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Review: Integral Timed Automata (ITA)

• Definition. A integral timed automaton � = 〈�,  Θ,  �,  �,  �〉 where 
• V = X ∪  � , where � is a set of n clocks and � is a discrete state variable of 

finite type �.    The stata space is val(V) × L
• A is a finite set 
• � is a set of transitions such that 

• The preconditions are described by clock constraings Φ(�) 
• 〈�, �〉� → 〈�′, �′〉 implies either �′ = � or �′ = 0  (time is reset to 0, or no change)

• � set of clock trajectories for the clock variables in X



Review: Control-state Reachability of ITA: construct a 
bisimilar FA 

ITA

Clock 
Regions



|X|! 2|X| �∈� (2��� + 2)

 Corresponding FA

Drastically increasing with the 
number of clocks



Rational Timed Automata: Decidable

Definition. A rational timed automaton is a HA � = 〈�,  Θ,  �,  �,  �〉 
where 

• V = X ∪  ��� , where � is a set of n clocks and � is a discrete state variable of 
finite type L

• A is a finite set 
• � is a set of transitions such that 

• The guards are described by rational clock constraings Φ(�) 
• 〈�, �〉 − � → 〈�′, �′〉 implies either �′ = � or � = 0

• � set of clock trajectories for the clock variables in X
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Convert to ITA by multiply clocks by a factor q



Multi-Rate Automaton: decidable

• Definition. A multirate automaton is � = 〈�,  �,  Θ,  �,  �,  �〉 where 
• V = X ∪  ��� , where � is a set of n continuous variables and ��� is a discrete 

state variable of finite type L
• A is a finite set of actions
• � is a set of transitions such that 

• The guards are described by rational clock constraings Φ(�) 

• 〈�, �〉 − � → 〈�′, �′〉 implies either �′ = � �� �′ = �
• � set of trajectories such that 

for each variable � ∈ � ∃� 푠��ℎ �ℎ�� � ∈ �,  � ∈ �. 푑��  
�(�). � = �(0). � + � �
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Convert to RTA by multiply clocks by a factor q



Example: Multi-rate to rational TA
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Rectangular HA: undecidable
Definition. A rectangular hybrid automaton (RHA) is a HA � = ⟨�, �, �,�⟩  where 

• V = X ∪  ���  , where X is a set of n continuous variables and ��� is a discrete state 
variable of finite type L

• A is a finite set 
• � = ∪ℓ�ℓ set of trajectories for X

• For each �  ∈ �ℓ,  � ∈ � either (i) 푑(�) = �ℓ or (ii) 푑(�) ∈  �ℓ1 , �ℓ2  
• Equivalently, (i) �(�)⌈� = �(0)⌈� + �ℓ� 

(ii) �(0)⌈� + �ℓ1� ≤ �(�)⌈� ≤ �(0)⌈� + �ℓ2� 
• � is a set of transitions such that 

• Guards are described by rational clock constraings  
•  〈�, �〉→�〈�′, �′〉 implies �′ = � �� �′ ∈  �1, �2 
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Reachability of Rectangular HA

• Is this problem decidable? No 
• [Henz95] Thomas Henzinger, Peter Kopke, Anuj Puri, and Pravin Varaiya. What's Decidable About 

Hybrid Automata?. Journal of Computer and System Sciences, pages 373–382. ACM Press, 1995. 

• We will see that  the control state reachability (CSR) problem for 
rectangular hybrid automata (RHA) is undecidable

• This implies that automatic verification of invariants and safety properties 
is also impossible for this class of models

• The result was shown by Henzinger et al. [1995] through a reduction from 
the Halting problem of two counter machines

http://engr-courses.engr.illinois.edu/ece584/papers/henz_whats.pdf


Decision procedure for B

General reductions: Using known hard 
problem B to show hardness of A

Problem A

Instance of  B 
(known to be 

hard)
Translator f: B  A instance of A

Yes

No

Given B is known to be hard  
Suppose (for the sake of contradiction) A is solvable
If we can construct a reduction f: BA (from B to A) then B becomes 
easy, which is a contradiction



2 CM Halting problem decider

Reduction from Halting Problem for 2CM

CSR algorithm for 
Rectangular HA

2CM Halting 
problem: p

Translator f(p) CSR for RHA: f(p)
Yes

No

Suppose CSR for RHA is decidable 
If we can construct a reduction from 2CM Halting Problem to CSR for 
RHA then 2CM Halting problem is also decidable 



Counter Machines

An n-counter machine is an elementary computer with n-unbounded 
counters and  a finite program written in a  minimalistic assembly language.

More precisely: A 2-counter machine (2CM) is a discrete transition system 
with the following components:

• Two nonnegative integer counters C and D. Both are initialized to 0.

• A finite program with one of these instructions at each location (or line):
• INCC, INCD: increments counter C (or D)
• DECC, DECD: decrements counter C (or D), provided it is not 0,
• JNZC, JNZD [label]: moves the program control to line label provided that counter C 

(or D) is not zero. 



Example 2CM for multiplication

A 2-counter machine for multiplying  2x3 is shown below. 

INCC;

INCC; % C = 2

INCD; % LOOP

INCD;

INCD;

DECC;

JNZC 3; % Jump to LOOP

% HALT

Exercise: Show that any k-counter machine can be simulated  by a 2CM. 



Halting problem for 2CM

• A configuration of a 2CM is a triple (pc, C, D)
• pc is the program counter that stores the next line to be executed

• C, D are values of the counter 

• A sequence of configurations (pc0, D0, C0), (pc1, D1, C1), … is an execution if the 
ith configuration goes to the (i+1)st configuration in the sequence executing  the 
instruction in line pci

• Given a 2CM  M  and a special halting location (pc_halt), the Halting problem 
requires us to decide whether all executions of  M  reach the halting location

• Theorem [Minsky 67]. The Halting problem for 2CMs is undecidable.



Reduction from 2CM to CSR-RHS

We have to construct a function (reduction) that maps instances of 
2CM-Halt to instances of CSR-RHA



Reduction from 2CM to CSR-RHS

• Program counter pc

• Counters C, D

• Instructions (program)

• Halting location

• Locations, sequence of locations

• Clocks c, d that can go at some 
constant rates �1, �2, …

• Transitions: widgets

• Particular location / control state 
(to which we will check CSR)



Idea of reduction (an RHA compiler)

• Two clocks (�2>�1)

• �  = �1 
�2
�1
 
�

 

• d  = �1 
�2
�1
 
�

• INCC

• �1 
�2
�1
 
�+1

= �  �2
�1
 

• DECC

• �1 
�2
�1
 
�−1

= �  �1
�2
  

• checking nonzero:
•  � > �1



A widget that preserves the value of clock c

Transitions and clock guards for this control state

[precondition]
{effect}



A widget for checking JNZC (c < k1)

[precondition]
{effect}

 � = �  ∧  � ≤ �1]

 � = �  ∧  � > �1]



A widget implementing INCC

First outgoing transition sets � = �2� and 

the next outgoing transition sets c = � ∗  1
�1
  

Exercise: Show the widget for DECC



Putting it all together

2 CM Halting problem decider

CSR algorithm for 
Rectangular HA

2CM:

INCC
INCC
DECC
JNC 1
DECC 
HALT

Translator f(p) CSR-RHA

Yes

No

Suppose CSR for RHA is decidable 
If we can construct a reduction from 2CM Halting Problem to CSR for 
RHA then 2CM Halting problem is also decidable 
Theorem: CSR for RHA is undecidable



Initialized Rectangular HA
Definition. An initialized rectangular hybrid automaton (IRHA) is a RHA �  where 

• V = X ∪  ��� , where  X is a set of n continuous variables and   ���  is a discrete 
state variable of finite type Ł

• A is a finite set
• � = ∪ℓ�ℓ set of trajectories for X

• For each �  ∈ �ℓ,  � ∈ � either (i) 푑(�) = �ℓ or (ii) 푑(�) ∈  �ℓ1 , �ℓ2  
• Equivalently, (i) �(�)⌈� = �(0)⌈� + �ℓ� 

(ii) �(0)⌈� + �ℓ1� ≤ �(�)⌈� ≤ �(0)⌈� + �ℓ2� 
• � is a set of transitions such that 

• Guards are described by rational clock constraings  
•  〈�, �〉→�〈�′, �′〉 implies if dynamics 푑(�) changes from ℓ to ℓ′ then �′ ∈  �1, �2 , 

otherwise �′ = � if 푑(�) is not changed
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Example IRHA

v1
� ∈  1,3  

푑 ∈  −3, − 2 
 

v2
� ∈  −4, − 2  
푑 ∈  −3, − 2 

 

� ≔ 0; 푑 ≔ 1

� ≤ 5 ∧ 푑 ≤− 3
� ≔ 4

v3
� ∈  −4, − 2  

푑 ∈  1,2 
 

푑 ≤− 5
푑 ≔− 4

v4
� ∈  1,3  
푑 ∈  1,2 

 

� ≥− 3 ∧ 푑 ≤−2
� ∈  −1, − 2 

� ≥ 0 ∧ 푑 ≤2
푑 ≔ 1
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dynamics for c changes

dynamics for d changes, 
so d must be reset

dynamics for c changes

dynamics for d changes



CSR Decidable for IRHA?

• Given an IRHA, check if a particular location is reachable from the 
initial states

• Is this problem decidable? Yes

• Key idea: 
• Construct a 2n-dimensional initialized multi-rate automaton that is bisimilar 

to the given IRHA
• Construct a ITA that is bisimilar to the Singular TA
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From IRHA to Singular HA conversion
For every variable create two variables---tracking the 
upper and lower bounds

IRHA MRA

� �ℓ ; �� 

Evolve: 푑(�) ∈   �1, �1  Evolve: 푑(�ℓ) = �1; 푑(��) = �1

Eff: �′ ∈   �1, �1  Eff:  �ℓ = �1; �� =  �1 

�′ = �   �ℓ = �� = �

Guard: � ≥  5  �� ≥  5

�� <  5 ∧ �� ≥ 5 Eff �� =  5
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Example IRHA

v1
� ∈  1,3  

푑 ∈  −3, − 2 
 

v2
� ∈  −4, − 2  
푑 ∈  −3, − 2 

 

� ≔ 0; 푑 ≔ 1

� ≤ 5 ∧ 푑 ≤− 3
� ≔ 4

v3
� ∈  −4, − 2  

푑 ∈  1,2 
 

푑 ≤− 5
푑 ≔− 4

v4
� ∈  1,3  
푑 ∈  1,2 

 

� ≥− 3 ∧ 푑 ≤−2
� ∈  −1, − 2 

� ≥ 0 ∧ 푑 ≤2
푑 ≔ 1
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Initialized Singular HA

v1
�� = 1 
�� = 3 
푑� =− 3 
푑� =− 2

 

v2
�� =− 4
  �� =− 2
  푑� =− 3  
푑� =− 2 

 

��, �� ≔ 0; 푑�,  푑� ≔ 1

v3
�� =− 4
  �� =− 2
  푑� = 1  
푑� = 2 

v4
�� = 1
  �� = 3
  푑� = 1  
푑� = 2 
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Transitions

5

v1
�� = 1 
�� = 3 
푑� =− 3 
푑� =− 2

 

�� ≤ 5
��,  �� ≔ 4

-3

�� 
�� 

푑�   

푑� 

푑� ≤− 3 
no reset
푑� >− 3 ∧ 푑� ≤− 3 
푑� ≔-3
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From IRHA:

� ≤ 5 ∧ 푑 ≤− 3
� ≔ 4



Initialized Singular HA
v1

�� = 1 
�� = 3 
푑� =− 3 
푑� =− 2

 

v2
�� =− 4
  �� =− 2
  푑� =− 3  
푑� =− 2 

 

��, �� ≔ 0; 푑�,  푑� ≔ 1

�� ≤ 5 ∧ 푑� ≤− 3
��,  �� ≔ 4

�� ≤ 5 ∧ 푑� ≤− 3 ∧ 푑� >− 3
��,  �� ≔ 4 푑� ≔− 3

v3
�� =− 4
  �� =− 2
  푑� = 1  
푑� = 2 

푑� ≤− 5
푑�푑� ≔− 4

v4
�� = 1
  �� = 3
  푑� = 1  
푑� = 2 

 

�� ≥− 3 ∧ 푑� ≤−2
�� ≔− 2�� ≔− 1

�� ≥− 3 ∧ 푑� ≤− 2  ∧ 푑� >− 2   
�� ≔− 2�� ≔− 1 푑� − 2

�� ≥ 0 ∧ 푑� ≤2
푑�,  푑� ≔ 1

�� < 0 ∧ �� ≥ 0 ∧ 푑� ≤2
�� ≔ 0푑�,  푑� ≔ 1
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Practical reachability

Lecture Slides by Sayan Mitra mitras@illinois.edu

Tools: 
SpaceEX
CORA
C2E2
Flow*
DryVR



Data structures critical for reachability

• Hyperrectangles
•   g1; g2  =  � ∈ ��       x − g1   ∞ ≤   g2 − g1   ∞ = Π� �1�, �2� 

• Polyhedra

• Zonotopes [Girard 2005]

• Ellipsoids [Kurzhanskiy 2001]

• Support functions [Guernic et al. 2009]

• Generalized star set [Duggirala and Viswanathan 2018]
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Reachability in practice



C2E2 generated safety certificate for a given user model

Unsafe region

Reach set

Verify no collision with 
uncertainties: speeds in [70, 
85] mph and acceleration 
range of NPC 



For a different user model C2E2 finds a corner case

counter-example 
visualized

Verify no collision with 

uncertainties like speeds in [70, 85] 

mph and bigger acceleration range 

of NPC 

SAYAN MITRA   @Mitrasayn


