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Deadlines

Homework 2 due 3/10, 11:59 pm CT

Two writing problems + two programming problems

YOU SHOULD START TODAY! (if you haven’t started working on it)



Class project
Over 25+ project proposals recieved

You might be contacted by me for (optionally) forming a team of 2 if your proposed project is the same as 

another student.

Midterm project presentation: 3/26 and 3/28.

• 5-min presentations for each team. (5% of final grade)

• Slides due on 3/25. We will compile all slides into a single file for fast switching.

• Presentation includes problem setting, proposed methodology, and initial results.

• I will give you some feedback after your presentation (1-min)

In addition: each person should give feedback for 5 projects that interest you most on each day. (total 10 

feedbacks; count towards the 5% class participation grades. Feedback will be submitted to Canvas and 

also shared to peers. Feedback template will be given.)



Review: dynamical systems

Behaviors of physical processes are described in terms of instantaneous laws

Common notation: 푑� � 
푑�

= � � � , � � , �  −  퐸�.  1  

where time � ∈ ℝ; state � � ∈ ℝ�;   퐢퐧���   � � ∈ ℝ�;  �: ℝ� ×  ℝ� ×  ℝ → ℝ�

Example. 
푑� � 
푑�

= � �  ; 
푑� � 
푑�

=− �

Initial value problem: Given system (1) and initial state �0 ∈ ℝ�,  �0 ∈ ℝ, and input u:ℝ → ℝ�, find a 
state trajectory or solution of (1).



Review: Linear time invariant system
� � = 퐴� � + 퐵� � 

Define Matrix exponential:

��� = 1 + 퐴� +
1
2!

 퐴� 2 +  … =  
0

∞
1
�!

 퐴� �

Theorem. � �, �0, � = Φ � �0 +  �0
� e� �−� 퐵� � 푑�

Here Φ � : = ��� is the state-transition matrix
Zero stateZero input



Review Lyapunov stability
Lyapunov stability: The system � � = � � �   is said to be Lyapunov 
stable (at the origin) if 
 ∀� > 0,  ∃ �� > 0 such that  �0 ≤ �� ⇒ ∀ t ≥ 0,   � �0, �  ≤ �.

“if we start the system close enough to the equilibrium, it remains close 
enough”

How is this related to 
invariants and 
reachable states ?

��

�
�0



Review: Asymptotically stability
The system � � = � � �   is said to be Asymptotically stable (at the 
origin) if it is Lyapunov stable and 

 ∃�2 > 0 such that ∀ �0 ≤ �2 as t → ∞,   � �0, �  → �.
If the property holds for any �2 then Globally Asymptotically Stable

�2
�0



Review: Verifying Stability

Theorem. (Lyapunov) Consider the system (1) with state space � ∈ ℝ� 
and suppose there exists a positive definite, continuously differentiable 
function �:ℝ� → ℝ. The system is: 

1. Lyapunov stable if � � = ��
��

� � ≤ 0, for all � ≠ 0

2. Asymptotically stable if � � < 0, for all � ≠ 0
3. It is globally AS if V is also radially unbounded. 

 � is radially unbounded if   �  → ∞ ⇒ � � → ∞)



Today’s lecture: Hybrid systems

Discrete transition 
systems, automata
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Markov chains

Probabilistic automata, 
Markov decision processes 
(MDP)

Continuous time, 
continuous state MDPs

Stochastic Hybrid systems

Dynamical systems
Differential 
inclusions

Hybrid systems



Outline

• Hybrid automata

• Executions

• Special kinds of executions: admissible, Zeno

• Hybrid stability



Recall from Lecture 2. language defines an automaton

An automaton is a tuple � = 〈�, Θ,  퐴,  �〉 where

• � is a set of names of variables; each variable � ∈
� is associated with a type, �푦�� � 
• A valuation for � maps each variable in X to its type
• Set of all valuations:��� �  this is sometimes identified 

as the state space of the automaton

• Θ ⊆ ��� �  is the set of initial or start states

• 퐴 is a set of names of actions or labels

• � ⊆ ��� � × 퐴 × ��� �  is the set of transitions
• a transition is a triple  �, �, �’  
• We write it as �→��′

automaton DijkstraTR(N:Nat, K:Nat), where K > N
  type ID: enumeration [0,...,N-1]
  type Val: enumeration [0,...,K]
  actions
      update(i:ID)
  variables
      x:[ID -> Val]
   transitions
      update(i:ID) 
        pre i = 0 /\ x[i] = x[N-1]
        eff x[i] := (x[i] + 1) %  K
   
       update(i:ID)
         pre i >0  /\ x[i] ~= x[i-1]
         eff x[i] := x[i-1]



Bouncing Ball: Hello world of CPS

automaton Bouncingball(c,h,g)

      variables: x: Reals := h, v: Reals := 0

      actions: bounce

      transitions:

            bounce

pre x = 0 ∧ v < 0

eff v := -cv

       trajectories:

freefall

evolve d(x) = v; d(v) = -g

invariant � ≥ �

freefall
푑 � = �

푑 � =− �
� ≥ �

Graphical Representation used in 
many articles

bounce
x = 0 /\ v < 0

v’ := -cv

x:= h
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mode invariant, 
not to be 

confused with 
invariants of the 

automaton



Trajectories
Given a set of variables � and a time interval � which can be of the form 
 0, � ,   0, � 표�  0,∞ , a trajectory for � is a function �:  � → ��� � 
We will specify � as solutions of differential equations

The first state of a trajectory �. �푠����: = � 0 
If � is right closed then the limit state of a trajectory �. �푠���� = � � 
If � is finite then duration of � is �. 푑�� = �
The domain of �. 푑표� = �
A point trajectory is a trajectory with �. 푑표� =  0,0 
Operations on trajectories: prefix, suffix, concatenation

A prefix �′ of a trajectory �:  0, � → ��� � , is a function �′:  0, �′ → ��� �  
such that �′ ≤ � and �′ � = � �  for all � ∈ �′. 푑표�



Hybrid Automaton

�=  �, Θ, 퐴, �, � 
• �: set of state variables

• � ⊆ ��� �  set of states

• Θ ⊆ � set of start states

• set of actions, A= E ∪ H

• � ⊆ � × 퐴 × �
• �: set of trajectories for X which is 

closed under prefix, suffix, and 
concatenation

Closed: For every � in �, any suffix �’ or � is also in �



Semantics: Executions and Traces
• An execution fragment of � is an (possibly 

infinite) alternating (A, X)-sequence � =
 �0 �1 �1�2�2 … where 

• ∀ i, ��. �푠���� ��+1
⟶ ��+1. �푠����

• If �0.fstate ∈ Θ then � is an execution

• Execs� set of all executions

• The first state of an execution � is:
 �. �푠���� = �0. �푠���� 

• If the execution � is finite and closed: 
�0 �1 �1�2�2 …�� then �. �푠���� = ��. �푠����

• A state � is reachable if there exists an execution 
� with �. �푠���� = � 



Semantics: Executions and Traces
• An execution fragment of � is an (possibly 

infinite) alternating (A, X)-sequence � =
 �0 �1 �1�2�2 … where 

• ∀ i, ��. �푠���� ��+1
⟶ ��+1. �푠����

• If �0.fstate ∈ Θ then � is an execution

• Execs� set of all executions

• The first state of an execution � is:
 �. �푠���� = �0. �푠���� 

• If the execution � is finite and closed: 
�0 �1 �1�2�2 …�� then �. �푠���� = ��. �푠����

• A state � is reachable if there exists an execution 
� with �. �푠���� = � 



Thermostat variations
automaton Thermostat(u, l, K, h : Real) where u > l 
  type Status enumeration [on, off ]
  actions 
    turnOn; turnOff; 

  variables 
     x: Real := l        loc: Status := on 
  transitions 
     turnOn 
     pre x≤l ∧ loc=off 
     eff loc := on 

trajectories 
     modeOn 
     evolve d(x) = K(h − x)
     invariant loc = on ∧ x ≤ u 

turnOff 
     pre x≥u ∧ loc=on 
     eff loc := off 

modeOff  
     evolve d(x) = −Kx 
     invariant loc = off ∧ x ≥ l 

• Determinism vs nondeterminism
• mode invariants



Another Example: Periodically Sending Process
Automaton PeriodicSend(u, f)

    variables: 

        clock: Reals := 0, z:Reals 

    actions: send(m:Reals)

    transitions:

        send(m)

            pre (clock = u) ∧ (m = z) 

            eff clock := 0

   trajectories:

        Loc1

        evolve d(clock) = 1, d(z) = f(z)

        invariant clock<=u

Loc 1
푑 푐�표푐� = 1 
푑 � = � � 
풄풍�풄� ≤ �

send(m)

clock:= 0



Special kinds of executions

• Infinite: Infinite sequence of transitions and trajectories 
�0 �1 �1�2�2 …

• Closed: Finite with final trajectory with closed domain 
�0 �1 �1�2�2 …�� and ��. 푑표� =  0, � 

• Admissible: Infinite duration
• May or may not be infinite
• �0 �1 �1�2�2 …
• �0 �1 �1�2�2 …�� with ��. 푑표� =  0,∞ 

• Zeno: Infinite but not admissible
• Infinite number of transitions in finite time
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Zeno’s Paradox

Achilles runs 10 times faster than than the tortoise, but the turtle gets to start 1 second 
earlier. Can Achilles ever catch Turtle? 

Lesson: Mixing discrete transitions with continuous motion can be tricky!

Achilles, the fastest 
athlete,  greatest warrior

Zeno, Greek 
philosopher 

You couldn’t 
even beat a 

turtle

After 1/10th of a second, Achilles 
reaches where the Turtle (T) started, 
and T has a head start of 1/10th second.
After another 1/100th of a second, A 
catches up to where T was at t=1/10 
sec, but T has a head start of 1/100th 
… 
T is always ahead … 

whatever!



Zeno’s Paradox: bouncing ball

• Infinite number of bounces to come to reset!

• Yet it needs finite time to come to reset

• The time for each bounce (e.g., t1 - t0, t2 - t1, 
etc) is a geometric series

Read: https://www.millersville.edu/physics/experiments/045/



Defining stability of hybrid automata

• Given an admissible (infinite duration) 
execution � = �0 �1 �1�2�2 …

• To reason about stability of an execution, we 
would like to view an execution as �:  0,∞ →
��� � 

• But, how can we define � � ?

• define   � �� = �′. �푠����   where �′ is the 
longest prefix of � with �′. ����� = �� 

time

� � �0

�3 

�1 
�2 

�� 

� �� 



Defining stability of hybrid automata

• An hybrid automata is globally uniformly asymptotically stable if:

• For any � > 0 and any state �0, there is a time T such that for any 
excution fragment � starting from �0, for all � ≥ � ,   � �   < �



Run

Walk

Each of the modes of a walking robot are asymptotically stable
 
Is it possible to switch between them to make the system unstable?

Hybrid Instability
Can we verify the stability of a hyrbid system by just verifying the stability of each mode?



Run

Walk

By switching between them 
the system becomes unstable



Rimless wheel: another example of hybrid system



Rimless wheel
✓

✓̇

spoke1spoke1 spoke2

spoke2 ✓̇

✓

↵↵

automaton RimlessWheel(�, �: Real,  �: Nat)
  const �: Real := 2 �/�
  type Spokes: enumeration [1,...,n]
  actions
    impact
  variables
    pivot: Spokes :=1
    �:Real := 0
    �: Real := 0
  transitions
    impact
        pre � ≥ �/2
        eff pivot := pivot + 1 mod n
             � ≔− �/2
             � ≔ ��

    trajectories
        swing
        evolve
             d � = �
             푑 � =sin  � + � 
        invariant � ≤ �

2

θ
θ

ω

ω

αα



Invariants and reachability

• A state � of automaton � is reachable if there exists an execution � with 
�. �푠���� = � 

• 푅��푐ℎ� Θ  is the set of all reachable state from Θ

• 푅��푐ℎ� Θ, �  is the set of states reachable within time �

• 푅��푐ℎ� Θ, �  is the set of states reachable within � transitions

• 푅��푐ℎ� Θ, �, �  is the set of states reachable up to time � transitions and 
time �

• An invariant � ⊆ ��� �  is a set of states that contains 푅��푐ℎ� Θ  


