Lecture 14: Modeling Cyberphysical Systems Hybrid systems

Huan Zhang huan@huan-zhang.com

Slides adapted from Prof. Sayan Mitra's slides in Fall 2021

Deadlines

Homework 2 due 3/10, 11:59 pm CT

Two writing problems + two programming problems

YOU SHOULD START TODAY! (if you haven't started working on it)

Class project

Over 25+ project proposals recieved

You might be contacted by me for (optionally) forming a team of 2 if your proposed project is the same as another student.

Midterm project presentation: 3/26 and 3/28.

- **5-min** presentations for each team. (5% of final grade)
- Slides due on **3/25**. We will compile all slides into a single file for fast switching.
- Presentation includes problem setting, proposed methodology, and initial results.
- I will give you some feedback after your presentation (1-min)

In addition: each person should give feedback for 5 projects that interest you most on each day. (total 10 feedbacks; count towards the **5% class participation** grades. Feedback will be submitted to Canvas and also shared to peers. Feedback template will be given.)

Review: dynamical systems

Behaviors of physical processes are described in terms of instantaneous laws

Common notation:
$$\frac{dx(t)}{dt} = f(x(t), u(t), t) - Eq. (1)$$

where time $t \in \mathbb{R}$; state $x(t) \in \mathbb{R}^n$; input $u(t) \in \mathbb{R}^m$; $f: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R} \to \mathbb{R}^n$

Example.
$$\frac{dx(t)}{dt} = v(t)$$
; $\frac{dv(t)}{dt} = -g$

Initial value problem: Given system (1) and initial state $x_0 \in \mathbb{R}^n$, $t_0 \in \mathbb{R}$, and input u: $\mathbb{R} \to \mathbb{R}^m$, find a state trajectory or *solution* of (1).

Review: Linear time invariant system

 $\dot{x}(t) = Ax(t) + Bu(t)$

Define Matrix exponential:

$$e^{At} = 1 + At + \frac{1}{2!}(At)^2 + \dots = \sum_{0}^{\infty} \frac{1}{k!}(At)^k$$

Theorem.
$$\xi(t, x_0, u) = \Phi(t)x_0 + \int_{t_0}^t e^{A(t-\tau)}Bu(\tau)d\tau$$

Here $\Phi(t)$: = e^{At} is the state-transition matrix

Review Lyapunov stability

Lyapunov stability: The system $\dot{x}(t) = f(x(t))$ is said to be **Lyapunov stable** (at the origin) if

 $\forall \varepsilon > 0, \exists \delta_{\varepsilon} > 0 \text{ such that } |x_0| \leq \delta_{\varepsilon} \Rightarrow \forall t \geq 0, |\xi(x_0, t)| \leq \varepsilon.$

"if we start the system close enough to the equilibrium, it remains close enough"

How is this related to invariants and reachable states ?

Review: Asymptotically stability

The system $\dot{x}(t) = f(x(t))$ is said to be **Asymptotically stable** (at the origin) if it is Lyapunov stable and

 $\exists \delta_2 > 0 \text{ such that } \forall |x_0| \le \delta_2 \text{ as } t \to \infty, |\xi(x_0, t)| \to \mathbf{0}.$

If the property holds for any δ_2 then **Globally Asymptotically Stable**

Review: Verifying Stability

Theorem. (Lyapunov) Consider the system (1) with state space $x \in \mathbb{R}^n$ and suppose there exists a positive definite, continuously differentiable function $V: \mathbb{R}^n \to \mathbb{R}$. The system is:

- 1. Lyapunov stable if $\dot{V}(x) = \frac{\partial V}{\partial x} f(x) \le 0$, for all $x \ne 0$
- 2. Asymptotically stable if $\dot{V}(x) < 0$, for all $x \neq 0$

3. It is globally AS if V is also radially unbounded.

(*V* is radially unbounded if $||x|| \to \infty \Rightarrow V(x) \to \infty$)

Today's lecture: Hybrid systems

Discrete transition systems, automata

Dynamical systems Differential inclusions Hybrid systems

Markov chains

Probabilistic automata, Markov decision processes (MDP)

Continuous time, continuous state MDPs

Stochastic Hybrid systems

Slides adapted from Prof. Sayan Mitra's slides in Fall 2021

Outline

- Hybrid automata
- Executions
- Special kinds of executions: admissible, Zeno
- Hybrid stability

Recall from Lecture 2. language defines an automaton

An **automaton** is a tuple $\mathcal{A} = \langle X, \Theta, A, \mathcal{D} \rangle$ where

- X is a set of names of variables; each variable $x \in X$ is associated with a type, type(x)
 - A valuation for X maps each variable in X to its type
 - Set of all valuations: val(X) this is sometimes identified as the **state space** of the automaton
- $\Theta \subseteq val(X)$ is the set of **initial** or **start states**
- A is a set of names of **actions** or **labels**
- $\mathcal{D} \subseteq val(X) \times A \times val(X)$ is the set of **transitions**
 - a transition is a triple (*u*, *a*, *u*')
 - We write it as $u \rightarrow_a u'$

```
automaton DijkstraTR(N:Nat, K:Nat), where K > N

type ID: enumeration [0,...,N-1]

type Val: enumeration [0,...,K]

actions

update(i:ID)

variables

x:[ID -> Val]

transitions

update(i:ID)

pre i = 0 /\ x[i] = x[N-1]

eff x[i] := (x[i] + 1) % K

update(i:ID)

pre i >0 /\ x[i] ~= x[i-1]

eff x[i] := x[i-1]
```

Bouncing Ball: Hello world of CPS

bounce x = 0 / v < 0 v' := -cvfreefall d(x) = v d(v) = -g $x \ge 0$ **automaton** Bouncingball(c,h,g) **variables:** x: Reals := h, v: Reals := 0 actions: bounce transitions: bounce **pre** *x* = 0 ∧ *v* < 0 **eff** v := -cv trajectories: freefall evolve d(x) = v; d(v) = -ginvariant $x \ge 0$

mode invariant, not to be confused with invariants of the automaton

Graphical Representation used in many articles

Slides adapted from Prof. Sayan Mitra's slides in Fall 2021

Trajectories

Given a set of variables X and a **time interval** J which can be of the form [0,T], $[0,T)or [0,\infty)$, a **trajectory** for X is a function $\tau: J \rightarrow val(X)$

We will specify τ as solutions of differential equations

The **first state** of a trajectory τ . *fstate*: = $\tau(0)$

If τ is right closed then the **limit state** of a trajectory τ . *lstate* = $\tau(T)$

If τ is finite then **duration** of τ is τ . dur = T

The domain of τ . dom = J

A **point trajectory** is a trajectory with τ . *dom* = [0,0]

Operations on trajectories: prefix, suffix, concatenation

A **prefix** τ' of a trajectory $\tau: [0, T] \to val(X)$, is a function $\tau': [0, T'] \to val(X)$ such that $T' \leq T$ and $\tau'(t) = \tau(t)$ for all $t \in \tau'$. *dom*

Hybrid Automaton

- $\mathcal{A}=(X,\Theta,A,\mathcal{D},\mathcal{T})$
- X: set of state variables
 - $Q \subseteq val(X)$ set of **states**
- $\Theta \subseteq Q$ set of **start states**
- set of actions, $A = E \cup H$
- $\mathcal{D} \subseteq Q \times A \times Q$
- *T*: set of **trajectories** for X which is closed under prefix, suffix, and concatenation

Closed: For every τ in \mathcal{T} , any suffix τ' or τ is also in \mathcal{T}

Semantics: Executions and Traces

- An *execution fragment* of \mathcal{A} is an (possibly infinite) alternating (A, X)-sequence $\alpha = \tau_0 a_1 \tau_1 a_2 \tau_2 \dots$ where
 - $\forall i, \tau_i. lstate \xrightarrow{a_{i+1}} \tau_{i+1}. fstate$
- If τ_0 .fstate $\in \Theta$ then α is an **execution**
- **Execs**_{\mathcal{A}} set of all executions
- The first state of an execution α is: α . $fstate = \tau_0$. fstate
- If the execution α is **finite and closed**: $\tau_0 a_1 \tau_1 a_2 \tau_2 \dots \tau_k$ then α . $lstate = \tau_k$. lstate
- A state x is reachable if there exists an execution α with α . lstate = x

Semantics: Executions and Traces

- An *execution fragment* of \mathcal{A} is an (possibly infinite) alternating (A, X)-sequence $\alpha = \tau_0 a_1 \tau_1 a_2 \tau_2 \dots$ where
 - $\forall i, \tau_i. lstate \xrightarrow{a_{i+1}} \tau_{i+1}. fstate$
- If τ_0 .fstate $\in \Theta$ then α is an **execution**
- **Execs**_{\mathcal{A}} set of all executions
- The first state of an execution α is: α . $fstate = \tau_0$. fstate
- If the execution α is **finite and closed**: $\tau_0 a_1 \tau_1 a_2 \tau_2 \dots \tau_k$ then α . $lstate = \tau_k$. lstate
- A state x is reachable if there exists an execution α with α . lstate = x

Thermostat variations

automaton Thermostat(u, I, K, h : Real) where u > I
type Status enumeration [on, off]
actions
turnOn; turnOff;

variables

<i>x</i> : Real := /	loc: Status := on
transitions turnOn	turnOff
pre <i>x≤l</i> ∧ <i>loc=c</i> eff <i>loc</i> := on	offpre $x \ge u \land loc=on$ eff $loc := off$

trajectories

modeOn	modeOff
evolve $d(x) = K(h - x)$	evolve $d(x) = -Kx$
invariant loc = on $\land x \leq u$	invariant $loc = off \land x \ge l$

- Determinism vs nondeterminism
- mode invariants

Another Example: Periodically Sending Process

Automaton PeriodicSend(u, f) variables: clock: Reals := 0, z:Reals actions: send(m:Reals) transitions: send(m) **pre** (clock = u) \land (m = z) eff clock := 0 trajectories: Loc1 evolve d(clock) = 1, d(z) = f(z)invariant clock<=u

Special kinds of executions

- Infinite: Infinite sequence of transitions and trajectories $\tau_0 a_1 \tau_1 a_2 \tau_2 \dots$
- **Closed**: Finite with final trajectory with closed domain $\tau_0 a_1 \tau_1 a_2 \tau_2 \dots \tau_k$ and $\tau_k . dom = [0, T]$
- Admissible: Infinite duration
 - May or may not be infinite
 - $\tau_0 a_1 \tau_1 a_2 \tau_2 \dots$
 - $\tau_0 a_1 \tau_1 a_2 \tau_2 \dots \tau_k$ with $\tau_k dom = [0, \infty)$
- Zeno: Infinite but not admissible
 - Infinite number of transitions in finite time

Zeno's Paradox

Achilles runs 10 times faster than than the tortoise, but the turtle gets to start 1 second earlier. Can Achilles ever catch Turtle?

After 1/10th of a second, Achilles reaches where the Turtle (T) started, and T has a head start of 1/10th second. After another 1/100th of a second, A catches up to where T was at t=1/10 sec, but T has a head start of 1/100th

T is always ahead ...

Lesson: Mixing discrete transitions with continuous motion can be tricky!

Zeno's Paradox: bouncing ball

- Infinite number of bounces to come to reset!
- Yet it needs finite time to come to reset
- The time for each bounce (e.g., t₁ t₀, t₂ t₁, etc) is a geometric series

Read: https://www.millersville.edu/physics/experiments/045/

Defining stability of hybrid automata

- Given an *admissible* (infinite duration) execution $\alpha = \tau_0 a_1 \tau_1 a_2 \tau_2 \dots$
- To reason about stability of an execution, we would like to view an execution as $\alpha: [0, \infty) \rightarrow val(X)$
- But, how can we define $\alpha(t)$?
- define $\alpha(t_s) = \alpha'.lstate$ where α' is the longest **prefix** of α with $\alpha'.ltime = t_s$

Defining stability of hybrid automata

- An hybrid automata is globally uniformly asymptotically stable if:
- For any $\varepsilon > 0$ and any state v_0 , there is a time T such that for any excution fragment α starting from v_0 , for all $t \ge T$, $||\alpha(t)|| < \varepsilon$

Hybrid Instability

Can we verify the stability of a hyrbid system by just verifying the stability of each mode?

By switching between them the system becomes unstable

Run

Walk

Rimless wheel: another example of hybrid system

automaton RimlessWheel(α, μ : Real, n: Nat) const β : Real := 2 π/n **type** Spokes: enumeration [1,...,n] actions impact variables pivot: Spokes :=1 θ :Real := 0 ω : Real := 0 transitions impact pre $\theta \ge \beta/2$ eff pivot := pivot + 1 mod n $\theta \coloneqq -\beta/2$ $\omega \coloneqq \mu \omega$

trajectories swing evolve $d(\theta) = \omega$ $d(\omega) = \sin(\theta + \alpha)$ invariant $\theta \le \frac{\beta}{2}$

Invariants and reachability

- A state x of automaton A is *reachable* if there exists an execution α with α . *lstate* = x
- $Reach_{\mathcal{A}}(\Theta)$ is the set of all reachable state from Θ
- $Reach_{\mathcal{A}}(\Theta, T)$ is the set of states reachable within time T
- $Reach_{\mathcal{A}}(\Theta, k)$ is the set of states reachable within k transitions
- $Reach_{\mathcal{A}}(\Theta, T, k)$ is the set of states reachable up to time k transitions and time T
- An invariant $I \subseteq val(X)$ is a set of states that contains $Reach_{\mathcal{A}}(\Theta)$