
Lecture 16: Invariants in Cyberphysical Systems
Verification requirements, Temporal logics

Huan Zhang
huan@huan-zhang.com

Slides adapted from Prof. Sayan Mitra’s slides in Fall 2021

Deadlines

Homework 2 due 3/10, 11:59 pm CT (no extension will be offered!)

Two writing problems + two programming problems

YOU SHOULD START TODAY! (if you haven’t started working on it)

HW 2
How to check your CROWN implementation for HardTanh?

Some sanity checks:

1. Without input perturbations (input lower bound = upper bound), your

calculated lower and upper bound should be the same as clean prediction

2. In the case of (1), the slope for linear bound should be the gradient

HW 2
How to check your CROWN implementation for HardTanh?

Some sanity checks:

3. You can visualize your linear lower and upper bounds (example: sin)

Class project
Midterm project presentation: 3/26 and 3/28.

• 5-min presentations for each team. (5% of final grade)

• Slides due on 3/25. We will compile all slides into a single file for fast switching.

• Presentation includes problem setting, proposed methodology, and initial results.

• I will give you some feedback after your presentation (1-min)

In addition: each person should give feedback for 5 projects that interest you most on each day. (total 10

feedbacks; count towards the 5% class participation grades. Feedback will be submitted to Canvas and

also shared to peers. Feedback template will be given.)

Review: Hybrid Automaton
✓

✓̇

spoke1spoke1 spoke2

spoke2 ✓̇

✓

↵↵

automaton RimlessWheel(�, �: Real, �: Nat)
 const �: Real := 2 �/�
 type Spokes: enumeration [1,...,n]
 actions
 impact
 variables
 pivot: Spokes :=1
 �:Real := 0
 �: Real := 0
 transitions
 impact
 pre � ≥ �/2
 eff pivot := pivot + 1 mod n
 � ≔− �/2
 � ≔ ��

 trajectories
 swing
 evolve
 d � = �
 � � =sin � + �
 invariant � ≤ �

2

θ
θ

ω

ω

αα

Review: Hybrid Automaton

�= �, Θ, �, �, �
• �: set of state variables

• � ⊆ 푣�� � set of states

• Θ ⊆ � set of start states

• set of actions, A= E ∪ H

• � ⊆ � × � × �
• �: set of trajectories for X

automaton RimlessWheel(�, �: Real, �: Nat)
 const �: Real := 2 �/�
 type Spokes: enumeration [1,...,n]
 actions
 impact
 variables
 pivot: Spokes :=1
 �:Real := 0
 �: Real := 0
 transitions
 impact
 pre � ≥ �/2
 eff pivot := pivot + 1 mod n
 � ≔− �/2
 � ≔ ��

 trajectories
 swing
 evolve
 d � = �
 � � =sin � + �
 invariant � ≤ �

2

How to prove invariants of hybrid automata?

Theorem 7.1. Given an HIOA � = ⟨�, Θ, �, �, �⟩, if a set of states � ⊆ 푣�� � satisfies the
following:

• (Start condition) For any starting state � ∈ Θ, � ∈ � and

• (Transition closure) For any action a ∈ �, if and �→��′ and � ∈ � then �′ ∈ �, and

• (Trajectory closure) For any trajectory � ∈ � if �. 푓푠푡�푡� ∈ � then �. �푠푡�푡� ∈ �
Then � is an inductive invariant of �.

How to prove invariants of hybrid automata
Theorem 7.1. Given an HIOA � = ⟨�, Θ, �, �, �⟩, if a set of states � ⊆ 푣�� � satisfies the following:

• (Start condition) For any starting state � ∈ Θ, � ∈ � and

• (Transition closure) For any action a ∈ �, if and �→��′ and � ∈ � then �′ ∈ �, and

• (Trajectory closure) For any trajectory � ∈ � if �. 푓푠푡�푡� ∈ � then �. �푠푡�푡� ∈ �

Then � is an inductive invariant of �.

Proof. Consider any reachable state � ∈ 푅���ℎ�. By the definition of a reachable state, there exists an execution � of �
with �. �푠푡�푡� = �. We proceed by induction on the length of the execution �. For the base case, � consists of a single
starting state � ∈ Θ, and, by the start condition, � ∈ �. For the inductive step, we consider two subcases:

Case 1: � = �′� � � , where � ∈ � and � � is a point trajectory at � .

By the induction hypothesis, we know that �′. �푠푡�푡� ∈ �.

By invoking the transition closure, we obtain � ∈ �.

Case 2: � = �′�, where � is a trajectory of � and �. �푠푡�푡� = �

By the induction hypothesis, �′. �푠푡�푡� ∈ � and by

invoking the trajectory closure, we deduce that �. �푠푡�푡� = � ∈ �

An application Can you find some candidate invariant for the
simple Bouncingball hybrid automaton?

automaton Bouncingball(c,h,g)

 variables: x: Reals := h, v: Reals := 0

 actions: bounce

 transitions:

 bounce

pre x = 0 /\ v < 0

eff v := -cv

 trajectories:

 freefall

evolve d(x) = v; d(v) = -g

invariant � ≥ �

An application Candidate invariant: ``stays above ground’’
�0: � ≥ 0 ≡ � ∈ 푣�� �, 푣 �⌈� ≥ 0

Applying Theorem 7.1:

• Consider any initial state � ∈ Θ; �⌈� = ℎ ≥ 0
• � ∈ �0

• Consider any transition �→�������′
• From precondition we know �⌈� = 0; from effect we know

�′. � = �. � therefore �′⌈� = 0 ≥ 0
• �′ ∈ �0

• Consider any trajectory � ∈ �
• From mode invariant we know that for ∀푡 ∈

�. ��� , � 푡 ⌈� ≥ 0
• It follows that �. �푠푡�푡�⌈� ≥ 0

automaton Bouncingball(c,h,g)

 variables: x: Reals := h, v: Reals := 0

 actions: bounce

 transitions:

 bounce

pre x = 0 /\ v < 0

eff v := -cv

 trajectories:

 freefall

evolve d(x) = v; d(v) = -g

invariant � ≥ �

An application Candidate invariant: ``stays above ground and
below h’’
�ℎ: ℎ ≥ � ≥ 0
Applying Theorem 7.1:

• Consider any initial state � ∈ Θ; �⌈� = ℎ
• � ∈ �ℎ

• Consider any transition �→�������′
• From precondition we know �⌈� = 0; from effect we

know �′. � = �. � therefore �′⌈� = 0
• �′ ∈ �ℎ

• Consider any trajectory � ∈ �
• From mode invariant and inductive hypothesis we

know that for ∀푡 ∈ �. ��� , � 푡 ⌈� ≥ 0 and , � 0 ⌈� ∈
[0, ℎ] and that � is a solution of d(x) = v; d(v) = -g

• Is this adequate to infer �. �푠푡�푡� ∈ �ℎ?

automaton Bouncingball(c,h,g)

 variables: x: Reals := h, v: Reals := 0

 actions: bounce

 transitions:

 bounce

pre x = 0 /\ v < 0

eff v := -cv

 trajectories:

 freefall

evolve d(x) = v; d(v) = -g

invariant � ≥ �

An application Candidate invariant: ``stays above ground and below h’’
�ℎ: ℎ ≥ � ≥ 0

Applying Theorem 7.1:

• Consider any initial state � ∈ Θ; �⌈� = ℎ
• � ∈ �ℎ

• Consider any transition �→�������′
• From precondition we know �⌈� = 0; from effect we know

�′. � = �. � therefore �′⌈� = 0
• �′ ∈ �ℎ

• Consider any trajectory � ∈ �
• From mode invariant and inductive hypothesis we know that

for ∀푡 ∈ �. ��� , � 푡 ⌈� ≥ 0 and , � 0 ⌈� ∈ [0, ℎ] and that
� is a solution of d(x) = v; d(v) = -g

No, �ℎ: ℎ ≥ � ≥ 0 is not an inductive invariant! velocity
unconstratined. How to fix it?

automaton Bouncingball(c,h,g)

 variables: x: Reals := h, v: Reals := 0

 actions: bounce

 transitions:

 bounce

pre x = 0 /\ v < 0

eff v := -cv

 trajectories:

 freefall

evolve d(x) = v; d(v) = -g

invariant � ≥ �

Strengthened
invariant

Candidate invariant: ``stays above ground and below h’’
To prove using inductive invariant, strength it!
��: 푣2 − 2� ℎ�2� − � = 0

k is the number of bounces capturing the velocity
information.

Applying Theorem 7.1:

• Consider any initial state � ∈ Θ; �⌈� = ℎ; �⌈� = 0
• � ∈ ��

• Exercise: Finish the rest

automaton Bouncingball(c,h,g)

 variables: x: Reals := h, v: Reals := 0

 k: Nat := 0

 actions: bounce

 transitions:

 bounce

pre x = 0 /\ v < 0

eff v := -cv; k:= k + 1

 trajectories:

 freefall

evolve d(x) = v; d(v) = -g

invariant � ≥ �

Strengthened
invariant

Candidate invariant: ``stays above ground and below h’’
To prove using inductive invariant, strength it!
��: 푣2 − 2� ℎ�2� − � = 0
�ℎ: ℎ ≥ � ≥ 0

Applying Theorem 7.1 you can prove that ��⋀�ℎ is an
(stronger) inductive invariant. So �ℎ is proved.

automaton Bouncingball(c,h,g)

 variables: x: Reals := h, v: Reals := 0

 k: Nat := 0

 actions: bounce

 transitions:

 bounce

pre x = 0 /\ v < 0

eff v := -cv; k:= k + 1

 trajectories:

 freefall

evolve d(x) = v; d(v) = -g

invariant � ≥ �

Summary: invariants of hybrid automaton

• Theorem 7.1 gives a sufficient condition for proving inductive
invariants

• Not all invariants are inductive

• We often have to strengthen invariants to make them inductive

• Invariants can also be proven using alternative methods (e.g., barrier
functions, subangential conditions)

• Read examples in Chapter 7

Back to the verification problem

Proof
Certificate

System
Model/Code/neural
network & Property

Bug traceAlgorithm
or

Method

System. A
program/system for lane
keeping control for
vehicles

Requirement. The
vehicle does not go
outside the lane
boundaries

Verification tool

counterexample. A
particular environment
situation (lane geometry,
sensor failure, computer
configuration) that
makes the vehicle go
outside lanes

A mathematical proof
that establishes that for
all allowed inputs and
environments the vehicle
stays with the lane

Model/assumptions:
automaton, ODEs, hybrid
automata

When can we build such a tool? How expensive is it? How well is it going to work? Under what assumptions?

Environment
/ Track

�

�

�
= 푓 �, �

Percepti
on

Controlle
r

program

Requirements and safety in the real world

Requirements analysis: Set of tasks that ultimately lead to the determination and
documentation of the design requirements that the product must meet:

E.g. “0 to 60 mph in 4 seconds on flat road”,

“Petrol car can emit no more than 60mg/km” EURO 6.

Safety standards: Provide guidelines and processes for developing safety-critical
systems.

E.g. DO-178C standard is enforced by the FAA for certifying aviation software

ISO2626 is used for functional safety of cars

Standards for Advanced Autonomous and AI-enabled systems are being developed

Requirements thus far: Invariants and stability

Models automaton, hybrid automaton � = 〈�, Θ, �, �, �〉

Requirements: � ⊆ 푣�� � , such that 푅���ℎ� Θ ⊆ �
Given an unsafe set � ⊆ 푣�� � we can check whether � ∩ � = ∅ to
infer that 푅���ℎ� Θ ∩ � = ∅

Asymptotic stability: Does � x0, t → 0 as 푡 → 0.

What are the requirements that we haven’t
discussed yet?

What about more general types of requirements, e.g.,

“Eventually the light turns red and prior to that the orange light blinks”

“After failures, eventually there is just one token in the system”

How to express and verify such properties?

Introduction to temporal logics
Temporal logics: Formal language for representing, and reasoning
about, propositions qualified in terms of a sequence

Amir Pnueli received the ACM Turing Award (1996) for seminal
work introducing temporal logic into computer science and for
outstanding contributions to program verification.

Large follow-up literature, e.g., different temporal logics MTL, MITL,
PCTL, ACTL, STL, applications in synthesis and monitoring

Setup: States are labeled

We have a set of atomic propositions (AP)

These are the properties that hold in each state, e.g., “light is green”,
“has 2 tokens”

We have a labeling function that assigns to each state, a set of
propositions that hold at that state

�: � → 2��

Lecture Slides by Sayan Mitra mitras@illinois.edu

Notations

Automata with state labels but no action labels (“Kripke structure”)

� = ⟨�, �0, �, �⟩

�� = �, �, �

� �0 = �, � �0
 �, �

�1
 �, �

�2
 �

Computational tree logic (CTL)

Unfolding the automaton

We get a tree, representing all possible
compuations

A CTL formula allows us to specify
subsets of paths in this tree

�0
 �, �

�1
 �, �

�2
 �

 �, �

 �, � �

 �, � � �

 �, � � � �

CTL quantifiers

Path quantifiers
E: Exists some path
A: All paths

Temporal operators
X: Next state
U: Until
F: Eventually
G: Globally (Always)

More details after the Spring break!

�: “no collision”
Invariance: ���

�: “one token”
Stabilization: ���

