Lecture 14: Modeling Cyberphysical Systems
Hybrid systems

Huan Zhang
huan@huan-zhang.com

Slides adapted from Prof. Sayan Mitra’s slides in Fall 2021
Deadlines

Homework 2 due 3/10, 11:59 pm CT

Two writing problems + two programming problems

YOU SHOULD START TODAY! (if you haven’t started working on it)
Class project

Over 25+ project proposals received

You might be contacted by me for (optionally) forming a team of 2 if your proposed project is the same as another student.

Midterm project presentation: 3/26 and 3/28.

• **5-min** presentations for each team. (5% of final grade)

• Slides due on 3/25. We will compile all slides into a single file for fast switching.

• Presentation includes problem setting, proposed methodology, and initial results.

• I will give you some feedback after your presentation (1-min)

In addition: each person should give feedback for 5 projects that interest you most on each day. (total 10 feedbacks; count towards the **5% class participation** grades. Feedback will be submitted to Canvas and also shared to peers. Feedback template will be given.)
Review: dynamical systems

Behaviors of physical processes are described in terms of instantaneous laws.

Common notation: \[\frac{dx(t)}{dt} = f(x(t), u(t), t) \quad \text{Eq. (1)} \]

where time \(t \in \mathbb{R} \); state \(x(t) \in \mathbb{R}^n \); input \(u(t) \in \mathbb{R}^m \); \(f: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R} \rightarrow \mathbb{R}^n \)

Example. \[\frac{dx(t)}{dt} = v(t) \ ; \quad \frac{dv(t)}{dt} = -g \]

Initial value problem: Given system (1) and initial state \(x_0 \in \mathbb{R}^n, \ t_0 \in \mathbb{R} \), and input \(u: \mathbb{R} \rightarrow \mathbb{R}^m \), find a state trajectory or solution of (1).
Review: Linear time invariant system

\[\dot{x}(t) = Ax(t) + Bu(t) \]

Define Matrix exponential:

\[e^{At} = 1 + At + \frac{1}{2!}(At)^2 + \ldots = \sum_{k=0}^{\infty} \frac{1}{k!}(At)^k \]

Theorem. \(\xi(t, x_0, u) = \Phi(t)x_0 + \int_{t_0}^{t} e^{A(t-\tau)}Bu(\tau)d\tau \)

Here \(\Phi(t) = e^{At} \) is the state-transition matrix

Zero input \quad Zero state
Review Lyapunov stability

Lyapunov stability: The system \(\dot{x}(t) = f(x(t)) \) is said to be **Lyapunov stable** (at the origin) if

\[\forall \varepsilon > 0, \exists \delta_\varepsilon > 0 \text{ such that } |x_0| \leq \delta_\varepsilon \Rightarrow \forall t \geq 0, \ |\xi(x_0, t)| \leq \varepsilon. \]

"if we start the system close enough to the equilibrium, it remains close enough"

How is this related to invariants and reachable states?
Review: Asymptotically stability

The system $\dot{x}(t) = f(x(t))$ is said to be **Asymptotically stable (at the origin)** if it is Lyapunov stable and

$$\exists \delta_2 > 0 \text{ such that } \forall \|x_0\| \leq \delta_2 \text{ as } t \to \infty, \ |\xi(x_0, t)| \to 0.$$

If the property holds for any δ_2 then **Globally Asymptotically Stable**
Review: Verifying Stability

Theorem. (Lyapunov) Consider the system (1) with state space $x \in \mathbb{R}^n$ and suppose there exists a positive definite, continuously differentiable function $V: \mathbb{R}^n \to \mathbb{R}$. The system is:

1. **Lyapunov stable** if $\dot{V}(x) = \frac{\partial V}{\partial x} f(x) \leq 0$, for all $x \neq 0$
2. **Asymptotically stable** if $\dot{V}(x) < 0$, for all $x \neq 0$
3. It is globally AS if V is also radially unbounded.

 (V is radially unbounded if $||x|| \to \infty \Rightarrow V(x) \to \infty$)
Today’s lecture: Hybrid systems

- Discrete transition systems, automata
- Dynamical systems
 - Differential inclusions
- Markov chains
- Probabilistic automata, Markov decision processes (MDP)
- Continuous time, continuous state MDPs
- Stochastic Hybrid systems

Slides adapted from Prof. Sayan Mitra’s slides in Fall 2021
Outline

• Hybrid automata
• Executions
• Special kinds of executions: admissible, Zeno
• Hybrid stability
Recall from Lecture 2. language defines an automaton

An **automaton** is a tuple $\mathcal{A} = \langle X, \Theta, A, D \rangle$ where

- X is a set of names of variables; each variable $x \in X$ is associated with a type, $\text{type}(x)$
 - A valuation for X maps each variable in X to its type
 - Set of all valuations: $\text{val}(X)$ this is sometimes identified as the **state space** of the automaton
- $\Theta \subseteq \text{val}(X)$ is the set of **initial** or **start states**
- A is a set of names of **actions** or **labels**
- $D \subseteq \text{val}(X) \times A \times \text{val}(X)$ is the set of **transitions**
 - a transition is a triple (u, a, u')
 - We write it as $u \xrightarrow{a} u'$

```plaintext
automaton DijkstraTR(N: Nat, K: Nat), where K > N
type ID: enumeration [0,...,N-1]
type Val: enumeration [0,...,K]
actions
  update(i:ID)
variables
  x:[ID -> Val]
transitions
  update(i:ID)
    pre i = 0 \land x[i] = x[N-1]
    eff x[i] := (x[i] + 1) % K
  update(i:ID)
    pre i >0 \land x[i] = x[i-1]
    eff x[i] := x[i-1]
```
Bouncing Ball: Hello world of CPS

automaton Bouncingball(c,h,g)

variables: \(x: \text{Reals} := h \), \(v: \text{Reals} := 0 \)

actions: bounce

transitions:
- bounce

 pre \(x = 0 \land v < 0 \)

 eff \(v := -cv \)

trajectories:
- freefall

 \(d(x) = v \)

 \(d(v) = -g \)

 \(x \geq 0 \)

Graphical Representation used in many articles

Slides adapted from Prof. Sayan Mitra’s slides in Fall 2021
Trajectories

Given a set of variables X and a **time interval** J which can be of the form $[0, T]$, $[0, T)$ or $[0, \infty)$, a **trajectory** for X is a function $\tau: J \rightarrow \text{val}(X)$

We will specify τ as **solutions of differential equations**

The **first state** of a trajectory τ. $\text{fstate}: = \tau(0)$

If τ is right closed then the **limit state** of a trajectory τ. $\text{lstate} = \tau(T)$

If τ is finite then **duration** of τ is $\tau.\text{dur} = T$

The domain of $\tau.\text{dom} = J$

A **point trajectory** is a trajectory with $\tau.\text{dom} = [0,0]$

Operations on trajectories: prefix, suffix, concatenation

A **prefix** τ' of a trajectory τ: $[0, T] \rightarrow \text{val}(X)$, is a function $\tau': [0, T'] \rightarrow \text{val}(X)$ such that $T' \leq T$ and $\tau'(t) = \tau(t)$ for all $t \in \tau'.\text{dom}$
Hybrid Automaton

\[\mathcal{A} = (X, \Theta, A, \mathcal{D}, \mathcal{T}) \]

- \(X \): set of \textbf{state variables}
 - \(Q \subseteq \text{val}(X) \) set of \textbf{states}
- \(\Theta \subseteq Q \) set of \textbf{start states}
- set of \textbf{actions}, \(A = E \cup H \)
- \(\mathcal{D} \subseteq Q \times A \times Q \)
- \(\mathcal{T} \): set of \textbf{trajectories} for \(X \) which is closed under prefix, suffix, and concatenation

Closed: For every \(\tau \) in \(\mathcal{T} \), any suffix \(\tau' \) or \(\tau \) is also in \(\mathcal{T} \)
Semantics: Executions and Traces

• An execution fragment of \mathcal{A} is an (possibly infinite) alternating (A, X)-sequence $\alpha = \tau_0 a_1 \tau_1 a_2 \tau_2 \ldots$ where

 $\forall i, \tau_i. \text{lstate} \xrightarrow{a_{i+1}} \tau_{i+1}. \text{fstate}$

• If $\tau_0. \text{fstate} \in \Theta$ then α is an execution

• $\text{Execs}_\mathcal{A}$ set of all executions

• The first state of an execution α is:

 $\alpha. \text{fstate} = \tau_0. \text{fstate}$

• If the execution α is finite and closed:

 $\tau_0 a_1 \tau_1 a_2 \tau_2 \ldots \tau_k$ then $\alpha. \text{lstate} = \tau_k. \text{lstate}$

• A state x is reachable if there exists an execution α with $\alpha. \text{lstate} = x$
Semantics: Executions and Traces

- An **execution fragment** of \mathcal{A} is an (possibly infinite) alternating (A, X)-sequence $\alpha = \tau_0 a_1 \tau_1 a_2 \tau_2 \ldots$ where
 - $\forall i, \tau_i. lstate \xrightarrow{a_{i+1}} \tau_{i+1}. fstate$

- If $\tau_0.fstate \in \Theta$ then α is an **execution**

- $\text{Execs}_{\mathcal{A}}$ set of all executions

- The first state of an execution α is:
 $\alpha.fstate = \tau_0.fstate$

- If the execution α is **finite and closed**:
 $\tau_0 a_1 \tau_1 a_2 \tau_2 \ldots \tau_k$ then $\alpha.lstate = \tau_k.lstate$

- A state x is reachable if there exists an execution α with $\alpha.lstate = x$
Thermostat variations

automaton Thermostat$(u, l, K, h : \text{Real})$ where $u > l$

type Status enumeration [on, off]

actions

`turnOn; turnOff;`

variables

$x: \text{Real} := l \quad \text{loc: Status} := \text{on}$

transitions

`turnOn`
`pre $x \leq l \land \text{loc=off}$`
`eff loc := on`

`turnOff`
`pre $x \geq u \land \text{loc=on}$`
`eff loc := off`

trajectories

`modeOn`
`evolve $d(x) = K(h - x)$`
`invariant loc = on \land x \leq u`

`modeOff`
`evolve $d(x) = -Kx$`
`invariant loc = off \land x \geq l`

- Determinism vs nondeterminism
- mode invariants
Another Example: Periodically Sending Process

Automaton PeriodicSend\((u, f)\)

variables:
- clock: Reals := 0, z:Reals

actions: send\((m:\text{Reals})\)

transitions:
- send\((m)\)
 - **pre** \((\text{clock} = u) \land (m = z)\)
 - **eff** clock := 0

trajectories:
- Loc1
- evolve \(d(\text{clock}) = 1, d(z) = f(z)\)
- invariant clock \(\leq u\)
Special kinds of executions

• **Infinite**: Infinite sequence of transitions and trajectories
 \[\tau_0, a_1, \tau_1, a_2, \tau_2, \ldots \]

• **Closed**: Finite with final trajectory with closed domain
 \[\tau_0, a_1, \tau_1, a_2, \tau_2, \ldots, \tau_k \text{ and } \tau_k \cdot dom = [0, T] \]

• **Admissible**: Infinite duration
 • May or may not be infinite
 • \[\tau_0, a_1, \tau_1, a_2, \tau_2, \ldots \]
 • \[\tau_0, a_1, \tau_1, a_2, \tau_2, \ldots, \tau_k \text{ with } \tau_k \cdot dom = [0, \infty) \]

• **Zeno**: Infinite but not admissible
 • Infinite number of transitions in finite time

Slides adapted from Prof. Sayan Mitra’s slides in Fall 2021
Zeno’s Paradox

Achilles runs 10 times faster than the tortoise, but the turtle gets to start 1 second earlier. Can Achilles ever catch Turtle?

After $1/10^{th}$ of a second, Achilles reaches where the Turtle (T) started, and T has a head start of $1/10^{th}$ second. After another $1/100^{th}$ of a second, A catches up to where T was at $t=1/10$ sec, but T has a head start of $1/100^{th}$...

T is always ahead ...

Lesson: Mixing discrete transitions with continuous motion can be tricky!
Zeno’s Paradox: bouncing ball

• Infinite number of bounces to come to reset!
• Yet it needs finite time to come to reset

• The time for each bounce (e.g., $t_1 - t_0$, $t_2 - t_1$, etc) is a geometric series

Read: https://www.millersville.edu/physics/experiments/045/
Defining stability of hybrid automata

• Given an *admissible* (infinite duration) execution \(\alpha = \tau_0 \ a_1 \ \tau_1 a_2 \tau_2 \ldots \)

• To reason about stability of an execution, we would like to view an execution as \(\alpha: [0, \infty) \rightarrow val(X) \)

• But, how can we define \(\alpha(t) \)?

• define \(\alpha(t_s) = \alpha'.lstate \) where \(\alpha' \) is the longest prefix of \(\alpha \) with \(\alpha'.ltime = t_s \)
Defining stability of hybrid automata

• An hybrid automata is globally uniformly asymptotically stable if:
• For any $\varepsilon > 0$ and any state v_0, there is a time T such that for any execution fragment α starting from v_0, for all $t \geq T$, $||\alpha(t)|| < \varepsilon$
Hybrid Instability

Can we verify the stability of a hybrid system by just verifying the stability of each mode?

Each of the modes of a walking robot are asymptotically stable.
Is it possible to switch between them to make the system unstable?
By switching between them, the system becomes unstable.
Rimless wheel: another example of hybrid system
Rimless wheel

automaton RimlessWheel(\(\alpha, \mu : \text{Real}, \ n : \text{Nat} \))
const \(\beta : \text{Real} := 2 \pi / n \)
type Spokes: enumeration [1,...,n]
actions
impact
variables
pivot: Spokes :=1
\(\theta : \text{Real} := 0 \)
\(\omega : \text{Real} := 0 \)
transitions
impact
\(\text{pre } \theta \geq \beta / 2 \)
\(\text{eff } \text{pivot} := \text{pivot} + 1 \text{ mod } n \)
\(\theta := - \beta / 2 \)
\(\omega := \mu \omega \)

trajectories
swing
evolve
\(\text{d}(\theta) = \omega \)
\(\text{d}(\omega) = \sin (\theta + \alpha) \)
invariant \(\theta \leq \frac{\beta}{2} \)
Invariants and reachability

• A state x of automaton \mathcal{A} is **reachable** if there exists an execution α with $\alpha.lstate = x$

• $\text{Reach}_\mathcal{A}(\Theta)$ is the set of all reachable state from Θ

• $\text{Reach}_\mathcal{A}(\Theta, T)$ is the set of states reachable within time T

• $\text{Reach}_\mathcal{A}(\Theta, k)$ is the set of states reachable within k transitions

• $\text{Reach}_\mathcal{A}(\Theta, T, k)$ is the set of states reachable up to time k transitions and time T

• An invariant $I \subseteq \text{val}(X)$ is a set of states that contains $\text{Reach}_\mathcal{A}(\Theta)$