Lecture 14: Modeling Cyberphysical Systems Hybrid systems

Huan Zhang
huan@huan-zhang.com

Deadlines

Homework 2 due 3/10, 11:59 pm CT
Two writing problems + two programming problems
YOU SHOULD START TODAY! (if you haven't started working on it)

Class project

Over 25+ project proposals recieved
You might be contacted by me for (optionally) forming a team of 2 if your proposed project is the same as another student.

Midterm project presentation: 3/26 and 3/28.

- 5-min presentations for each team. (5\% of final grade)
- Slides due on $\mathbf{3 / 2 5}$. We will compile all slides into a single file for fast switching.
- Presentation includes problem setting, proposed methodology, and initial results.
- I will give you some feedback after your presentation (1-min)

In addition: each person should give feedback for 5 projects that interest you most on each day. (total 10 feedbacks; count towards the 5% class participation grades. Feedback will be submitted to Canvas and also shared to peers. Feedback template will be given.)

Review: dynamical systems

Behaviors of physical processes are described in terms of instantaneous laws

Common notation: $\frac{d x(t)}{d t}=f(x(t), u(t), t)-E q$. (1)
where time $t \in \mathbb{R}$; state $x(t) \in \mathbb{R}^{n} ;$ input $u(t) \in \mathbb{R}^{m} ; f: \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R} \rightarrow \mathbb{R}^{n}$

Example. $\frac{d x(t)}{d t}=v(t) ; \frac{d v(t)}{d t}=-g$

Initial value problem: Given system (1) and initial state $x_{0} \in \mathbb{R}^{n}$, $t_{0} \in \mathbb{R}$, and input $u: \mathbb{R} \rightarrow \mathbb{R}^{m}$, find a state trajectory or solution of (1).

Review: Linear time invariant system

$$
\dot{x}(t)=A x(t)+B u(t)
$$

Define Matrix exponential:
$e^{A t}=1+A t+\frac{1}{2!}(A t)^{2}+\ldots=\sum_{0}^{\infty} \frac{1}{k!}(A t)^{k}$

Theorem. $\xi\left(t, x_{0}, u\right)=\Phi(t) x_{0}+\int_{t_{0}}^{t} \mathrm{e}^{A(t-\tau)} B u(\tau) d \tau$

Here $\Phi(t):=e^{A t}$ is the staro input ${ }^{\text {Zate }}$ Zero state

Review Lyapunov stability

Lyapunov stability: The system $\dot{x}(t)=f(x(t))$ is said to be Lyapunov stable (at the origin) if
$\forall \varepsilon>0, \exists \delta_{\varepsilon}>0$ such that $\left|x_{0}\right| \leq \delta_{\varepsilon} \Rightarrow \forall \mathrm{t} \geq 0,\left|\xi\left(x_{0}, t\right)\right| \leq \varepsilon$.
"if we start the system close enough to the equilibrium, it remains close enough"

How is this related to invariants and reachable states?

Review: Asymptotically stability

The system $\dot{x}(t)=f(x(t))$ is said to be Asymptotically stable (at the origin) if it is Lyapunov stable and
$\exists \delta_{2}>0$ such that $\forall\left|x_{0}\right| \leq \delta_{2}$ as $t \rightarrow \infty,\left|\xi\left(x_{0}, t\right)\right| \rightarrow \mathbf{0}$.
If the property holds for any δ_{2} then Globally Asymptotically Stable

Review: Verifying Stability

Theorem. (Lyapunov) Consider the system (1) with state space $x \in \mathbb{R}^{n}$ and suppose there exists a positive definite, continuously differentiable function $V: \mathbb{R}^{n} \rightarrow \mathbb{R}$. The system is:

1. Lyapunov stable if $\dot{V}(x)=\frac{\partial V}{\partial x} f(x) \leq 0$, for all $x \neq 0$
2. Asymptotically stable if $\dot{V}(x)<0$, for all $x \neq 0$
3. It is globally AS if V is also radially unbounded.
(V is radially unbounded if $||x|| \rightarrow \infty \Rightarrow V(x) \rightarrow \infty$)

Today's lecture: Hybrid systems

Outline

- Hybrid automata
- Executions
- Special kinds of executions: admissible, Zeno
- Hybrid stability

Recall from Lecture 2. language defines an automaton

An automaton is a tuple $\mathcal{A}=\langle X, \Theta, A, \mathcal{D}\rangle$ where

- X is a set of names of variables; each variable $x \in$ X is associated with a type, type (x)
- A valuation for X maps each variable in X to its type
- Set of all valuations: $\operatorname{val}(X)$ this is sometimes identified as the state space of the automaton
- $\Theta \subseteq \operatorname{val}(X)$ is the set of initial or start states
- A is a set of names of actions or labels
- $\mathcal{D} \subseteq \operatorname{val}(X) \times A \times \operatorname{val}(X)$ is the set of transitions
- a transition is a triple (u, a, u^{\prime})
- We write it as $u \rightarrow{ }_{a} u^{\prime}$

Bouncing Ball: Hello world of CPS


```
automaton Bouncingball(c,h,g)
    variables: x: Reals := h, v: Reals := 0
    actions: bounce
    transitions:
        bounce
        pre x = 0^v<0
        eff v:= -cv
    trajectories:
        freefall
        evolve d(x) = v; d(v)=-g
        invariant x}\geq\mathbf{0
```

mode invariant, not to be confused with invariants of the automaton

Graphical Representation used in many articles

Trajectories

Given a set of variables X and a time interval J which can be of the form $[0, T],[0, T)$ or $[0, \infty)$, a trajectory for X is a function $\tau: J \rightarrow \operatorname{val}(X)$
We will specify τ as solutions of differential equations
The first state of a trajectory τ. fstate: $=\tau(0)$
If τ is right closed then the limit state of a trajectory τ. lstate $=\tau(T)$
If τ is finite then duration of τ is τ. dur $=T$
The domain of τ.dom $=J$
A point trajectory is a trajectory with τ. dom $=[0,0]$
Operations on trajectories: prefix, suffix, concatenation
A prefix τ^{\prime} of a trajectory $\tau:[0, T] \rightarrow \operatorname{val}(X)$, is a function $\tau^{\prime}:\left[0, T^{\prime}\right] \rightarrow \operatorname{val}(X)$ such that $T^{\prime} \leq T$ and $\tau^{\prime}(t)=\tau(t)$ for all $t \in \tau^{\prime}$.dom

Hybrid Automaton

$$
\mathcal{A}=(X, \Theta, A, \mathcal{D}, \mathcal{T})
$$

- X : set of state variables
- $Q \subseteq \operatorname{val}(X)$ set of states
- $\Theta \subseteq Q$ set of start states
- set of actions, $A=E \cup H$
- $\mathcal{D} \subseteq Q \times A \times Q$
- \mathcal{T} : set of trajectories for X which is closed under prefix, suffix, and concatenation

Semantics: Executions and Traces

- An execution fragment of \mathcal{A} is an (possibly infinite) alternating (A, X)-sequence $\alpha=$ $\tau_{0} a_{1} \tau_{1} a_{2} \tau_{2} \ldots$ where
- $\forall \mathrm{i}, \tau_{i}$. lstate $\xrightarrow{a_{i+1}} \tau_{i+1}$. fstate
- If τ_{0}. fstate $\in \Theta$ then α is an execution
- Execs $_{\mathcal{A}}$ set of all executions
- The first state of an execution α is:
$\alpha . f$ state $=\tau_{0} . f$ state
- If the execution α is finite and closed:
$\tau_{0} a_{1} \tau_{1} a_{2} \tau_{2} \ldots \tau_{k}$ then α. lstate $=\tau_{k}$. lstate
- A state \boldsymbol{x} is reachable if there exists an execution α with α.lstate $=\boldsymbol{x}$

Semantics: Executions and Traces

- An execution fragment of \mathcal{A} is an (possibly infinite) alternating (A, X)-sequence $\alpha=$ $\tau_{0} a_{1} \tau_{1} a_{2} \tau_{2} \ldots$ where
- $\forall \mathrm{i}, \tau_{i}$. lstate $\xrightarrow{a_{i+1}} \tau_{i+1}$. fstate
- If τ_{0}. fstate $\in \Theta$ then α is an execution
- Execs $_{\mathcal{A}}$ set of all executions
- The first state of an execution α is:
$\alpha . f$ state $=\tau_{0} . f$ state
- If the execution α is finite and closed: $\tau_{0} a_{1} \tau_{1} a_{2} \tau_{2} \ldots \tau_{k}$ then α. lstate $=\tau_{k}$. lstate
- A state \boldsymbol{x} is reachable if there exists an execution α with α.lstate $=\boldsymbol{x}$

Thermostat variations


```
automaton Thermostat( \(u, I, K, h\) : Real) where \(u>/\)
    type Status enumeration [on, off ]
    actions
    turnOn; turnOff;
variables
    \(x\) : Real := I loc: Status := on
transitions
    turnOn
    pre \(x \leq 1 \wedge\) loc=off pre \(x \geq u \wedge\) loc=on
    eff loc := on
trajectories
    modeOn
    evolve \(d(x)=K(h-x)\)
    invariant loc \(=\) on \(\wedge x \leq u\)
        modeOff
    evolve \(d(x)=-K x\)
    invariant loc \(=\) off \(\wedge x \geq 1\)
```

- Determinism vs nondeterminism
- mode invariants

Another Example: Periodically Sending Process

Special kinds of executions

- Infinite: Infinite sequence of transitions and trajectories $\tau_{0} a_{1} \tau_{1} a_{2} \tau_{2} \ldots$
- Closed: Finite with final trajectory with closed domain $\tau_{0} a_{1} \tau_{1} a_{2} \tau_{2} \ldots \tau_{k}$ and τ_{k}. dom $=[0, T]$
- Admissible: Infinite duration
- May or may not be infinite
- $\tau_{0} a_{1} \tau_{1} a_{2} \tau_{2} \ldots$
- $\tau_{0} a_{1} \tau_{1} a_{2} \tau_{2} \ldots \tau_{k}$ with τ_{k}. dom $=[0, \infty)$
- Zeno: Infinite but not admissible
- Infinite number of transitions in finite time

Achilles, the fastest athlete, greatest warrior

Zeno, Greek philosopher

Zeno's Paradox

You couldn't even beat a turtle

Achilles runs 10 times faster than than the tortoise, but the turtle gets to start 1 second earlier. Can Achilles ever catch Turtle?

After $1 / 10^{\text {th }}$ of a second, Achilles reaches where the Turtle (T) started,

Lesson: Mixing discrete transitions with continuous motion can be tricky!

Zeno's Paradox: bouncing ball

- Infinite number of bounces to come to reset!
- Yet it needs finite time to come to reset
- The time for each bounce (e.g., $\mathrm{t}_{1}-\mathrm{t}_{0}, \mathrm{t}_{2}-\mathrm{t}_{1}$, etc) is a geometric series

Defining stability of hybrid automata

- Given an admissible (infinite duration)
execution $\alpha=\tau_{0} a_{1} \tau_{1} a_{2} \tau_{2} \ldots$
- To reason about stability of an execution, we would like to view an execution as $\alpha:[0, \infty) \rightarrow$ $\operatorname{val}(X)$
- But, how can we define $\alpha(t)$?
- define $\alpha\left(t_{s}\right)=\alpha^{\prime}$. lstate where α^{\prime} is the longest prefix of α with α^{\prime}. ltime $=t_{s}$

Defining stability of hybrid automata

- An hybrid automata is globally uniformly asymptotically stable if:
- For any $\varepsilon>0$ and any state v_{0}, there is a time T such that for any excution fragment α starting from v_{0}, for all $t \geq T,\|\alpha(t)\|<\varepsilon$

Hybrid Instability

Can we verify the stability of a hyrbid system by just verifying the stability of each mode?

Each of the modes of a walking robot are asymptotically stable Is it possible to switch between them to make the system unstable?

By switching between them the system becomes unstable

Rimless wheel: another example of hybrid system

Rimless wheel

automaton RimlessWheel (α, μ : Real, n : Nat) const β : Real := $2 \pi / n$
type Spokes: enumeration [1,...,n]
actions
impact
variables
pivot: Spokes :=1
$\theta:$ Real := 0
ω : Real := 0
transitions
impact
pre $\theta \geq \beta / 2$
eff pivot:= pivot $+1 \bmod n$

$$
\theta:=-\beta / 2
$$

$\omega:=\mu \omega$
trajectories
swing
evolve
$\mathrm{d}(\theta)=\omega$
$d(\omega)=\sin (\theta+\alpha)$
invariant $\theta \leq \frac{\beta}{2}$

Invariants and reachability

- A state \boldsymbol{x} of automaton \mathcal{A} is reachable if there exists an execution α with α. lstate $=\boldsymbol{x}$
- $\operatorname{Reach}_{\mathcal{A}}(\Theta)$ is the set of all reachable state from Θ
- $\operatorname{Reach}_{\mathcal{A}}(\Theta, T)$ is the set of states reachable within time T
- $\operatorname{Reach}_{\mathcal{A}}(\Theta, k)$ is the set of states reachable within k transitions
- $\operatorname{Reach}_{\mathcal{A}}(\Theta, T, k)$ is the set of states reachable up to time k transitions and time T
- An invariant $I \subseteq \operatorname{val}(X)$ is a set of states that contains $\operatorname{Reach}_{\mathcal{A}}(\Theta)$

