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Deadlines

Homework 2 due 3/10, 11:59 pm CT (no extension will be offered!)

Two writing problems + two programming problems

YOU SHOULD START TODAY! (if you haven’t started working on it)



HW 2
How to check your CROWN implementation for HardTanh?

Some sanity checks:

1. Without input perturbations (input lower bound = upper bound), your 

calculated lower and upper bound should be the same as clean prediction

2. In the case of (1), the slope for linear bound should be the gradient



HW 2
How to check your CROWN implementation for HardTanh?

Some sanity checks:

3. You can visualize your linear lower and upper bounds (example: sin)



Class project
Midterm project presentation: 3/26 and 3/28.

• 5-min presentations for each team. (5% of final grade)

• Slides due on 3/25. We will compile all slides into a single file for fast switching.

• Presentation includes problem setting, proposed methodology, and initial results.

• I will give you some feedback after your presentation (1-min)

In addition: each person should give feedback for 5 projects that interest you most on each day. (total 10 

feedbacks; count towards the 5% class participation grades. Feedback will be submitted to Canvas and 

also shared to peers. Feedback template will be given.)



Review: Hybrid Automaton
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automaton RimlessWheel(�, �: Real,  �: Nat)
  const �: Real := 2 �/�
  type Spokes: enumeration [1,...,n]
  actions
    impact
  variables
    pivot: Spokes :=1
    �:Real := 0
    �: Real := 0
  transitions
    impact
        pre � ≥ �/2
        eff pivot := pivot + 1 mod n
             � ≔− �/2
             � ≔ ��

    trajectories
        swing
        evolve
             d � = �
             � � =sin  � + � 
        invariant � ≤ �
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Review: Hybrid Automaton

�=  �, Θ, �, �, � 
• �: set of state variables

• � ⊆ 푣�� �  set of states

• Θ ⊆ � set of start states

• set of actions, A= E ∪ H

• �  ⊆ � × � × �
• �: set of trajectories for X

automaton RimlessWheel(�, �: Real,  �: Nat)
  const �: Real := 2 �/�
  type Spokes: enumeration [1,...,n]
  actions
    impact
  variables
    pivot: Spokes :=1
    �:Real := 0
    �: Real := 0
  transitions
    impact
        pre � ≥ �/2
        eff pivot := pivot + 1 mod n
             � ≔− �/2
             � ≔ ��

    trajectories
        swing
        evolve
             d � = �
             � � =sin  � + � 
        invariant � ≤ �
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How to prove invariants of hybrid automata?

Theorem 7.1. Given an HIOA � = ⟨�, Θ,  �, �,  �⟩, if a set of states � ⊆ 푣�� �  satisfies the 
following: 

• (Start condition) For any starting state � ∈ Θ,  � ∈ � and

• (Transition closure) For any action a ∈ �, if and �→��′ and � ∈ � then �′ ∈ �, and 

• (Trajectory closure) For any trajectory � ∈ � if �. 푓푠푡�푡� ∈ � then �. �푠푡�푡� ∈ � 
Then � is an inductive invariant of �.



How to prove invariants of hybrid automata
Theorem 7.1. Given an HIOA � = ⟨�, Θ,  �, �,  �⟩, if a set of states � ⊆ 푣�� �  satisfies the following: 

• (Start condition) For any starting state � ∈ Θ,  � ∈ � and

• (Transition closure) For any action a ∈ �, if and �→��′ and � ∈ � then �′ ∈ �, and 

• (Trajectory closure) For any trajectory � ∈ � if �. 푓푠푡�푡� ∈ � then �. �푠푡�푡� ∈ � 

Then � is an inductive invariant of �.

Proof. Consider any reachable state � ∈ 푅���ℎ�. By the definition of a reachable state, there exists an execution � of � 
with �. �푠푡�푡� = �.  We proceed by induction on the length of the execution �. For the base case, � consists of a single 
starting state � ∈ Θ, and, by the start condition, � ∈ �. For the inductive step, we consider two subcases:

Case 1: � = �′� � � , where � ∈ � and � �  is a point trajectory at � .

By the induction hypothesis, we know that �′. �푠푡�푡� ∈ �. 

By invoking the transition closure, we obtain � ∈ �. 

Case 2: � = �′�, where � is a trajectory of � and �. �푠푡�푡� = �

By the induction hypothesis, �′. �푠푡�푡� ∈ � and by

invoking the trajectory closure, we deduce that �. �푠푡�푡� = � ∈ �



An application Can you find some candidate invariant for the 
simple Bouncingball hybrid automaton?

automaton Bouncingball(c,h,g)

      variables: x: Reals := h, v: Reals := 0

      actions: bounce

      transitions:

            bounce

pre x = 0 /\ v < 0

eff v := -cv

       trajectories:

            freefall

evolve d(x) = v; d(v) = -g

invariant � ≥ �



An application Candidate invariant: ``stays above ground’’ 
�0: � ≥ 0 ≡  � ∈ 푣��  �, 푣    �⌈� ≥ 0  

Applying Theorem 7.1: 

• Consider any initial state � ∈ Θ; �⌈� = ℎ ≥ 0
• � ∈ �0

• Consider any transition �→�������′
• From precondition we know �⌈� = 0; from effect we know 

�′. � = �. � therefore �′⌈� = 0 ≥ 0
• �′ ∈ �0

• Consider any trajectory � ∈ �
• From mode invariant we know that for ∀푡 ∈

�.  ��� ,  � 푡 ⌈� ≥ 0
• It follows that �. �푠푡�푡�⌈� ≥ 0

automaton Bouncingball(c,h,g)

      variables: x: Reals := h, v: Reals := 0

      actions: bounce

      transitions:

            bounce

pre x = 0 /\ v < 0

eff v := -cv

       trajectories:

            freefall

evolve d(x) = v; d(v) = -g

invariant � ≥ �



An application Candidate invariant: ``stays above ground and 
below h’’ 
�ℎ: ℎ ≥ � ≥ 0
Applying Theorem 7.1: 

• Consider any initial state � ∈ Θ; �⌈� = ℎ
• � ∈ �ℎ

• Consider any transition �→�������′
• From precondition we know �⌈� = 0; from effect we 

know �′. � = �. � therefore �′⌈� = 0
• �′ ∈ �ℎ

• Consider any trajectory � ∈ �
• From mode invariant and inductive hypothesis we 

know that for ∀푡 ∈ �.  ��� ,  � 푡 ⌈� ≥ 0 and ,  � 0 ⌈� ∈
[0, ℎ] and that � is a solution of d(x) = v; d(v) = -g

• Is this adequate to infer �.  �푠푡�푡� ∈ �ℎ?

automaton Bouncingball(c,h,g)

      variables: x: Reals := h, v: Reals := 0

      actions: bounce

      transitions:

            bounce

pre x = 0 /\ v < 0

eff v := -cv

       trajectories:

            freefall

evolve d(x) = v; d(v) = -g

invariant � ≥ �



An application Candidate invariant: ``stays above ground and below h’’ 
�ℎ: ℎ ≥ � ≥ 0

Applying Theorem 7.1: 

• Consider any initial state � ∈ Θ; �⌈� = ℎ
• � ∈ �ℎ

• Consider any transition �→�������′
• From precondition we know �⌈� = 0; from effect we know 

�′. � = �. � therefore �′⌈� = 0
• �′ ∈ �ℎ

• Consider any trajectory � ∈ �
• From mode invariant and inductive hypothesis we know that 

for ∀푡 ∈ �.  ��� ,  � 푡 ⌈� ≥ 0 and ,  � 0 ⌈� ∈ [0, ℎ] and that 
� is a solution of d(x) = v; d(v) = -g

No, �ℎ: ℎ ≥ � ≥ 0 is not an inductive invariant! velocity 
unconstratined. How to fix it?

automaton Bouncingball(c,h,g)

      variables: x: Reals := h, v: Reals := 0

      actions: bounce

      transitions:

            bounce

pre x = 0 /\ v < 0

eff v := -cv

       trajectories:

            freefall

evolve d(x) = v; d(v) = -g

invariant � ≥ �

 



Strengthened 
invariant

Candidate invariant: ``stays above ground and below h’’ 
To prove using inductive invariant, strength it!
��: 푣2 − 2� ℎ�2� − � = 0

k is the number of bounces capturing the velocity 
information.

Applying Theorem 7.1: 

• Consider any initial state � ∈ Θ; �⌈� = ℎ; �⌈� = 0
• � ∈ ��

• Exercise: Finish the rest 

automaton Bouncingball(c,h,g)

      variables: x: Reals := h, v: Reals := 0

 k: Nat := 0

      actions: bounce

      transitions:

            bounce

pre x = 0 /\ v < 0

eff v := -cv; k:= k + 1

       trajectories:

            freefall

evolve d(x) = v; d(v) = -g

invariant � ≥ �



Strengthened 
invariant

Candidate invariant: ``stays above ground and below h’’ 
To prove using inductive invariant, strength it!
��: 푣2 − 2� ℎ�2� − � = 0
�ℎ: ℎ ≥ � ≥ 0

Applying Theorem 7.1 you can prove that  ��⋀�ℎ is an 
(stronger) inductive invariant. So �ℎ is proved.

automaton Bouncingball(c,h,g)

      variables: x: Reals := h, v: Reals := 0

 k: Nat := 0

      actions: bounce

      transitions:

            bounce

pre x = 0 /\ v < 0

eff v := -cv; k:= k + 1

       trajectories:

            freefall

evolve d(x) = v; d(v) = -g

invariant � ≥ �



Summary: invariants of hybrid automaton

• Theorem 7.1 gives a sufficient condition for proving inductive 
invariants

• Not all invariants are inductive

• We often have to strengthen invariants to make them inductive

• Invariants can also be proven using alternative methods (e.g., barrier 
functions, subangential conditions)

• Read examples in Chapter 7



Back to the verification problem

Proof 
Certificate

System 
Model/Code/neural 
network & Property

Bug traceAlgorithm
or 

Method

System. A 
program/system for lane 
keeping control for 
vehicles

Requirement. The 
vehicle does not go 
outside the lane 
boundaries

Verification tool

counterexample. A 
particular environment 
situation (lane geometry, 
sensor failure, computer 
configuration) that 
makes the vehicle go 
outside lanes

A mathematical proof 
that establishes that for 
all allowed inputs and 
environments the vehicle 
stays with the lane

Model/assumptions: 
automaton, ODEs, hybrid 
automata 

When can we build such a tool? How expensive is it? How well is it going to work? Under what assumptions? 

Environment
/ Track

�

�

�
= 푓 �,  � 

Percepti
on

Controlle
r 

program



Requirements and safety in the real world

Requirements analysis: Set of tasks that ultimately lead to the determination and 
documentation of the design requirements that the product must meet: 

E.g. “0 to 60 mph in 4 seconds on flat road”, 

“Petrol car can emit no more than 60mg/km” EURO 6.

Safety standards: Provide guidelines and processes for developing safety-critical 
systems. 

E.g. DO-178C standard is enforced by the FAA for certifying aviation software

ISO2626 is used for functional safety of cars

Standards for Advanced Autonomous and AI-enabled systems are being developed





Requirements thus far: Invariants and stability

Models automaton, hybrid automaton � = 〈�, Θ,  �,  �, �〉 

Requirements: � ⊆ 푣�� � ,  such that 푅���ℎ� Θ ⊆ �
Given an unsafe set � ⊆ 푣�� �  we can check whether � ∩ � = ∅ to 
infer that 푅���ℎ� Θ ∩ � = ∅ 

Asymptotic stability: Does � x0, t → 0 as 푡 → 0.



What are the requirements that we haven’t 
discussed yet?

What about more general types of requirements, e.g., 

“Eventually the light turns red and prior to that the orange light blinks”

“After failures, eventually there is just one token in the system”

How to express and verify such properties?



Introduction to temporal logics
Temporal logics: Formal language for representing, and reasoning 
about, propositions qualified in terms of a sequence

 

Amir Pnueli received the ACM Turing Award (1996) for seminal 
work introducing temporal logic into computer science and for 
outstanding contributions to program verification.

Large follow-up literature, e.g., different temporal logics MTL, MITL, 
PCTL, ACTL, STL, applications in synthesis and monitoring



Setup: States are labeled

We have a set of atomic propositions (AP)

These are the properties that hold in each state, e.g., “light is green”, 
“has 2 tokens”

We have a labeling function that assigns to each state, a set of 
propositions that hold at that state

�: � → 2��

Lecture Slides by Sayan Mitra mitras@illinois.edu



Notations

Automata with state labels but no action labels (“Kripke structure”)

� = ⟨�, �0, �, �⟩

�� =  �, �, � 

� �0 =  �, � �0 
 �, � 

�1 
 �, � 

�2 
 � 



Computational tree logic (CTL)

Unfolding the automaton

We get a tree, representing all possible 
compuations

A CTL formula allows us to specify 
subsets of paths in this tree 

�0 
 �, � 

�1 
 �, � 

�2 
 � 

 �, � 

 �, �  � 

 �, �  �  � 

 �, �  �  �  � 



CTL quantifiers

Path quantifiers
E: Exists some path
A: All paths

Temporal operators
X: Next state
U: Until
F: Eventually
G: Globally (Always)

More details after the Spring break!

�: “no collision”
Invariance: ���

�: “one token”
Stabilization: ���


