Lecture 6: Satisfiability modulo theories Part 2: DPLL(T) and Simplex Algorithm

Huan Zhang <u>huan@huan-zhang.com</u>

Slides adapted from Prof. Sayan Mitra's slides in Fall 2021 Some of the slides for this lecture are adapted from slides by Clark Barrett

George B. Dantzig

Today

- SMT (cont)
- Decision procedure for Linear Real Arithmetic Simplex Algorithm [Dantzig 1947]
- Next 2 3 weeks: Verification of Neural Networks and Machine Learning

Review: theories in SMT

- Linear (real) arithmetic
 - $4x 3y + 6z \le 10, x + y z \le 1;$
- Nonlinear real arithmetic
 - $4x^2 + 6y 9z^3 \le 5$
- Bit vectors
- Arrays
 - x'[i] = x[i] + 1
- Uninterpreted functions (UF) Σ_F : = {f, g, ...}, Σ_P : = {=}, V: = { x_i }
 - $x_1 = x_2 \land x_3 \neq x_2 \land f(x_3) \neq f(x_2)$
- Difference logic Σ_F : = {0,1,2,3,..., }, Σ_P : = {< , ≤ , = , > , ≥}, V: = { x_i }
 - $x_1 x_2 \ge k$, where $\ge \in \{<, \le, =, >, \ge\}$

Review: Uninterpreted functions

Useful for abstractly reasoning about programs

•
$$\Sigma_F$$
: = {*f*, *g*, ...}, Σ_P : = {=}, *V*: = {*x_i*}

Literals are of the form $x_1 = x_2 \land x_3 \neq x_2 \land f(x_3) \neq f(x_2)$

We know nothing about *f*, *g*, ... except for its name and arity

Review: Difference Logic

A useful fragment of linear arithmetic Σ_F : = {0,1,2,..., - } Σ_P : = {< , < , = , \neq , > , ≥}

Literals are of the form $x_1 - x_2 \ge k$, where $\ge \in \{<, \le, =, >, \ge\}$ x_1, x_2 are Integers

Example: $\phi = (x - y = 5) \land (z - y \ge 2) \land (z - x > 2) \land (w - x = 2) \land (z - w < 0)$

Satisfiability problem: checking whether this formula is consistent

How to solve SMT_{se}

Several approaches, lazy approach:

- Abstract ϕ to propositional form
- Feed to DPLL

DPLL^{T:} DPLL modulo theories

How can we extend DPLL to handle formulas over other theories like

- Difference Logic (DL)
- Uninterpreted functions (UF)
- Linear Real Arithmetic (LRA)

Idea: Start with a *Boolean abstraction* (or skeleton) and incrementally add more *theory* information until we can conclusively say SAT or UNSAT

Example: DPLL^{LRA}

$F \equiv (x \le 0 \lor x \le 10) \land (\neg x \le 0)$

Boolean abstraction: replace every unique linear inequality with a Boolean variable $F^B \equiv (p \lor q) \land (\neg p)$

where *p* abstracts $x \le 0$ and *q* abstracts $x \le 10$

Abstraction because information is lost

The relationship $x > 10 \Rightarrow x > 0$, i.e., $\neg q \Rightarrow \neg p$ is lost in F_B

Notation. $(F^B)^T$ maps F^B back to theory T, i.e., $(F^B)^T = F$.

Proposition. If F^B is UNSAT then F is UNSAT, but the converse does not hold, i.e., F^B is SAT does not mean that F is SAT.

Example. $F_1 \equiv (x \le 0 \land x \ge 10)$ is clearly UNSAT, however $F_1^B \equiv p \land q$ is SAT.

Lazy DPLL^T Algorithm using a Decision Procedure T()

Input: A formula *F* in CNF form over theory T **Output:** $I \models F$ or UNSAT Let F^B be the abstraction of *F* **while** true **do if** DPLL(F^B) is unsat then **return** UNSAT **else**

Let *I* be the model returned by *DPLL* Assume *I* is represented as a formula if $T(I^T)$ is sat **then return** SAT and the model returned by T()else $F^B \coloneqq F^B \land \neg I$

•
$$\phi \equiv g(a) = c \wedge (f(g(a)) \neq f(c) \lor g(a) = d) \land c \neq d$$

1 $\overline{2}$ $\overline{3}$ $\overline{4}$

- abstract $\phi \equiv x_1 \land (\neg x_2 \lor x_3) \land \neg x_4$
- send $\phi^B \equiv \{1, \overline{2} \lor 3, \overline{4}\}$ to DPLL
- DPLL returns SAT with model $I:\{1, \overline{2}, \overline{4}\}$

- UF solver concretizes $I^{UF} \equiv g(a) = c$, $f(g(a)) \neq f(c)$, $c \neq d$
- UF checks *I^{UF}* as UNSAT
- send $\phi^B \wedge \neg I$: {1, $\overline{2} \vee 3$, $\overline{4}$, $\overline{1} \vee 2 \vee 4$ } to DPLL; this is a new fact learned by DPLL
- DPLL returns model I': {1, 2, 3, $\overline{4}$ }
- UF solver concretizes I'^{UF} and finds this to be UNSAT
- send $\phi^B \wedge \neg I \wedge \neg I'$: {1, $\overline{2} \vee 3$, $\overline{4}$, $\overline{1} \vee 2 \vee 4$, $\overline{1} \vee \overline{2} \vee \overline{3} \vee 4$ } to DPLL; another fact
- returns UNSAT

DPLL^{T:} DPLL modulo theories

How can we extend DPLL to handle formulas over other theories like

- Difference Logic (DL)
- Uninterpreted functions (UFs)
- Today: Linear Real Arithmetic (LRA)

 $(x + y \ge 0) \land (-2x + y \ge 2) \land (-10x + y \ge -5)$

Decision Procedure for Linear Real Arithmetic

Input:
$$F \equiv \wedge_{i=1}^{n} \Sigma_{j=1}^{m} c_{ij} x_{j} \leq b_{i}$$
 where $c_{ij}, b_{i} \in \mathbb{R}$
Output: \exists a model $x \in \mathbb{R}^{m}$ such that $x \models F$?

Solution based on Simplex Algorithm [Dantzig 1947] Simplex solves

 $\max \sum_{j=1}^{m} a_j x_j \text{ subject to}$ $\wedge_{i=1}^{n} \sum_{j=1}^{m} c_{ij} x_j \leq b_i$

Our focus will be on finding any solution $x \in \mathbb{R}^m$ that satisfies F

Decision Procedure for Linear Real Arithmetic

Input:
$$F \equiv \wedge_{i=1}^{n} \Sigma_{j=1}^{m} c_{ij} x_{j} \leq b_{i}$$
 where $c_{ij}, b_{i} \in \mathbb{R}$
Output: \exists a model $x \in \mathbb{R}^{m}$ such that $x \models F$?

Simplex expects F to be expressed in the Simplex form, which is a conjunction of

- Linear equalities: $\sum_{i=1}^{m} c_i x_i = 0$
- Bounds: $l_i \le x_i \le u_i$

Transforming to Simplex Form

Consider the i^{th} inequality in $F: \sum_{j=1}^{m} c_{ij} x_j \le b_i$

Rewrite this as:

 $s_i = \sum_{j=1}^m c_{ij} x_j \wedge s_i \le b_i$

s_i is called a *slack variable*

Putting together all the rewritten conjuncts we get F_S

Proposition.

1. Any model of F_S is a model of F, disregarding the assignments to the slack variables.

2. If F_S is UNSAT then F is UNSAT.

Simplex (Informal)

Idea. Simultaneously try to find a model or a proof of UNSAT

Start with some *model (or valuation)* that satisfies all linear equalities (say, $x_i = 0, \forall i$)

In each iteration, pick a bound that is not satisfied and modify the model to satisfy the bound OR discover that the formula is UNSAT

Variable naming and ordering for Simplex

The input formula F_S (after rewriting) has two types of variables

- **Basic variables** appear on the **LHS** of **one** equality; initially these are the *slack variables*
- Non-basic variables all others

 $s_1 = x + y$ $x = -0.5s_2 + 0.5y$ $s_2 = -2x + y$ $s_1 = -0.5s_2 + 1.5y$ $s_3 = -10x + y$ $s_3 = 5s_2 - 4y$ $s_1 \ge 0$ $s_1 \ge 0$ $s_2 \ge 2$ $s_2 \ge 2$ $s_3 \ge -5$ $s_3 \ge -5$ $-\infty \le x \le \infty$ $-\infty \le x \le \infty$

Variable naming and ordering for Simplex

The input formula F_S (after rewriting) has two types of variables

- **Basic variables** appear on the **LHS** of **one** equality; initially these are the *slack variables*
- Non-basic variables all others

We fix an *arbitrary total ordering* on variables $x_1, ..., x_n$

For a basic variable x_i and non-basic variable x_j we denote by c_{ij} the coefficient of x_j in the definition of x_i , i.e.,

 $x_i = \dots + c_{ij} x_j + \dots$

The upper and lower bounds of x_i are called u_i and l_i (possibly ∞ , $-\infty$)

Pivoting: switch basic and non-basic variables

The pivoting operation change one non-basic variable to a basic variable (we say this variable is "entering"), while one other basic variable is changed to non-basic (we say this variable is "leaving")

$s_1 = x + y$	$x = -0.5s_2 + 0.5y$
$s_2 = -2x + y$	$s_1 = -0.5s_2 + 1.5y$
$s_3 = -10x + y$	$s_3 = 5s_2 - 4y$
$s_1 \ge 0$	$s_1 \ge 0$
$s_2 \ge 2$	$s_2 \ge 2$
$s_3 \geq -5$	$s_3 \geq -5$
$-\infty \le x \le \infty$	$-\infty \leq x \leq \infty$

Pivoting: switch basic and non-basic variables

The pivoting operation change one non-basic variable to a basic variable (we say this variable is "entering"), while one other basic variable is changed to non-basic (we say this variable is "leaving")

Pivoting: switch basic and non-basic variables

The pivoting operation change one non-basic variable to a basic variable (we say this variable is "entering"), while one other basic variable is changed to non-basic (we say this variable is "leaving")

$$\begin{array}{l} s_{1} = x + y \\ s_{2} = -2x + y \\ s_{3} = -10x + y \\ s_{1} \ge 0 \\ s_{2} \ge 2 \\ s_{3} \ge -5 \\ -\infty \le x \le \infty \end{array} \xrightarrow{x = -0.5s_{2} + 0.5y} x = -0.5s_{2} + 0.5y \\ x = -0.5s_{2} + 0.5y \\ s_{1} = -0.5s_{2} + 1.5y \\ s_{3} = 5s_{2} - 4y \\ s_{1} \ge 0 \\ s_{2} \ge 2 \\ s_{3} \ge -5 \\ -\infty \le x \le \infty \end{array}$$

 $x_{i} = \sum_{k \in N}^{m} c_{ik} x_{k}, j \in N$ Pivoting x_{i} and x_{j} rewrites x_{j} as basic variable $x_{i} = c_{ij} x_{j} + \sum_{k \in N \setminus \{j\}}^{m} c_{ik} x_{k}$ $x_{j} = \frac{x_{i}}{c_{ij}} - \sum_{k \in N \setminus \{j\}}^{m} \frac{c_{ik}}{c_{ij}} x_{k}$

Simplex (Formal) 1

The algorithm maintains two invariants

 The model x always satisfies the equalities; bounds may be violated. Why is this invariant satisfied by our initialization of all 0s?
 The bounds of all non-basic variables are all satisfied.

Why is this invariant satisfied by our initialization?

$$F \equiv \bigwedge_{i=1}^{n} \sum_{j=1}^{m} c_{ij} x_j \le b_i \text{ where } c_{ij}, b_i \in \mathbb{R}$$

Linear equalities: $\sum_{i=1}^{m} c_i x_i = 0$ Bounds: $l_i \le x_i \le u_i$ (only for slack variables)

Simplex Algorithm: DP for LRA

Input: A formula F_S in Simplex form **Output**: $x \models F_S$ or UNSAT $x \coloneqq \langle x_i \mapsto 0 \rangle$

while true do

if $x \models F_S$ then return x

Let x_i be the first basic variable s.t. $x_i < l_i$ or $x_i > u_i$ if $x_i < l_i$ then

Let x_i be the first non-basic variable s.t.

 $(x_j < u_j \land c_{ij} > 0) \lor (x_j > l_j \land c_{ij} < 0)$

If no such x_i exists then return UNSAT

$$x_j \coloneqq x_j + \frac{l_i - x_i}{c_{ij}}$$
; $x_i \coloneqq l_i$

else Let x_i be the first non-basic variable s.t.

 $(x_j > l_j \land c_{ij} > 0) \lor (x_j < u_j \land c_{ij} < 0)$ If no such x_j exists then return UNSAT $x_j \coloneqq x_j + \frac{u_i - x_i}{c_{ij}}$; $x_i \coloneqq u_i$

Pivot x_i and x_j ; update x_i , x_j , and all basic variables

 $x_{i} = \sum_{k \in N}^{m} c_{ik} x_{k}, j \in N$ Pivoting x_{i} and x_{j} rewrites x_{j} as basic variable $x_{i} = c_{ij} x_{j} + \sum_{k \in N \setminus \{j\}}^{m} c_{ik} x_{k}$ $x_{j} = \frac{x_{i}}{c_{ij}} - \sum_{k \in N \setminus \{j\}}^{m} \frac{c_{ik}}{c_{ij}} x_{k}$

Example

 $x + y \ge 0$ $-2x + y \ge 2$ $-10x + y \ge -5$

Rewritten in Simplex form $s_1 = x + y$ $s_2 = -2x + y$ $s_3 = -10x + y$ $s_1 \ge 0$ $s_2 \ge 2$ $s_3 \ge -5$

Example continued

Variable ordering x, y, s_1, s_2, s_3

 $s_{1} = x + y$ $s_{2} = -2x + y$ $s_{3} = -10x + y$ $s_{1} \ge 0$ $s_{2} \ge 2$ $s_{3} \ge -5$ $-\infty \le x \le \infty$

Initialization $x_0 = \langle x \mapsto 0, y \mapsto 0, s_1 \mapsto 0, s_2 \mapsto 0, s_3 \mapsto 0 \rangle$

 x_0 satisfies equalities, bounds of $s_1 s_3$ are satisfied

Pick the first variable x to fix the bound of s_2

Since upper and lower bounds of x are ∞ and $-\infty$ it easily satisfies the blue condition

To increase s_2 to 2 and satisfy its lowerbound we decrease x to -1

$$\begin{aligned} x_1 &= \langle x \mapsto 0 + \frac{2-0}{-2} = -1, y \mapsto 0, s_1 \mapsto -1, s_2 \mapsto 2, s_3 \mapsto 10 \rangle & \substack{x = -0.5s_2 + 0.5y \\ s_1 = -0.5s_2 + 1.5y \\ s_3 = 5s_2 - 4y \\ s_1 \geq 0 \\ s_1 \geq 0 \\ s_2 \geq 2 \\ s_3 \geq -5 \end{aligned}$$

 $-\infty \le x \le \infty$

Example continued

$$x_1 = \langle x \mapsto -1, y \mapsto 0, s_1 \mapsto -1, s_2 \mapsto 2, s_3 \mapsto 10 \rangle$$

All equalities are still satisfied (invariant) The only basic variable not satisfying its bounds is now s_1 The first non-basic variable we can tweak is y

Setting $s_1 \mapsto 0$ to satisfy the lowerbound of s1 we get

$$x_{2} = \langle x \mapsto -2/3, y \mapsto 0 + \frac{0 - (-1)}{1.5} = 2/3,$$

$$s_{1} \mapsto 0, s_{2} \mapsto 2, s_{3} \mapsto 22/3 \rangle \qquad 1.5$$

Pivot s_{1} with y

$$s_{1} = -0.5s_{2} + 1.5y \qquad \longrightarrow y = \frac{2}{3}s_{1} + \frac{1}{3}s_{2}$$

 $\boldsymbol{x_2} \vDash \boldsymbol{F_S}$

$$x = -0.5s_{2} + 0.5y$$

$$s_{1} = -0.5s_{2} + 1.5y$$

$$s_{3} = 5s_{2} - 4y$$

$$s_{1} \ge 0$$

$$s_{2} \ge 2$$

$$s_{3} \ge -5$$

$$-\infty \le x \le \infty$$

 $y = \frac{2}{3}s_1 + \frac{1}{3}s_2$ $x = \frac{1}{3}s_1 - \frac{1}{3}s_2$

 $s_3 = -\frac{8}{3}s_1 + \frac{11}{3}s_2$

 $s_2 \ge 2$

 $s_1 \ge 0$

 $s_3 \geq -5$

 $-\infty < \chi < \infty$

Why is simplex correct?

• Why does it terminate?

Because we always looks for the first variable violating the bounds. There is a property (Bland's rule) that ensures that we never revisit the same set of basic and non-basic variables.

- Why does it give the right answer (sound)?
 - If it returns x does it satisfy $x \models F$?

This follows from the condition before return x

• If it returns UNSAT is *F* really unsatisfiable?

For proofs, check <u>Dutertre</u>, B., de Moura, L.: Integrating Simplex with DPLL(T). Technical report, CSL-06-01, SRI International (2006)

Unsatisfiable example

 $s_{1} = x + y$ $s_{2} = -x - 2y$ $s_{3} = -x + y$ $s_{1} \ge 0$ $s_{2} \ge 2$ $s_{3} \ge 1$

Consider a Simplex execution in which there are two pivots:

Pivot 1: s_1 with x, s_1 set to 0.

 $x = s_{1} - y$ $s_{2} = -s_{1} - y$ $s_{3} = -s_{1} + 2y$ Pivot 2: s_{2} with y, s_{2} set to 2 $x = 2s_{1} + s_{2}$ $y = -s_{1} - s_{2}$ $s_{3} = -3s_{1} - 2s_{2}$

Non-basic variables satisfy their bounds (invariant), and so $s_1 \ge 0, s_2 \ge 2$ If s_3 violates the bound then $s_3 = -3s_1 - 2s_2 < 1$

We can make s_3 bigger by decreasing s_1 and s_2 but even at the extreme (smallest possible) s_1 and s_2 $s_3 = -3 \times 0 - 2 \times 2 = -4$

which is still less than 1 and Simplex concludes that the formula is UNSAT.

The blue conditions for choosing x_i encodes this condition.

Simplex Algorithm: DP for LRA

Input: A formula F_S in Simplex form **Output**: $x \models F_S$ or UNSAT $x \coloneqq \langle x_i \mapsto 0 \rangle$ while true do

if $x \models F_S$ then return x

Let x_i be the first basic variable s.t. $x_i < l_i$ or $x_i > u_i$ if $x_i < l_i$ then

Let x_i be the first non-basic variable s.t.

 $(x_j < u_j \land c_{ij} > 0) \lor (x_j > l_j \land c_{ij} < 0)$

If no such x_i exists **then return** UNSAT

$$x_j \coloneqq x_j + \frac{l_i - x_i}{c_{ij}}$$
; $x_i \coloneqq l_i$

else Let x_i be the first non-basic variable s.t.

 $(x_j > l_j \land c_{ij} > 0) \lor (x_j < u_j \land c_{ij} < 0)$ If no such x_j exists then return UNSAT $x_j \coloneqq x_j + \frac{u_i - x_i}{c_{ij}}$; $x_i \coloneqq u_i$

Pivot x_i and x_j ; update x_i , x_j , and all basic variables

 $x_{i} = \sum_{k \in N}^{m} c_{ik} x_{k}, j \in N$ Pivoting x_{i} and x_{j} rewrites x_{j} as basic variable $x_{i} = c_{ij} x_{j} + \sum_{k \in N \setminus \{j\}}^{m} c_{ik} x_{k}$ $x_{j} = \frac{x_{i}}{c_{ij}} - \sum_{k \in N \setminus \{j\}}^{m} \frac{c_{ik}}{c_{ij}} x_{k}$

i.e., find a non-basic variable that is **not** set to their extreme value u_j or l_j according to the sign of c_{ij}

If the non-basic variable x_j has been set to its extreme, we cannot further change it to fix x_i

Summary and Takeaways

- Satisfiability modulo theory solvers use theory solvers and DPLL to check satisfiability of formulas in other theories
 - DPLL takes care of disjunctions
 - Theory solvers take care of conjunctions
- Simplex or more generally Linear programming (LP) solvers is a theory solver for linear real arithmetic
 - Simplex algorithm solves LP by incrementally fixing the bounds of basic variables