ECE/CS 584: Verification of Embedded and Cyber-physical Systems

Lecture 9: Integer and Linear Programming Formulations for Neural Network Verification Prof. Huan Zhang

huan@huan-zhang.com

Review: neural networks

Review: neural network verification as a satisfiability problem

Review: neural network verification as a satisfiability problem

Satisfiability problem: $\exists x \in S \land y \leq 0 \land y = f(x)$

 $\begin{aligned} x_{i} &\leq u_{i} \ \land \ x_{i} \geq I_{i} \quad (\text{assuming box constraints}) \\ ((z_{j}^{(i)} \geq 0 \ \land \ \hat{z}_{j}^{(i)} = z_{j}^{(i)}) \ \lor \ (z_{j}^{(i)} < 0 \ \land \ \hat{z}_{j}^{(i)} = 0)) \text{ for each ReLU neuron} \\ z_{1} &= W^{(1)} \ x \quad \land \qquad z^{(2)} = W^{(2)} \ \hat{z}^{(1)} \ \land \qquad y = w^{(3)T} \ \hat{z}^{(2)} \ \land \qquad y \leq 0 \end{aligned}$

Add all clauses to the formula and solve using DPLL(T) with **Linear Real Arithmetic**.

In general this is very slow! Faster methods in the next a few lectures.

How does a SMT solver solve this problem?

First step: obtain the abstract version of the problem

 $\begin{array}{l} x_{i} \leq u_{i} \ \land \ x_{i} \geq I_{i} \quad (assuming \ box \ constraints) \\ ((z_{j}^{(i)} \geq 0 \ \land \ \hat{z}_{j}^{(i)} = z_{j}^{(i)}) \ \lor \ (z_{j}^{(i)} < 0 \ \land \ \hat{z}_{j}^{(i)} = 0)) \ \text{for each ReLU neuron} \\ z_{1} = W^{(1)} \ x \quad \land \qquad z^{(2)} = W^{(2)} \ \hat{z}^{(1)} \ \land \qquad y = w^{(3)T} \ \hat{z}^{(2)} \ \land \qquad y \leq 0 \end{array}$

How does a SMT solver solve this problem?

Obtain the abstract version of the problem

 $\begin{array}{l} x_{i} \leq u_{i} \ \land \ x_{i} \geq I_{i} \ (\text{assuming box constraints}) \\ ((z_{j}^{(i)} \geq 0 \ \land \ \hat{z}_{j}^{(i)} = z_{j}^{(i)}) \ \lor \ (z_{j}^{(i)} < 0 \ \land \ \hat{z}_{j}^{(i)} = 0)) \ \text{for each ReLU neuron} \\ z_{1} = W^{(1)} \ x \ \land \ z^{(2)} = W^{(2)} \ \hat{z}^{(1)} \ \land \ y = w^{(3)T} \ \hat{z}^{(2)} \ \land \ y \leq 0 \end{array}$

For each ReLU neuron: $((p_i^{(i)} \land q_i^{(i)}) \lor (\neg p_i^{(i)} \land r_i^{(i)}))$

All other clauses contain only a single literal, and must be set to True

How does a SMT solver solves this problem?

Now convert to CNF form

For each ReLU neuron: $((p_i^{(i)} \land q_i^{(i)}) \lor (\neg p_i^{(i)} \land r_i^{(i)}))$

Distribution: (($p_j^{(i)} \vee \neg p_j^{(i)}$) \land ($p_j^{(i)} \vee r_j^{(i)}$) \land ($q_j^{(i)} \vee \neg p_j^{(i)}$) \land ($q_j^{(i)} \vee r_j^{(i)}$))

Rewrite: $(p_j^{(i)} \vee r_j^{(i)}) \land (\neg p_j^{(i)} \vee q_j^{(i)}) \land (q_j^{(i)} \vee r_j^{(i)}))$

Observe that when $p_i^{(i)}$ =True, $q_i^{(i)}$ must be true; $p_i^{(i)}$ =False, $r_i^{(i)}$ must be true;

So the clause $q_i^{(i)} \vee r_i^{(i)}$ is redundant

How does a SMT solver solves this problem?

$$(\mathsf{p}_{j}^{(i)} \mathsf{V} \mathsf{r}_{j}^{(i)}) \land (\neg \mathsf{p}_{j}^{(i)} \mathsf{V} \mathsf{q}_{j}^{(i)})$$

When $p_j^{(i)}$ =True, $q_j^{(i)}$ must be true; $p_j^{(i)}$ =False, $r_j^{(i)}$ must be true;

SAT solver must try both cases of $p_i^{(i)}$

Why using a SMT solver is very slow?

 $(p_j^{(i)} \vee r_j^{(i)}) \land (\neg p_j^{(i)} \vee q_j^{(i)})$

When $p_i^{(i)}$ =True, $q_i^{(i)}$ must be true; $p_i^{(i)}$ =False, $r_i^{(i)}$ must be true;

SAT solver must try both cases of $p_j^{(i)}$. In a satisfiable solution from DPLL, each $p_j^{(i)}$ is set to True or False, then a theory solver (Simplex) invoked.

There are exponential number of cases here... and modern neural networks can have millions of neurons!

Can we solve the problem without setting every $p_i^{(i)}$?

We will tack this problem from an **optimization** point of view today

Mathematical optimization problems

Given a **objective function** $f: S \rightarrow R$

Seek an **optimal solution** x^* such that $f(x^*) \le f(x)$ for all $x \in S$

Some optimization problems are hard, some are easy

Given a **objective function f**: $S \rightarrow R$

Hardness depends on the properties of f and S. For tractable solving they cannot be arbitrary!

- Easy ones: convex optimization, linear programming, semidefinite programming
 - E.g., in linear programming, objective function and constraints must be linear functions

• Hard ones: integer programming, general quadratic programming, general nonlinear programming, ...

Verification Problem as an optimization problem

 $\exists x \in S \land y \leq 0 \land y = f(x)$

Can be solved with the following **minimization problem:**

$$y^* = \min_{x \in \mathcal{S}} f(x)$$

If the optimal objective y*≤0, then the original Problem is satisfiable

Verification Problem as an optimization problem

Now we rewrite the neural network verification problem as a **constrained optimization problem** (still using the simple network example):

$$\begin{array}{ll} \mbox{min y} \\ \mbox{s.t.} & y = W^{(3)T} \ \hat{z}^{(2)} & (\mbox{linear layers}) \\ \hat{z}^{(2)} = \max(z^{(2)}, 0) & (\mbox{ReLU activation}) \\ z^{(2)} = W^{(2)} \ \hat{z}^{(1)} & \\ \hat{z}^{(1)} = \max(z^{(1)}, 0) & \\ z^{(1)} = W^{(1)} \ x & \\ & x_i \leq u_i & \\ & x_i \geq l_i & \\ \end{array}$$
 (element-wise input bounds)

Verification Problem as an optimization problem

Now we rewrite the neural network verification problem as a **constrained optimization problem** (still using the simple network example):

$$\begin{array}{ll} \mbox{min y} \\ \mbox{s.t.} & y = W^{(3)T} \ \hat{z}^{(2)} & (\mbox{linear constraints}) \\ \hat{z}^{(2)} = \max(z^{(2)}, 0) & (\mbox{nonlinear constraints}) \\ z^{(2)} = W^{(2)} \ \hat{z}^{(1)} & \\ \hat{z}^{(1)} = \max(z^{(1)}, 0) & \\ z^{(1)} = W^{(1)} \ x & \\ & x_i \leq u_i & \\ & x_i \geq l_i & (\mbox{inputs bounds are also linear constraints}) \end{array}$$

Optimization formulation for ReLU neurons

Let's look at this constraint more carefully: $\hat{z}_{i}^{(i)} = \max(z_{i}^{(i)}, 0)$ (for all i, j)

One way to handle it is through the **mixed integer linear programming (MILP)** formulation. Create an **integer variable** $p_j^{(i)} \in \{0,1\}$, the constraint $\hat{z}_j^{(i)} = \max(z_j^{(i)}, 0)$ can be equivalently written as (here M is a "big" number):

$$egin{aligned} \hat{z}_{j}^{(i)} &\leq z_{j}^{(i)} - M_{1}(1-p_{j}^{(i)} \ & \hat{z}_{j}^{(i)} &\leq M_{2}p_{j}^{(i)} \ & \hat{z}_{j}^{(i)} &\geq z_{j}^{(i)} \ & \hat{z}_{j}^{(i)} &\geq 0 \end{aligned}$$

Optimization formulation for ReLU neurons

For this formulation to work, M_1 and M_2 must be properly selected.

If set too conservatively, like $M_1 = 100000$ and $M_2 = -100000$, solver can be very slow

How to find the tightest M_1 and M_2 ?

For this formulation to work, M_1 and M_2 must be properly selected.

If set too conservatively, like $M_1 = 100000$ and $M_2 = -100000$, solver can be very slow

How to find the tightest M_1 and M_2 ?

For this formulation to work, M_1 and M_2 must be properly selected (usually denoted as I and u)

We can use optimization to find these pre-activation bounds - the same formulation as our verification problem before, just changing the optimization variables.

MILP, LP, or more efficient methods (next lecture) can be used to find these.

$$\begin{array}{l} \underset{x_{i} \geq u_{i}^{(0)} = 0}{\min y} \\ \text{s.t.} \quad y = W^{(3)T} \ \hat{z}^{(2)} \\ \hat{z}^{(2)} = \max(z^{(2)}, 0) \\ z^{(2)} = W^{(2)} \ \hat{z}^{(1)} \\ \hat{z}^{(1)} = \max(z^{(1)}, 0) \\ z^{(1)} = W^{(1)} \ x \\ x_{i} \leq u_{i}^{(0)} \\ x_{i} \geq l_{i}^{(0)} \end{array}$$

$$l_{j}^{(i)} := \min z_{j}^{(i)}$$
 or $u_{j}^{(i)} := \max z_{j}^{(i)}$
 $\hat{z}^{(2)}$
 $0)$
 $0)$

We can use optimization to find these pre-activation bounds - the same formulation as our verification problem before, just changing the optimization variables.

Mixed Integer Linear Programming formulation

We rewrite the neural network verification problem as a **constrained optimization problem** (still using the simple network example):

Mixed Integer Linear Programming formulation

However, the integer variables $p_i^{(i)}$ are still hard to handle! (NP-hard)

Relaxation of integer variables: Linear programming

Now relaxing the integer constraints into continuous ones.

How does this affect the solution?

$$y^{*}_{LP} := \min y$$

s.t. $y = W^{(3)T} \hat{Z}^{(2)}$

$$\frac{\hat{z}^{(2)} = \max(z^{(2)}, 0)}{z^{(2)} = W^{(2)} \hat{z}^{(1)}}$$

$$\frac{\hat{z}^{(1)} = \max(z^{(1)}, 0)}{z^{(1)} = W^{(1)} x}$$

$$z^{(1)} = W^{(1)} x$$

$$x_{i} \le U_{i}^{(0)}$$

$$x_{i} \ge |_{i}^{(0)}$$

Each ReLU is represented by
$$\hat{z}_{j}^{(i)} \leq z_{j}^{(i)} - l_{j}^{(i)}(1 - p_{j}^{(i)})$$
 $\hat{z}_{j}^{(i)} \leq u_{j}^{(i)}p_{j}^{(i)}$ $\hat{z}_{j}^{(i)} \geq z_{j}^{(i)}$ $\hat{z}_{j}^{(i)} \geq z_{j}^{(i)}$ $\hat{z}_{j}^{(i)} \geq 0$ $p_{j}^{(i)} \in \{0,1\}$ $0 \leq p_{j}^{(i)} \leq 1$

MILP vs LP

$$\mathbf{y^*}_{\mathsf{LP}} \leq \mathbf{y^*}_{\mathsf{MILP}}$$

It's not the original MILP solution, but it is a guaranteed lower bound Solving LP is polynomial time. Practically a few orders of magnitude faster.

Sound but Incomplete Verification with a Lower Bound

Satisfiability problem: $\exists x \in S \land y \leq 0 \land y = f(x)$

If $y^*_{\downarrow P} \ge 0 \Rightarrow y^* \ge 0 \Rightarrow$ requirement verified (unsatisfiable)

 $y^*_{IP} \le 0 \Rightarrow$ return unknown (incomplete)

A closer look at the linear programming relaxation

Each ReLU is represented by

(Please note that I_i⁽ⁱ⁾ is negative during the above derivation)

A closer look at the linear programming relaxation

Each ReLU is represented by

A closer look at the linear programming relaxation

MILP: solutions are constrained on **ReLU function** Linear programming: solutions are constrained on the triangle

MILP vs LP vs DPLL(T)

MILP:

- Branch and bound is used to make decisions only on certain number of binary variables
- Specialized methods to accelerate solving (e.g., branching heuristics, cutting planes)
- Complete (solve y* exactly)
- Typically scales much better than DPLL(T)

Linear programming:

- No integer variables
- No variable decisions needed (no exponential time search)
- Simplex algorithm can solve it relatively fast, a few thousands neurons are ok
- Incomplete (has to return unknown in some cases)

Summary

- Neural network verification problem
- Solving the verification problem with SMT solvers
- Integer programming formulation
- Linear programming formulation and linear relaxation of ReLUs
- Next lecture: linear bound propagation method (CROWN) for efficient neural network verification
- Reading for the next lecture:
 - http://arxiv.org/pdf/1811.00866.pdf
 - <u>https://arxiv.org/pdf/1902.08722.pdf</u>
- Homework 1 due on Sunday (2/11) 11:59 pm