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Today

• SMT (cont)

• Decision procedure for Linear Real Arithmetic
Simplex Algorithm [Dantzig 1947]

• Next 2 - 3 weeks: Verification of Neural Networks and Machine 
Learning



Review: theories in SMT
• Linear (real) arithmetic 

• 4� − 3� + 6� ≤ 10, � + � − � ≤ 1;  
• Nonlinear real arithmetic

•  4�2 + 6� − 9�3 ≤ 5
• Bit vectors

• Arrays
• �′ � = � � + 1

• Uninterpreted functions (UF) Σ�: =  �, �, … ,  Σ�: =  = ,  �: =  �� 
• �1 = �2   ∧   �3 ≠ �2   ∧   � �3 ≠ � �2 

• Difference logic Σ�: =  0,1,2,3, . . . , −   , Σ�: =  < , ≤ ,   = , > , ≥ ,  �: =  �� 
• �1 − �2 ≷ �, where ≷∈  < , ≤ ,   = , > , ≥ 



Review: Uninterpreted functions

Useful for abstractly reasoning about programs
• Σ�: =  �, �, … ,  Σ�: =  = ,  �: =  �� 
Literals are of the form �1 = �2   ∧   �3 ≠ �2   ∧   � �3 ≠ � �2 

We know nothing about f, g, ... except for its name and arity



Review: Difference Logic

A useful fragment of linear arithmetic
Σ�: =  0,1,2, . . , −   
Σ�: =  < , ≤ ,   = , ≠ , > , ≥ 
Literals are of the form �1 − �2 ≷ �, where ≷∈  < , ≤ ,   = , > , ≥ 
�1, �2 are Integers

Example: � =   � − � = 5 ∧  �  − � ≥ 2 ∧  �  − � > 2 ∧  � − � =
2 ∧    �  − � < 0 
Satisfiability problem: checking whether this formula is consistent
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How to solve SMT
Several approaches, lazy approach:
• Abstract � to propositional form 
• Feed to DPLL
• Use theory decision procedure to refine propositional formula a guide SAT  

� ≡  � � = � ∧  � � �  ≠ � � ∨ � � = � ∧ � ≠ �
abstract � ≡ �1 ∧  ¬�2 ∨ �3 ∧ ¬�4



DPLLT: DPLL modulo theories

How can we extend DPLL to handle formulas over other theories like 
• Difference Logic (DL)
• Uninterpreted functions (UF)
• Linear Real Arithmetic (LRA)

Idea: Start with a Boolean abstraction (or skeleton) and 
incrementally add more theory information 
until we can conclusively say SAT or UNSAT 



Example: DPLLLRA

� ≡  � ≤ 0 ∨ � ≤ 10 ∧  ¬� ≤ 0 

Boolean abstraction: replace every unique linear inequality with a Boolean variable
�� ≡  � ∨ � ∧  ¬� 
where � abstracts � ≤ 0 and � abstracts � ≤ 10

Abstraction because information is lost

The relationship � > 10 ⇒ � > 0, i.e., ¬� ⇒ ¬� is lost in ��

Notation.  �� � maps �� back to theory �, i.e.,  �� � = �. 

Proposition. If �� is UNSAT then � is UNSAT, but the converse does not hold, i.e., �� is SAT does not 
mean that � is SAT. 

Example. �1 ≡  � ≤ 0 ∧ � ≥ 10  is clearly UNSAT, however �1
� ≡ � ∧ � is SAT. 



Lazy DPLLT Algorithm using a Decision Procedure �  

Input: A formula � in CNF form over theory T
Output: � ⊨ � or UNSAT
Let �� be the abstraction of �
while true do
   if DPLL ��  is unsat then return UNSAT
else
   Let � be the model returned by 퐷푃��
   Assume � is represented as a formula
   if � ��  is sat then return SAT and the model returned by �  
   else �� ≔ ��  ∧ ¬�
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• � ≡ � � = � ∧  � � �  ≠ � � ∨ � � = � ∧ � ≠ �

 1           2                 3              4 
• abstract � ≡ �1 ∧  ¬�2 ∨ �3 ∧ ¬�4

• send �� ≡  {1, 2  ∨ 3,   4 } to DPLL

• DPLL returns SAT with model �:{1, 2,   4 } 
• UF solver concretizes ��� ≡  � � = � , � � �  ≠ � � , � ≠ �

• UF checks ��� as UNSAT

• send �� ∧ ¬�: {1, 2  ∨ 3,   4 , 1 ∨ 2 ∨ 4 } to DPLL; this is a new fact learned by DPLL

• DPLL returns model �′: {1, 2, 3,   4 } 
• UF solver concretizes �′�� and finds this to be UNSAT

• send �� ∧ ¬� ∧ ¬�′: {1, 2  ∨ 3,   4 , 1 ∨ 2 ∨ 4, 1 ∨ 2 ∨ 3 ∨   4 } to DPLL; another fact

• returns UNSAT

Theory solvers/decision 
procedures �  

 

Arithmetic 
Bitvectors 

DPLL Difference 
logic …
Uninterprete
d functions

Core 

��

��

UNSAT
SAT, �



DPLLT: DPLL modulo theories

How can we extend DPLL to handle formulas over other theories like 

• Difference Logic (DL)

• Uninterpreted functions (UFs)

• Today: Linear Real Arithmetic (LRA)

 � + � ≥ 0) ∧(−2� + � ≥ 2 ∧  −10� + � ≥− 5   



Decision Procedure for Linear Real Arithmetic

Input: � ≡ ∧�=1
� Σ�=1

� ����� ≤ �� where ���, �� ∈ ℝ
Output: ∃ a model � ∈ ℝ� such that � ⊨ �?

Solution based on Simplex Algorithm [Dantzig 1947]  

Simplex solves 

max Σ�=1
� ���� subject to

∧�=1
� Σ�=1

� ����� ≤ �� 

Our focus will be on finding any solution � ∈ ℝ� that satisfies �



Decision Procedure for Linear Real Arithmetic

Input: � ≡ ∧�=1
� Σ�=1

� ����� ≤ �� where ���, �� ∈ ℝ
Output: ∃ a model � ∈ ℝ� such that � ⊨ �?

Simplex expects � to be expressed in the Simplex form, which is a 
conjunction of

- Linear equalities: Σ�=1
� ���� = 0

- Bounds: li ≤ �� ≤ ��



Transforming to Simplex Form

Consider the ��ℎ inequality in �: Σ�=1
� ����� ≤ ��

Rewrite this as:
�� = Σ�=1

� ����� ∧ �� ≤ ��

�� is called a slack variable

Putting together all the rewritten conjuncts we get ��

Proposition. 

1. Any model of �� is a model of �, disregarding the assignments to the slack variables. 

2. If �� is UNSAT then � is UNSAT.



Simplex (Informal)

Idea. Simultaneously try to find a model or a proof of UNSAT

Start with some model (or valuation) that satisfies all linear 
equalities (say, �� = 0,  ∀�)

In each iteration, pick a bound that is not satisfied and modify 
the model to satisfy the bound 
OR 
discover that the formula is UNSAT



Variable naming and ordering for Simplex

The input formula �� (after rewriting) has two types of variables

• Basic variables appear on the LHS of one equality; initially these are the slack 
variables

• Non-basic variables all others

�1 =  � + �
�2 =− 2� + �
�3 =   − 10� + �
�1 ≥ 0
�2 ≥ 2
�3 ≥− 5
−∞ ≤ � ≤ ∞

� =− 0.5�2 + 0.5�
�1 =− 0.5�2 + 1.5�
�3 = 5�2 − 4�
�1 ≥ 0
�2 ≥ 2
�3 ≥− 5
−∞ ≤ � ≤ ∞



Variable naming and ordering for Simplex

The input formula �� (after rewriting) has two types of variables

• Basic variables appear on the LHS of one equality; initially these are the slack 
variables

• Non-basic variables all others

We fix an arbitrary total ordering on variables �1, …, ��

For a basic variable �� and non-basic variable �� we denote by ��� the coefficient 
of �� in the definition of ��, i.e.,
�� =  … + ��� �� +  … 

The upper and lower bounds of �� are called �� and �� (possibly ∞,   − ∞ 



Pivoting: switch basic and non-basic variables

The pivoting operation change one non-basic variable to a basic 

variable (we say this variable is “entering”), while one other basic 

variable is changed to non-basic (we say this variable is “leaving”)

�1 =  � + �
�2 =− 2� + �
�3 =   − 10� + �
�1 ≥ 0
�2 ≥ 2
�3 ≥− 5
−∞ ≤ � ≤ ∞

� =− 0.5�2 + 0.5�
�1 =− 0.5�2 + 1.5�
�3 = 5�2 − 4�
�1 ≥ 0
�2 ≥ 2
�3 ≥− 5
−∞ ≤ � ≤ ∞



Pivoting: switch basic and non-basic variables

The pivoting operation change one non-basic variable to a basic 

variable (we say this variable is “entering”), while one other basic 

variable is changed to non-basic (we say this variable is “leaving”)

�1 =  � + �
�2 =− 2� + �
�3 =   − 10� + �
�1 ≥ 0
�2 ≥ 2
�3 ≥− 5
−∞ ≤ � ≤ ∞

� =− 0.5�2 + 0.5�
�1 =− 0.5�2 + 1.5�
�3 = 5�2 − 4�
�1 ≥ 0
�2 ≥ 2
�3 ≥− 5
−∞ ≤ � ≤ ∞

� = −0.5�2 + 0.5�



Pivoting: switch basic and non-basic variables

The pivoting operation change one non-basic variable to a basic 

variable (we say this variable is “entering”), while one other basic 

variable is changed to non-basic (we say this variable is “leaving”)

�1 =  � + �
�2 =− 2� + �
�3 =   − 10� + �
�1 ≥ 0
�2 ≥ 2
�3 ≥− 5
−∞ ≤ � ≤ ∞

� =− 0.5�2 + 0.5�
�1 =− 0.5�2 + 1.5�
�3 = 5�2 − 4�
�1 ≥ 0
�2 ≥ 2
�3 ≥− 5
−∞ ≤ � ≤ ∞

� = −0.5�2 + 0.5�

�� = Σ�∈�
� �����, � ∈ �

Pivoting �� and �� rewrites �� as 
basic variable
�� = ����� + Σ�∈�\ � 

� �����

�� =
��

���
− Σ�∈�\ � 

� ���

���
��



Simplex (Formal) 1

The algorithm maintains two invariants

1. The model � always satisfies the equalities; bounds may be violated. 

Why is this invariant satisfied by our initialization of all 0s?

2. The bounds of all non-basic variables are all satisfied.

Why is this invariant satisfied by our initialization?

Linear equalities: Σ�=1
� ���� = 0

Bounds: li ≤ �� ≤ ��   (only for slack variables)

� ≡ ∧�=1
� Σ�=1

� ����� ≤ �� where ���, �� ∈ ℝ



Simplex Algorithm: DP for LRA
Input: A formula �� in Simplex form
Output: � ⊨ �� or UNSAT
� ≔ ⟨�� ↦ 0⟩
while true do
if � ⊨ �� then return �
Let �� be the first basic variable s.t. �� < li or �� > ui
if �� < li then
     Let �� be the first non-basic variable s.t.
      ��  <  �� ∧  ���  >  0 ∨  ��  >  �� ∧  ���  <  0   
     If no such �� exists then return UNSAT

     �� ≔   �� + ��−��
���

 ; ��≔ l�
else Let �� be the first non-basic variable s.t.
      �� >  �� ∧  ���  >  0 ∨  �� <  �� ∧  ���  <  0 
     If no such �� exists then return UNSAT

     �� ≔   �� + ��−��
���

  ; ��≔ u�

Pivot �� and ��; update ��, ��, and all basic variables

�� = Σ�∈�
� �����, � ∈ �

Pivoting �� and �� rewrites �� as 
basic variable
�� = ����� + Σ�∈�\ � 

� �����

�� =
��

���
− Σ�∈�\ � 

� ���

���
��



Example

� + � ≥ 0 
−2� + � ≥ 2
−10� + � ≥− 5
Rewritten in Simplex form
�1 =  � + �
�2 =− 2� + �
�3 =   − 10� + �
�1 ≥ 0
�2 ≥ 2
�3 ≥− 5



Example continued
Variable ordering
�, �, �1, �2, �3
Initialization �� = ⟨� ↦ 0, � ↦ 0, �1 ↦ 0, �2 ↦ 0, �3 ↦ 0⟩
�� satisfies equalities, bounds of �1 �3 are satisfied
Pick the first variable � to fix the bound of �2
Since upper and lower bounds of � are ∞ and −∞ it easily satisfies the 
blue condition 
To increase �2 to 2 and satisfy its lowerbound we decrease � to -1

�� = ⟨� ↦ 0 +
2 − 0
−2

=− 1, � ↦ 0, �1 ↦− 1, �2 ↦ 2, �3 ↦ 10⟩
Pivot �2 with �
Now � becomes a basic variable, �2 non-basic 

�1 =  � + �
�2 =− 2� + �
�3 =   − 10� + �
�1 ≥ 0
�2 ≥ 2
�3 ≥− 5
−∞ ≤ � ≤ ∞

� =− 0.5�2 + 0.5�
�1 =− 0.5�2 + 1.5�
�3 = 5�2 − 4�
�1 ≥ 0
�2 ≥ 2
�3 ≥− 5
−∞ ≤ � ≤ ∞



Example continued
�� = ⟨� ↦− 1, � ↦ 0, �1 ↦− 1, �2 ↦ 2, �3 ↦ 10⟩
All equalities are still satisfied (invariant)
The only basic variable not satisfying its bounds is now s1
The first non-basic variable we can tweak is �

Setting �1 ↦ 0 to satisfy the lowerbound of s1 we get

�� = ⟨� ↦− 2/3, � ↦ 0 +
0 −  −1 

1.5
= 2/3,

�1 ↦ 0, �2 ↦ 2, �3 ↦ 22/3⟩
Pivot �1 with �

�� ⊨ ��

� =− 0.5�2 + 0.5�
�1 =− 0.5�2 + 1.5�
�3 = 5�2 − 4�
�1 ≥ 0
�2 ≥ 2
�3 ≥− 5
−∞ ≤ � ≤ ∞

� =  
2
3

�1 +
1
3

�2

� =
1
3

�1 −
1
3

�2

�3 =−
8
3

�1 +
11
3

�2

�2 ≥ 2
�1 ≥ 0
�3 ≥− 5
−∞ ≤ � ≤ ∞

�1 =− 0.5�2 + 1.5� � =  
2
3

�1 +
1
3

�2



Why is simplex correct?

• Why does it terminate?
Because we always looks for the first variable violating the bounds. There is a 
property (Bland’s rule) that ensures that we never revisit the same set of basic 
and non-basic variables.

• Why does it give the right answer (sound)?
• If it returns � does it satisfy � ⊨ �? 

This follows from the condition before return �
• If it returns UNSAT is � really unsatisfiable? 

For proofs, check Dutertre, B., de Moura, L.: Integrating Simplex with DPLL(T). Technical report, CSL-06-01, SRI 
International (2006)

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=55e1e23752da3458b3f25ae3072b83c2ca2fefeb


Unsatisfiable example
�1 =  � + �
�2 =− � − 2�
�3 =   − � + �
�1 ≥ 0
�2 ≥ 2
�3 ≥ 1
Consider a Simplex execution in which there 

are two pivots:

Pivot 1: �1 with � , �1set to 0.
� = �1 − �
�2 =− �1 − �
�3 =   − �1 + 2�
Pivot 2: �2 with � , �2set to 2
� = 2�1 + �2

� =− �1 − �2

�3 =   − 3�1 − 2�2

Non-basic variables satisfy their bounds (invariant), and so 
�1 ≥ 0, �2 ≥ 2
If �3 violates the bound then
�3 =   − 3�1 − 2�2 < 1

We can make �3 bigger by decreasing �1 and �2 but even at 

the extreme (smallest possible)  �1 and �2
�3 =   − 3 × 0 − 2 × 2 =− 4 

which is still less than 1 and Simplex concludes that the 

formula is UNSAT. 

The blue conditions for choosing �� encodes this condition. 



Simplex Algorithm: DP for LRA
Input: A formula �� in Simplex form
Output: � ⊨ �� or UNSAT
� ≔ ⟨�� ↦ 0⟩
while true do
if � ⊨ �� then return �
Let �� be the first basic variable s.t. �� < li or �� > ui
if �� < li then
     Let �� be the first non-basic variable s.t.
      ��  <  �� ∧  ���  >  0 ∨  ��  >  �� ∧  ���  <  0   
     If no such �� exists then return UNSAT

     �� ≔   �� + ��−��
���

 ; �� ≔ l�
else Let �� be the first non-basic variable s.t.
      �� >  �� ∧  ���  >  0 ∨  �� <  �� ∧  ���  <  0 
     If no such �� exists then return UNSAT

     �� ≔   �� + ��−��
���

  ; ��≔ u�

Pivot �� and ��; update ��, ��, and all basic variables

�� = Σ�∈�
� �����, � ∈ �

Pivoting �� and �� rewrites �� as 
basic variable
�� = ����� + Σ�∈�\ � 

� �����

�� =
��

���
− Σ�∈�\ � 

� ���

���
��

i.e., find a non-basic variable that is not set to their 
extreme value �� or  �� according to the sign of ���

If the non-basic variable �� has been set to its 
extreme, we cannot further change it to fix ��



Summary and Takeaways

• Satisfiability modulo theory solvers use theory solvers and DPLL 
to check satisfiability of formulas in other theories

• DPLL takes care of disjunctions

• Theory solvers take care of conjunctions

• Simplex or more generally Linear programming (LP) solvers is a 
theory solver for linear real arithmetic

• Simplex algorithm solves LP by incrementally fixing the bounds of basic 
variables


