Lecture 20: Timed automata and its reachability (cont.)

Huan Zhang huan@huan-zhang.com

Slides adapted from Prof. Sayan Mitra's slides in Fall 2021

Review: Integral Timed Automata (ITA)

- Definition. A integral timed automaton $\mathcal{A} = \langle V, \Theta, A, \mathcal{D}, \mathcal{T} \rangle$ where
 - V = X ∪ {l}, where X is a set of n clocks and l is a discrete state variable of finite type L. The stata space is val(V) × L
 - A is a finite set
 - $\ensuremath{\mathcal{D}}$ is a set of transitions such that
 - The preconditions are described by clock constraings $\Phi(X)$
 - $\langle x, l \rangle_a \rightarrow \langle x', l' \rangle$ implies either x' = x or x' = 0 (time is reset to 0, or no change)
 - \mathcal{T} set of clock trajectories for the clock variables in X

Review: Control-state Reachability of ITA: construct a bisimilar FA

Corresponding FA

 $|X|! 2^{|X|} \prod_{z \in X} (2c_{\mathcal{A}z} + 2)$

Drastically increasing with the number of clocks

Rational Timed Automata: Decidable

Definition. A *rational timed automaton* is a HA $\mathcal{A} = \langle V, \Theta, A, \mathcal{D}, \mathcal{T} \rangle$ where

- V = X ∪ {loc}, where X is a set of n clocks and l is a discrete state variable of finite type L
- A is a finite set
- $\ensuremath{\mathcal{D}}$ is a set of transitions such that
 - The guards are described by rational clock constraings $\Phi(X)$
 - $\langle x, l \rangle a \rightarrow \langle x', l' \rangle$ implies either x' = x or x = 0
- ${\mathcal T}$ set of clock trajectories for the clock variables in X

Convert to ITA by multiply clocks by a factor q

Multi-Rate Automaton: decidable

- **Definition.** A multirate automaton is $\mathcal{A} = \langle V, Q, \Theta, A, \mathcal{D}, \mathcal{T} \rangle$ where
 - V = X ∪ {*loc*}, where X is a set of n continuous variables and *loc* is a discrete state variable of finite type L
 - A is a finite set of actions
 - $\ensuremath{\mathcal{D}}$ is a set of transitions such that
 - The guards are described by rational clock constraings $\Phi(X)$
 - $\langle x, l \rangle a \rightarrow \langle x', l' \rangle$ implies either x' = c or x' = x
 - ${\mathcal T}$ set of trajectories such that

for each variable $x \in X \exists k \text{ such that } \tau \in \mathcal{T}, t \in \tau. dom$ $\tau(t). x = \tau(0). x + k t$

Convert to RTA by multiply clocks by a factor q

Example: Multi-rate to rational TA

Slides adapted from Prof. Sayan Mitra's slides in Fall 2021

Rectangular HA: undecidable

Definition. A rectangular hybrid automaton (RHA) is a HA $\mathcal{A} = \langle V, A, \mathcal{T}, \mathcal{D} \rangle$ where

- V = X ∪ {loc}, where X is a set of n continuous variables and loc is a discrete state variable of finite type L
- A is a finite set
- $\mathcal{T} = \cup_{\ell} \mathcal{T}_{\ell}$ set of trajectories for X
 - For each $\tau \in \mathcal{T}_{\ell}$, $x \in X$ either (i) $d(x) = k_{\ell}$ or (ii) $d(x) \in [k_{\ell 1}, k_{\ell 2}]$
 - Equivalently, (i) $\tau(t)[x = \tau(0)[x + k_{\ell}t]$ (ii) $\tau(0)[x + k_{\ell 1}t \le \tau(t)[x \le \tau(0)[x + k_{\ell 2}t]$
- $\ensuremath{\mathcal{D}}$ is a set of transitions such that
 - Guards are described by rational clock constraings
 - $\langle x, l \rangle \rightarrow_a \langle x', l' \rangle$ implies $x' = x \text{ or } x' \in [c_1, c_2]$

Reachability of Rectangular HA

- Is this problem decidable? No
 - [Henz95] Thomas Henzinger, Peter Kopke, Anuj Puri, and Pravin Varaiya. <u>What's Decidable About</u> <u>Hybrid Automata?</u>. Journal of Computer and System Sciences, pages 373–382. ACM Press, 1995.
- We will see that the control state reachability (CSR) problem for rectangular hybrid automata (RHA) is undecidable
- This implies that automatic verification of invariants and safety properties is also impossible for this class of models
- The result was shown by Henzinger et al. [1995] through a *reduction from* the Halting problem of two counter machines

General reductions: Using known hard problem B to show hardness of A

Given B is known to be hard

Suppose (for the sake of contradiction) A is solvable

If we can construct a reduction f: $B \rightarrow A$ (from B to A) then B becomes

easy, which is a contradiction

Reduction from Halting Problem for 2CM

Suppose CSR for RHA is decidable

If we can construct a reduction from 2CM Halting Problem to CSR for RHA then 2CM Halting problem is also decidable

Counter Machines

An n-counter machine is an elementary computer with n-unbounded counters and a finite program written in a minimalistic assembly language. More precisely: A 2-counter machine (2CM) is a discrete transition system with the following components:

- Two **nonnegative** integer counters C and D. Both are **initialized to 0**.
- A finite program with one of these instructions at each location (or line):
 - INCC, INCD: increments counter C (or D)
 - DECC, DECD: decrements counter C (or D), provided it is not 0,
 - JNZC, JNZD [label]: moves the program control to line *label* provided that counter C (or D) is not zero.

Example 2CM for multiplication

A 2-counter machine for multiplying 2x3 is shown below.

INCC; % C = 2 INCD; % LOOP INCD; INCD; DECC; JNZC 3; % Jump to LOOP % HALT

Exercise: Show that any k-counter machine can be simulated by a 2CM.

Halting problem for 2CM

- A configuration of a 2CM is a triple (pc, C, D)
 - pc is the program counter that stores the next line to be executed
 - C, D are values of the counter
- A sequence of configurations (pc0, D0, C0), (pc1, D1, C1), ... is an **execution** if the ith configuration goes to the (i+1)st configuration in the sequence executing the instruction in line pci
- Given a 2CM **M** and a special halting location (pc_halt), the Halting problem requires us to decide whether all executions of **M** reach the halting location
- Theorem [Minsky 67]. The Halting problem for 2CMs is undecidable.

Reduction from 2CM to CSR-RHS

We have to construct a function (reduction) that maps instances of 2CM-Halt to instances of CSR-RHA

Reduction from 2CM to CSR-RHS

- Program counter pc
- Counters C, D
- Instructions (program)
- Halting location

- Locations, sequence of locations
- Clocks c, d that can go at some constant rates k₁, k₂, ...
- Transitions: *widgets*
- Particular location / control state (to which we will check CSR)

Idea of reduction (an RHA compiler)

• Two clocks $(k_2 > k_1)$ • $c = k_1 \left(\frac{k_2}{k_1}\right)^C$ • $d = k_1 \left(\frac{k_2}{k_1}\right)^D$

- INCC • $k_1 \left(\frac{k_2}{k_1}\right)^{C+1} = c \left(\frac{k_2}{k_1}\right)$
- DECC • $k_1 \left(\frac{k_2}{k_1}\right)^{C-1} = c \left(\frac{k_1}{k_2}\right)$
- checking nonzero:
 - $c > k_1$

A widget that preserves the value of clock c

Transitions and clock guards for this control state

A widget for checking JNZC (c < k_1)

A widget implementing INCC

Putting it all together

Suppose CSR for RHA is decidable

If we can construct a reduction from 2CM Halting Problem to CSR for RHA then 2CM Halting problem is also decidable **Theorem:** CSR for RHA is undecidable

Initialized Rectangular HA

Definition. An initialized rectangular hybrid automaton (IRHA) is a RHA \mathcal{A} where

- V = X ∪ {loc}, where X is a set of n continuous variables and {loc} is a discrete state variable of finite type Ł
- A is a finite set
- $\mathcal{T} = \cup_{\ell} \mathcal{T}_{\ell}$ set of trajectories for X
 - For each $\tau \in \mathcal{T}_{\ell}$, $x \in X$ either (i) $d(x) = k_{\ell}$ or (ii) $d(x) \in [k_{\ell 1}, k_{\ell 2}]$
 - Equivalently, (i) $\tau(t)[x = \tau(0)[x + k_{\ell}t]$ (ii) $\tau(0)[x + k_{\ell 1}t \le \tau(t)[x \le \tau(0)[x + k_{\ell 2}t]$
- $\ensuremath{\mathcal{D}}$ is a set of transitions such that
 - Guards are described by rational clock constraings
 - $\langle x, l \rangle \rightarrow_a \langle x', l' \rangle$ implies if **dynamics** d(x) **changes** from ℓ to ℓ' then $x' \in [c_1, c_2]$, otherwise x' = x if d(x) is not changed

Slides adapted from Prof. Sayan Mitra's slides in Fall 2021

CSR Decidable for IRHA?

- Given an IRHA, check if a particular location is reachable from the initial states
- Is this problem decidable? Yes
- Key idea:
 - Construct a 2n-dimensional initialized multi-rate automaton that is bisimilar to the given IRHA
 - Construct a ITA that is bisimilar to the Singular TA

From IRHA to Singular HA conversion

For every variable create two variables---tracking the upper and lower bounds

Practical reachability

Tools: SpaceEX CORA C2E2 Flow* DryVR

Data structures critical for reachability

- Hyperrectangles
 - $[[g_1;g_2]] = \{x \in \mathbb{R}^n \mid \|x g_1\|_{\infty} \le \|g_2 g_1\|_{\infty}\} = \prod_i [g_{1i},g_{2i}]$
- Polyhedra
- Zonotopes [Girard 2005]
- Ellipsoids [Kurzhanskiy 2001]
- Support functions [Guernic et al. 2009]
- Generalized star set [Duggirala and Viswanathan 2018]

Reachability in practice

C2E2 generated safety certificate for a given user model

Verify no collision with uncertainties: speeds in [70, 85] mph and acceleration range of NPC

For a different user model C2E2 finds a corner case

Verify no collision with **uncertainties** like speeds in [70, 85] mph and **bigger** acceleration range of NPC