θ

푈푛��푓�

�0

(0,0)

�1

�4

�5

�2 �3

�5 = �−1 (�5)
�4 = 푃푟��(�5) ∩ �−1 (�4) ≠ ∅
�3 = 푃푟��(�4) ∩ �−1 (�3) ≠ ∅
�2 = 푃푟�� (�3) ∩ �−1(�2) ≠ ∅
�1 = 푃푟�� (�2) ∩ �−1 (�1) = ∅

Counterexample with abstraction: q0 q1 q2 q3 q4 q5 (unsafe)

Is it a real counterexample?
Check using backward-reachability

Impossible from q2 to q1!

�−1 (��) is the box region in original dynamical system state space,
corresponding to the discrete state ��

