
Lecture 7: Introduction to Machine Learning and
Its Verification Problems

Prof. Huan Zhang

huan@huan-zhang.com

ECE/CS 584: Verification of Embedded and Cyber-physical Systems

Review: Linear Real Arithmetic (LRA) Theory

(x+y≥0) ∧(−2x+y≥2)∧(−10x+y≥−5)

Decision problem can be solved using
Simplex algorithm.

Review: DPLL(T) to solve SMT problems

What is machine learning?

“a field of study in artificial intelligence concerned
with the development and study of statistical
algorithms that can learn from data and
generalize to unseen data, and thus perform tasks
without explicit instructions.”

--Wikipedia

Machine learning
algorithms + data for AI

Artificial Intelligence
create machines with human-like

cognitive abilities

“the capacity of computers to learn and adapt
without following explicit instructions, by
using algorithms and statistical models to
analyse and infer from patterns in data”

-- Oxford English Dictionary

https://en.wikipedia.org/wiki/Field_of_study
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Computational_statistics
https://en.wikipedia.org/wiki/Computational_statistics
https://en.wikipedia.org/wiki/Generalize

Example: spam email classification

These are what show up in my Gmail “spam” folder:

TODO: write a program to classify whether an email is a spam email?

Step 1: collect data

Define some “Features”:
Count of “money words” (“payout”, “$”, “dollar”, “prizes”, “NFT”, …)
Count of exclamation marks

Step 1: collect data

Money Words (x1) Exclamation Marks (x2) Spam (y)

10 2 1

2 0 0

5 2 1

3 1 0

8 3 1

1 0 0

Non-machine-learning approach: write a program explicitly

Define some “Features”:
Count of “money words” (“payout”, “$”, “dollar”, “prizes”, “NFT”, …)
Count of exclamation marks

A human programmer chooses a, b, threshold

Step 2: learning from data (model training)

Algorithms to find this classifier
(not discussed in this class):

● Logistic regression
● Support vector machines

Instead of choosing these
parameters, we learn these from data

w1 x1 + w2 x2 = c (decision boundary)

Step 3: prediction

Given model weights w ∈ RN

Given features of an input x ∈ RN

If wTx > c: predict positive class (e.g., spam)

If wTx < c: negative class (e.g., not spam)

Note that by simple transformations on w and x,
we just need to check w’Tx’ > 0 or w’Tx’ < 0:

w’ = [w1, …, wN, -c]

x’ = [x1, …, xN, 1]

?

When linear function does not work well

To solve most practical classification problems,
non-linear classifiers are needed. Many different
approaches:

● Kernel method
● Neural networks
● Tree ensembles
● …

Neural Networks: let’s just stack linear functions multiple times?
x1

x2

y =w1 x1+w2x2=wTx
w1

w2

Neural Networks: let’s just stack linear functions multiple times?

x1

x2

z1
(1)

z2
(1)

z3
(1)

z1
(2)

z2
(2)

z3
(2)

z1
(1) =w1,1

(1) x1+w1,2
(1) x2

w1,1
(1

)

w1,2
(1)

In general we write in matrix form: z(1)=W(1)x, W(1) is a 3x2 matrix above

y

x1

x2

y =w1 x1+w2x2=wTx
w1

w2

Neural Networks: let’s just stack linear functions multiple times?

x1

x2

z1
(1)

z2
(1)

z3
(1)

z1
(2)

z2
(2)

z3
(2)

y=w(3)Tz(2)+b(3)

z(1)=W(1)x+b(1) z(2)=W(2)z(1)+b(2)

y=w(3)Tz(2)=w(3)TW(2)z(1)=w(3)TW(2)W(1)x still a linear function of x!

A bias term can be added

Must introduce nonlinear functions (“activation” functions)

ReLU: rectified linear unit
ReLU(x) := max(0, x)

Neural Networks: linear + non-linear layers (multi-layer perceptron)

ẑj
(i)=σ(zj

(i))z(2)

x1

x2

ẑ1
(1)

ẑ2
(1)

ẑ3
(1)z3

(1)

z2
(1)

z1
(1)

Pre-activation Post-activation

Input layer Output layer“Hidden neurons” in
intermediate layers

ẑ(2)

y=f(x)

Neural networks are “Universal approximators”

Many other neural network architectures available

In general, neural networks can be presented as a “computation graph”

x1

x2

y=f(x)

Σ

Σ

Σ

Σ

Σ

Σ

Σ

σ

σ

σ

σ

σ

σ

Introduction

19

AlphaFold (2021)

AlphaGo (2020)

ChatGPT (2023)

Stable Diffusion (2022)
“A robot manipulating an aircraft”

Many other neural network architectures available

Neural networks are not safe enough for mission-critical tasks

20

“Brad Pitt”

Sharif et al. 2018

Eykholt et al. 2018

“Speed limit 45”

Deep
Neural

Networks

“Adversarial examples”

Logo Image
Here

Algorithms

21

HalfCheetah

Ant

No attack Optimal attackMAD attack
[Z*CBH ICLR 2021][Z*C*XLLBH NeurIPS 2020]

Neural networks are not safe enough for mission-critical tasks

Neural network controlled robots (simulated) + adversarial sensor noise

Formal verification of neural networks: robustness verification

22

Eykholt et al. 2018

STOP 😀

Speed Limit 😈

Goal: prove adversarial examples do not exist!

Formal verification of neural networks: robustness verification

23

Attacker may put anything here

No adversarial examples

Score for each label

Speed
Limit

Stop

0.9

0.1

Formal verification of neural networks: robustness verification

24

…

= all possible pixel perturbations

Prove:

Speed
Limit

Stop

0.9

0.1

Attacker may put anything here Score for each label

Just an example of how
can be defined

Just an example of verification problem

For multi-class cases, we can define multiple fi(x),
one for each class

Verification example: ACAS Xu system

3MB DNN represents a large (2GB) lookup table
for collision avoidance of unmanned aircraft

Input: x∈ℝ5 , x = (d, θ, ψ, v_own, v_in)
d: Distance; θ: relative angle; ψ: relative heading;
vown, vin: speeds

Output y∈ℝ5: Clear of Conflict (COC), or advisory
weak/strong left/right. Five scores for these
actions:

y0: COC, y1: weak left at 1.5 deg/s

y2: strong left at 3.0 deg/s

y3: weak right y4: strong right
“Neural Network Verification Methods for Closed-Loop
ACAS Xu Properties”, Bak et. al.

Verification example: ACAS Xu system

3MB DNN represents a large (2GB) lookup table
for collision avoidance of unmanned aircraft

Input: x∈ℝ5 , x = (d, θ, ψ, vown, vin)
d: Distance; θ: relative angle; ψ: relative heading;
vown, vin: speeds

Output y∈ℝ5: Clear of Conflict (COC), or advisory
weak/strong left/right.

Requirement: E.g. If the intruder is far then the
score for COC should be above some threshold

∀x∈ℝ5, d ≥ 55947, vown ≥ 1145, vin ≤ 60
Prove: y0 > 1500 “Neural Network Verification Methods for Closed-Loop

ACAS Xu Properties”, Bak et. al.

Verification of neural networks

For all desired input x (image, text, sensor readings, etc), f(x) meets some conditions

Satisfiability problem: does there exist x, such that f(x) does not meet these
conditions?

x y=f(x)

∃ x ∈ S ∧ y ≤ 0 ∧ y = f(x)

Can also be multiple conditions, like in some ACAS Xu requirements
and robustness verification of multi-class classification

Verification example: ACAS Xu system (from VNN-COMP)

Input: x∈ℝ5 , x = (d, θ, ψ, v_own, v_in)
d: Distance; θ: relative angle; ψ: relative heading; vown, vin: speeds

Output y∈ℝ5: y0: COC, y1: weak left, y2: strong left, y3: weak right, y4: strong right

(y1 - y0 <= 0) ∧ (y2 - y0 <= 0) ∧ (y3 - y0 <= 0) ∧ (y4 - y0 <= 0)

Requirements written in VNNLIB format

multiple conditions on y

Verification of neural networks

x ∈ S condition is easy to handle for box constraints:

xi ≤ ui ∧ xi ≥ li

∃ x ∈ S ∧ y ≤ 0 ∧ y = f(x)

How to handle y = f(x)?

Verification of neural networks

How to handle the constraint y = f(x)?

ẑj
(i)=σ(zj

(i))

z(2)

x1

x2

ẑ1
(1)

ẑ2
(1)

ẑ3
(1)z3

(1)

z2
(1)

z1
(1) ẑ(2)

y=f(x)

Linear layers: z(1) =W(1) x
 z

(2) =W(2) ẑ(1)
 y=w(3)T ẑ(2)

Verification of neural networks

How to handle the constraint y = f(x)?

z(2)

x1

x2

ẑ1
(1)

ẑ2
(1)

ẑ3
(1)z3

(1)

z2
(1)

z1
(1) ẑ(2)

y=f(x)

Linear layers: z1 =W(1) x
 z

(2) =W(2) ẑ(1)
 y=w(3)T ẑ(2)

Directly copy all the linear equality constraints to the SMT formulation.

Verification of neural networks

How to handle the constraint y = f(x)?

ẑj
(i)=ReLU(zj

(i)) => (zj
(i) ≥ 0 ∧ ẑj

(i)= zj
(i)) ∨ (zj

(i) < 0 ∧ ẑj
(i)= 0)

z(2)

x1

x2

ẑ1
(1)

ẑ2
(1)

ẑ3
(1)z3

(1)

z2
(1)

z1
(1) ẑ(2)

y=f(x)

Verification of neural networks
Satisfiability problem: ∃ x ∈ S ∧ y ≤ 0 ∧ y = f(x)

((zj
(i) ≥ 0 ∧ ẑj

(i)= zj
(i)) ∨ (zj

(i) < 0 ∧ ẑj
(i)= 0)) for each ReLU neuron

z1 =W(1) x
 ∧ z

(2) =W(2) ẑ(1)
 ∧ y=w(3)T ẑ(2) ∧ y ≤ 0

Add all clauses to the formula and solve using DPLL(T)
with Linear Real Arithmetic.

In general this is very slow! Faster methods in the next a
few lectures.

xi ≤ ui ∧ xi ≥ li for each dimension of x

Summary

● Machine learning
● Neural networks
● Verification problems on neural networks
● Neural network verification as a SMT problem
● Please checkout verification of neural networks competitions

(VNN-COMP) for more examples of verification problems
○ https://sites.google.com/view/vnn2023
○ https://sites.google.com/view/vnn2022
○ https://sites.google.com/view/vnn2021

● Next lecture: integer programming and linear programming formulations for
neural network verification

● Reading:
○ https://arxiv.org/pdf/1711.07356.pdf
○ https://arxiv.org/pdf/1711.00851.pdf

https://sites.google.com/view/vnn2023
https://sites.google.com/view/vnn2022
https://sites.google.com/view/vnn2021
https://arxiv.org/pdf/1711.07356.pdf
https://arxiv.org/pdf/1711.00851.pdf

