
Lecture 9: Integer and Linear Programming
Formulations for Neural Network Verification

Prof. Huan Zhang

huan@huan-zhang.com

ECE/CS 584: Verification of Embedded and Cyber-physical Systems

Review: neural networks

Nonlinear layers: ẑj
(i)=σ(zj

(i)) (assume σ is ReLU for now)

z(2)

x1

x2

ẑ1
(1)

ẑ2
(1)

ẑ3
(1)z3

(1)

z2
(1)

z1
(1) ẑ(2)

y=f(x)

Linear layers: z(1) = W(1) x
 z

(2) = W(2) ẑ(1)
 y = w(3)T ẑ(2)

Review: neural network verification as a satisfiability problem

z(2)

x1

x2

ẑ1
(1)

ẑ2
(1)

ẑ3
(1)z3

(1)

z2
(1)

z1
(1) ẑ(2)

y=f(x)

∃ x ∈ S ∧ y ≤ 0 ∧ y = f(x)

Negation of the
desired property

Defines the neural
networkInput domain under

consideration

Speed
Limit

Stop

0.9

0.1

Review: neural network verification as a satisfiability problem
Satisfiability problem: ∃ x ∈ S ∧ y ≤ 0 ∧ y = f(x)

((zj
(i) ≥ 0 ∧ ẑj

(i)= zj
(i)) ∨ (zj

(i) < 0 ∧ ẑj
(i)= 0)) for each ReLU neuron

z1 =W(1) x
 ∧ z

(2) =W(2) ẑ(1)
 ∧ y=w(3)T ẑ(2) ∧ y ≤ 0

Add all clauses to the formula and solve using DPLL(T)
with Linear Real Arithmetic.

In general this is very slow! Faster methods in the next a
few lectures.

xi ≤ ui ∧ xi ≥ li (assuming box constraints)

How does a SMT solver solve this problem?
First step: obtain the abstract version of the problem

((zj
(i) ≥ 0 ∧ ẑj

(i)= zj
(i)) ∨ (zj

(i) < 0 ∧ ẑj
(i)= 0)) for each ReLU neuron

z1 =W(1) x
 ∧ z

(2) =W(2) ẑ(1)
 ∧ y=w(3)T ẑ(2) ∧ y ≤ 0

xi ≤ ui ∧ xi ≥ li (assuming box constraints)

How does a SMT solver solve this problem?
Obtain the abstract version of the problem

((zj
(i) ≥ 0 ∧ ẑj

(i)= zj
(i)) ∨ (zj

(i) < 0 ∧ ẑj
(i)= 0)) for each ReLU neuron

z1 =W(1) x
 ∧ z

(2) =W(2) ẑ(1)
 ∧ y=w(3)T ẑ(2) ∧ y ≤ 0

xi ≤ ui ∧ xi ≥ li (assuming box constraints)

For each ReLU neuron: ((pj
(i) ∧ qj

(i)) ∨ (¬pj
(i) ∧ rj

(i)))

All other clauses contain only a single literal, and must be set to True

How does a SMT solver solves this problem?
Now convert to CNF form

For each ReLU neuron: ((pj
(i) ∧ qj

(i)) ∨ (¬pj
(i) ∧ rj

(i)))

Distribution: ((pj
(i) ∨ ¬pj

(i)) ∧ (pj
(i) ∨ rj

(i)) ∧(qj
(i) ∨ ¬pj

(i)) ∧(qj
(i) ∨ rj

(i)))

Rewrite: (pj
(i) ∨ rj

(i)) ∧(¬pj
(i) ∨ qj

(i)) ∧(qj
(i) ∨ rj

(i)))

Observe that when pj
(i)=True, qj

(i) must be true; pj
(i)=False, rj

(i) must be true;

So the clause qj
(i) ∨ rj

(i) is redundant

How does a SMT solver solves this problem?
(pj

(i) ∨ rj
(i)) ∧(¬pj

(i) ∨ qj
(i))

When pj
(i)=True, qj

(i) must be true; pj
(i)=False, rj

(i) must be true;

SAT solver must try both cases of pj
(i)

pj
(i)=True (zj

(i) ≥ 0) pj
(i)=False (zj

(i) < 0)

Why using a SMT solver is very slow?
(pj

(i) ∨ rj
(i)) ∧(¬pj

(i) ∨ qj
(i))

When pj
(i)=True, qj

(i) must be true; pj
(i)=False, rj

(i) must be true;

SAT solver must try both cases of pj
(i). In a satisfiable solution from DPLL,

each pj
(i) is set to True or False, then a theory solver (Simplex) invoked.

There are exponential number of cases here… and modern neural networks
can have millions of neurons!

Can we solve the problem without setting every pj
(i)?

We will tack this problem from an optimization point of view today

Mathematical optimization problems

Given a objective function f: S → R

Seek an optimal solution x* such that f(x*) ≤ f(x) for all x ∈ S

Some optimization problems are hard, some are easy

Given a objective function f: S → R

Hardness depends on the properties of f and S. For tractable solving they cannot
be arbitrary!

● Easy ones: convex optimization, linear programming, semidefinite
programming

○ E.g., in linear programming, objective function and constraints must be linear functions

● Hard ones: integer programming, general quadratic programming, general
nonlinear programming, …

Verification Problem as an optimization problem

∃ x ∈ S ∧ y ≤ 0 ∧ y = f(x)

Can be solved with the following minimization problem:

If the optimal objective y*≤0, then the original
Problem is satisfiable

y*

Verification Problem as an optimization problem

Now we rewrite the neural network verification problem as a constrained
optimization problem (still using the simple network example):

min y
s.t. y = w(3)T ẑ(2)

ẑ(2) = max(z(2), 0)
z(2) =W(2) ẑ(1)

ẑ(1) = max(z(1), 0)
z(1) =W(1) x

xi ≤ ui
xi ≥ li

(ReLU activation)

(element-wise input bounds)

(linear layers)

Verification Problem as an optimization problem

Now we rewrite the neural network verification problem as a constrained
optimization problem (still using the simple network example):

min y
s.t. y = w(3)T ẑ(2)

ẑ(2) = max(z(2), 0)
z(2) =W(2) ẑ(1)

ẑ(1) = max(z(1), 0)
z(1) =W(1) x

xi ≤ ui
xi ≥ li

(nonlinear constraints)

(inputs bounds are also linear
constraints)

(linear constraints)

Optimization formulation for ReLU neurons

Let’s look at this constraint more carefully: ẑj
(i) = max(zj

(i), 0) (for all i, j)

One way to handle it is through the mixed integer linear programming (MILP)
formulation. Create an integer variable pj

(i) ∈ {0,1}, the constraint
ẑj

(i) = max(zj
(i), 0) can be equivalently written as (here M is a “big” number):

ẑj
(i)

zj
(i)

Optimization formulation for ReLU neurons

When pj
(i) = 0:

When pj
(i) = 1:

ẑj
(i)

zj
(i)

M1 needs to be small (negative) enough
M2 needs to be large enough

M2

M1

Pre-activation bounds

For this formulation to work, M1 and M2 must be properly selected.

If set too conservatively, like M1 = 100000 and M2 = -100000, solver can be very slow

How to find the tightest M1 and M2?

ẑj
(i)

zj
(i)

M1 M2

Pre-activation bounds

For this formulation to work, M1 and M2 must be properly selected.

ẑj
(i)

zj
(i)

M1 M2

If set too conservatively, like M1 = 100000 and M2 = -100000, solver can be very slow

How to find the tightest M1 and M2?

Pre-activation bounds

For this formulation to work, M1 and M2 must be properly selected (usually denoted
as l and u)

ẑj
(i)

zj
(i)

lj
(i) uj

(i)

We can use optimization to find these pre-activation bounds - the same formulation
as our verification problem before, just changing the optimization variables.

MILP, LP, or more efficient methods (next lecture) can be used to find these.

Pre-activation bounds

We can use optimization to find these pre-activation bounds - the same formulation
as our verification problem before, just changing the optimization variables.

min y
s.t. y = w(3)T ẑ(2)

ẑ(2) = max(z(2), 0)
z(2) =W(2) ẑ(1)

ẑ(1) = max(z(1), 0)
z(1) =W(1) x
xi ≤ ui

(0)

xi ≥ li
(0)

or

Mixed Integer Linear Programming formulation

We rewrite the neural network verification problem as a constrained optimization
problem (still using the simple network example):

y*MILP := min y
s.t. y = w(3)T ẑ(2)

ẑ(2) = max(z(2), 0)
z(2) =W(2) ẑ(1)

ẑ(1) = max(z(1), 0)
z(1) =W(1) x
xi ≤ ui

(0)

xi ≥ li
(0)

Each ReLU is represented by

Mixed Integer Linear Programming formulation

However, the integer variables pj
(i) are still hard to handle! (NP-hard)

y*MILP := min y
s.t. y = w(3)T ẑ(2)

ẑ(2) = max(z(2), 0)
z(2) =W(2) ẑ(1)

ẑ(1) = max(z(1), 0)
z(1) =W(1) x
xi ≤ ui

(0)

xi ≥ li
(0)

Each ReLU is represented by

Relaxation of integer variables: Linear programming

Now relaxing the integer constraints into continuous ones.

How does this affect the solution?

y*LP := min y
s.t. y = w(3)T ẑ(2)

ẑ(2) = max(z(2), 0)
z(2) =W(2) ẑ(1)

ẑ(1) = max(z(1), 0)
z(1) =W(1) x
xi ≤ ui

(0)

xi ≥ li
(0)

Each ReLU is represented by

MILP vs LP

y*LP ≤ y*MILP

It’s not the original MILP solution, but it is a guaranteed lower bound

Solving LP is polynomial time. Practically a few orders of magnitude faster.

y*MILP
y*LP

Sound but Incomplete Verification with a Lower Bound

If y*LP ≥ 0 => y* ≥ 0 => requirement verified (unsatisfiable)

y*LP ≤ 0 => return unknown (incomplete)

y*MILP=y*
y*LP≤ y*

Satisfiability problem: ∃ x ∈ S ∧ y ≤ 0 ∧ y = f(x)

y*LP≤ y* ?

A closer look at the linear programming relaxation

Each ReLU is represented by

(Please note that lj
(i) is negative during the above derivation)

Project out p

A closer look at the linear programming relaxation

Each ReLU is represented by

ẑj
(i)

zj
(i)

lj
(i) uj

(i)

“Triangle” relaxation

A closer look at the linear programming relaxation

ẑj
(i)

zj
(i)

lj
(i) uj

(i)

MILP: solutions are constrained on ReLU function
Linear programming: solutions are constrained on the triangle

MILP vs LP vs DPLL(T)

MILP:
● Branch and bound is used to make decisions only on certain number

of binary variables
● Specialized methods to accelerate solving (e.g., branching heuristics,

cutting planes)
● Complete (solve y* exactly)
● Typically scales much better than DPLL(T)

Linear programming:
● No integer variables
● No variable decisions needed (no exponential time search)
● Simplex algorithm can solve it relatively fast, a few thousands

neurons are ok
● Incomplete (has to return unknown in some cases)

Summary

● Neural network verification problem
● Solving the verification problem with SMT solvers
● Integer programming formulation
● Linear programming formulation and linear relaxation of ReLUs
● Next lecture: linear bound propagation method (CROWN) for efficient neural

network verification
● Reading for the next lecture:

○ http://arxiv.org/pdf/1811.00866.pdf
○ https://arxiv.org/pdf/1902.08722.pdf

● Homework 1 due on Sunday (2/11) 11:59 pm

http://arxiv.org/pdf/1811.00866.pdf
https://arxiv.org/pdf/1902.08722.pdf

