
Lecture 6: Satisfiability modulo theories
Part 2: DPLL(T) and Simplex Algorithm

Huan Zhang

huan@huan-zhang.com

Slides adapted from Prof. Sayan Mitra’s slides in Fall 2021
Some of the slides for this lecture are adapted from slides by Clark Barrett

mailto:huan@huan-zhang.com

Today

• SMT (cont)

• Decision procedure for Linear Real Arithmetic
Simplex Algorithm [Dantzig 1947]

• Next 2 - 3 weeks: Verification of Neural Networks and Machine
Learning

Review: theories in SMT
• Linear (real) arithmetic

• 4� − 3� + 6� ≤ 10, � + � − � ≤ 1;
• Nonlinear real arithmetic

• 4�2 + 6� − 9�3 ≤ 5
• Bit vectors

• Arrays
• �′ � = � � + 1

• Uninterpreted functions (UF) Σ�: = �, �, … , Σ�: = = , �: = ��
• �1 = �2 ∧ �3 ≠ �2 ∧ � �3 ≠ � �2

• Difference logic Σ�: = 0,1,2,3, . . . , − , Σ�: = < , ≤ , = , > , ≥ , �: = ��
• �1 − �2 ≷ �, where ≷∈ < , ≤ , = , > , ≥

Review: Uninterpreted functions

Useful for abstractly reasoning about programs
• Σ�: = �, �, … , Σ�: = = , �: = ��
Literals are of the form �1 = �2 ∧ �3 ≠ �2 ∧ � �3 ≠ � �2

We know nothing about f, g, ... except for its name and arity

Review: Difference Logic

A useful fragment of linear arithmetic
Σ�: = 0,1,2, . . , −
Σ�: = < , ≤ , = , ≠ , > , ≥
Literals are of the form �1 − �2 ≷ �, where ≷∈ < , ≤ , = , > , ≥
�1, �2 are Integers

Example: � = � − � = 5 ∧ � − � ≥ 2 ∧ � − � > 2 ∧ � − � =
2 ∧ � − � < 0
Satisfiability problem: checking whether this formula is consistent

Theory solvers/decision
procedures

Arithmetic
Bitvectors

DPLL Difference logic
…

Uninterpreted
functions

Core

literals/formula in
real arithmetic

solution or
counterexample

boolean
skeleton of

problem

assertions

How to solve SMT
Several approaches, lazy approach:
• Abstract � to propositional form
• Feed to DPLL
• Use theory decision procedure to refine propositional formula a guide SAT

� ≡ � � = � ∧ � � � ≠ � � ∨ � � = � ∧ � ≠ �
abstract � ≡ �1 ∧ ¬�2 ∨ �3 ∧ ¬�4

DPLLT: DPLL modulo theories

How can we extend DPLL to handle formulas over other theories like
• Difference Logic (DL)
• Uninterpreted functions (UF)
• Linear Real Arithmetic (LRA)

Idea: Start with a Boolean abstraction (or skeleton) and
incrementally add more theory information
until we can conclusively say SAT or UNSAT

Example: DPLLLRA

� ≡ � ≤ 0 ∨ � ≤ 10 ∧ ¬� ≤ 0

Boolean abstraction: replace every unique linear inequality with a Boolean variable
�� ≡ � ∨ � ∧ ¬�
where � abstracts � ≤ 0 and � abstracts � ≤ 10

Abstraction because information is lost

The relationship � > 10 ⇒ � > 0, i.e., ¬� ⇒ ¬� is lost in ��

Notation. �� � maps �� back to theory �, i.e., �� � = �.

Proposition. If �� is UNSAT then � is UNSAT, but the converse does not hold, i.e., �� is SAT does not
mean that � is SAT.

Example. �1 ≡ � ≤ 0 ∧ � ≥ 10 is clearly UNSAT, however �1
� ≡ � ∧ � is SAT.

Lazy DPLLT Algorithm using a Decision Procedure �

Input: A formula � in CNF form over theory T
Output: � ⊨ � or UNSAT
Let �� be the abstraction of �
while true do
 if DPLL �� is unsat then return UNSAT
else
 Let � be the model returned by 퐷푃��
 Assume � is represented as a formula
 if � �� is sat then return SAT and the model returned by �
 else �� ≔ �� ∧ ¬�

Theory solvers/decision
procedures �

Arithmetic
Bitvectors

DPLL Difference
logic …
Uninterprete
d functions

Core

��

��

UNSAT
SAT, �

UNSAT
SAT, �

• � ≡ � � = � ∧ � � � ≠ � � ∨ � � = � ∧ � ≠ �

 1 2 3 4
• abstract � ≡ �1 ∧ ¬�2 ∨ �3 ∧ ¬�4

• send �� ≡ {1, 2 ∨ 3, 4 } to DPLL

• DPLL returns SAT with model �:{1, 2, 4 }
• UF solver concretizes ��� ≡ � � = � , � � � ≠ � � , � ≠ �

• UF checks ��� as UNSAT

• send �� ∧ ¬�: {1, 2 ∨ 3, 4 , 1 ∨ 2 ∨ 4 } to DPLL; this is a new fact learned by DPLL

• DPLL returns model �′: {1, 2, 3, 4 }
• UF solver concretizes �′�� and finds this to be UNSAT

• send �� ∧ ¬� ∧ ¬�′: {1, 2 ∨ 3, 4 , 1 ∨ 2 ∨ 4, 1 ∨ 2 ∨ 3 ∨ 4 } to DPLL; another fact

• returns UNSAT

Theory solvers/decision
procedures �

Arithmetic
Bitvectors

DPLL Difference
logic …
Uninterprete
d functions

Core

��

��

UNSAT
SAT, �

DPLLT: DPLL modulo theories

How can we extend DPLL to handle formulas over other theories like

• Difference Logic (DL)

• Uninterpreted functions (UFs)

• Today: Linear Real Arithmetic (LRA)

 � + � ≥ 0) ∧(−2� + � ≥ 2 ∧ −10� + � ≥− 5

Decision Procedure for Linear Real Arithmetic

Input: � ≡ ∧�=1
� Σ�=1

� ����� ≤ �� where ���, �� ∈ ℝ
Output: ∃ a model � ∈ ℝ� such that � ⊨ �?

Solution based on Simplex Algorithm [Dantzig 1947]

Simplex solves

max Σ�=1
� ���� subject to

∧�=1
� Σ�=1

� ����� ≤ ��

Our focus will be on finding any solution � ∈ ℝ� that satisfies �

Decision Procedure for Linear Real Arithmetic

Input: � ≡ ∧�=1
� Σ�=1

� ����� ≤ �� where ���, �� ∈ ℝ
Output: ∃ a model � ∈ ℝ� such that � ⊨ �?

Simplex expects � to be expressed in the Simplex form, which is a
conjunction of

- Linear equalities: Σ�=1
� ���� = 0

- Bounds: li ≤ �� ≤ ��

Transforming to Simplex Form

Consider the ��ℎ inequality in �: Σ�=1
� ����� ≤ ��

Rewrite this as:
�� = Σ�=1

� ����� ∧ �� ≤ ��

�� is called a slack variable

Putting together all the rewritten conjuncts we get ��

Proposition.

1. Any model of �� is a model of �, disregarding the assignments to the slack variables.

2. If �� is UNSAT then � is UNSAT.

Simplex (Informal)

Idea. Simultaneously try to find a model or a proof of UNSAT

Start with some model (or valuation) that satisfies all linear
equalities (say, �� = 0, ∀�)

In each iteration, pick a bound that is not satisfied and modify
the model to satisfy the bound
OR
discover that the formula is UNSAT

Variable naming and ordering for Simplex

The input formula �� (after rewriting) has two types of variables

• Basic variables appear on the LHS of one equality; initially these are the slack
variables

• Non-basic variables all others

�1 = � + �
�2 =− 2� + �
�3 = − 10� + �
�1 ≥ 0
�2 ≥ 2
�3 ≥− 5
−∞ ≤ � ≤ ∞

� =− 0.5�2 + 0.5�
�1 =− 0.5�2 + 1.5�
�3 = 5�2 − 4�
�1 ≥ 0
�2 ≥ 2
�3 ≥− 5
−∞ ≤ � ≤ ∞

Variable naming and ordering for Simplex

The input formula �� (after rewriting) has two types of variables

• Basic variables appear on the LHS of one equality; initially these are the slack
variables

• Non-basic variables all others

We fix an arbitrary total ordering on variables �1, …, ��

For a basic variable �� and non-basic variable �� we denote by ��� the coefficient
of �� in the definition of ��, i.e.,
�� = … + ��� �� + …

The upper and lower bounds of �� are called �� and �� (possibly ∞, − ∞

Pivoting: switch basic and non-basic variables

The pivoting operation change one non-basic variable to a basic

variable (we say this variable is “entering”), while one other basic

variable is changed to non-basic (we say this variable is “leaving”)

�1 = � + �
�2 =− 2� + �
�3 = − 10� + �
�1 ≥ 0
�2 ≥ 2
�3 ≥− 5
−∞ ≤ � ≤ ∞

� =− 0.5�2 + 0.5�
�1 =− 0.5�2 + 1.5�
�3 = 5�2 − 4�
�1 ≥ 0
�2 ≥ 2
�3 ≥− 5
−∞ ≤ � ≤ ∞

Pivoting: switch basic and non-basic variables

The pivoting operation change one non-basic variable to a basic

variable (we say this variable is “entering”), while one other basic

variable is changed to non-basic (we say this variable is “leaving”)

�1 = � + �
�2 =− 2� + �
�3 = − 10� + �
�1 ≥ 0
�2 ≥ 2
�3 ≥− 5
−∞ ≤ � ≤ ∞

� =− 0.5�2 + 0.5�
�1 =− 0.5�2 + 1.5�
�3 = 5�2 − 4�
�1 ≥ 0
�2 ≥ 2
�3 ≥− 5
−∞ ≤ � ≤ ∞

� = −0.5�2 + 0.5�

Pivoting: switch basic and non-basic variables

The pivoting operation change one non-basic variable to a basic

variable (we say this variable is “entering”), while one other basic

variable is changed to non-basic (we say this variable is “leaving”)

�1 = � + �
�2 =− 2� + �
�3 = − 10� + �
�1 ≥ 0
�2 ≥ 2
�3 ≥− 5
−∞ ≤ � ≤ ∞

� =− 0.5�2 + 0.5�
�1 =− 0.5�2 + 1.5�
�3 = 5�2 − 4�
�1 ≥ 0
�2 ≥ 2
�3 ≥− 5
−∞ ≤ � ≤ ∞

� = −0.5�2 + 0.5�

�� = Σ�∈�
� �����, � ∈ �

Pivoting �� and �� rewrites �� as
basic variable
�� = ����� + Σ�∈�\ �

� �����

�� =
��

���
− Σ�∈�\ �

� ���

���
��

Simplex (Formal) 1

The algorithm maintains two invariants

1. The model � always satisfies the equalities; bounds may be violated.

Why is this invariant satisfied by our initialization of all 0s?

2. The bounds of all non-basic variables are all satisfied.

Why is this invariant satisfied by our initialization?

Linear equalities: Σ�=1
� ���� = 0

Bounds: li ≤ �� ≤ �� (only for slack variables)

� ≡ ∧�=1
� Σ�=1

� ����� ≤ �� where ���, �� ∈ ℝ

Simplex Algorithm: DP for LRA
Input: A formula �� in Simplex form
Output: � ⊨ �� or UNSAT
� ≔ ⟨�� ↦ 0⟩
while true do
if � ⊨ �� then return �
Let �� be the first basic variable s.t. �� < li or �� > ui
if �� < li then
 Let �� be the first non-basic variable s.t.
 �� < �� ∧ ��� > 0 ∨ �� > �� ∧ ��� < 0
 If no such �� exists then return UNSAT

 �� ≔ �� + ��−��
���

 ; ��≔ l�
else Let �� be the first non-basic variable s.t.
 �� > �� ∧ ��� > 0 ∨ �� < �� ∧ ��� < 0
 If no such �� exists then return UNSAT

 �� ≔ �� + ��−��
���

 ; ��≔ u�

Pivot �� and ��; update ��, ��, and all basic variables

�� = Σ�∈�
� �����, � ∈ �

Pivoting �� and �� rewrites �� as
basic variable
�� = ����� + Σ�∈�\ �

� �����

�� =
��

���
− Σ�∈�\ �

� ���

���
��

Example

� + � ≥ 0
−2� + � ≥ 2
−10� + � ≥− 5
Rewritten in Simplex form
�1 = � + �
�2 =− 2� + �
�3 = − 10� + �
�1 ≥ 0
�2 ≥ 2
�3 ≥− 5

Example continued
Variable ordering
�, �, �1, �2, �3
Initialization �� = ⟨� ↦ 0, � ↦ 0, �1 ↦ 0, �2 ↦ 0, �3 ↦ 0⟩
�� satisfies equalities, bounds of �1 �3 are satisfied
Pick the first variable � to fix the bound of �2
Since upper and lower bounds of � are ∞ and −∞ it easily satisfies the
blue condition
To increase �2 to 2 and satisfy its lowerbound we decrease � to -1

�� = ⟨� ↦ 0 +
2 − 0
−2

=− 1, � ↦ 0, �1 ↦− 1, �2 ↦ 2, �3 ↦ 10⟩
Pivot �2 with �
Now � becomes a basic variable, �2 non-basic

�1 = � + �
�2 =− 2� + �
�3 = − 10� + �
�1 ≥ 0
�2 ≥ 2
�3 ≥− 5
−∞ ≤ � ≤ ∞

� =− 0.5�2 + 0.5�
�1 =− 0.5�2 + 1.5�
�3 = 5�2 − 4�
�1 ≥ 0
�2 ≥ 2
�3 ≥− 5
−∞ ≤ � ≤ ∞

Example continued
�� = ⟨� ↦− 1, � ↦ 0, �1 ↦− 1, �2 ↦ 2, �3 ↦ 10⟩
All equalities are still satisfied (invariant)
The only basic variable not satisfying its bounds is now s1
The first non-basic variable we can tweak is �

Setting �1 ↦ 0 to satisfy the lowerbound of s1 we get

�� = ⟨� ↦− 2/3, � ↦ 0 +
0 − −1

1.5
= 2/3,

�1 ↦ 0, �2 ↦ 2, �3 ↦ 22/3⟩
Pivot �1 with �

�� ⊨ ��

� =− 0.5�2 + 0.5�
�1 =− 0.5�2 + 1.5�
�3 = 5�2 − 4�
�1 ≥ 0
�2 ≥ 2
�3 ≥− 5
−∞ ≤ � ≤ ∞

� =
2
3

�1 +
1
3

�2

� =
1
3

�1 −
1
3

�2

�3 =−
8
3

�1 +
11
3

�2

�2 ≥ 2
�1 ≥ 0
�3 ≥− 5
−∞ ≤ � ≤ ∞

�1 =− 0.5�2 + 1.5� � =
2
3

�1 +
1
3

�2

Why is simplex correct?

• Why does it terminate?
Because we always looks for the first variable violating the bounds. There is a
property (Bland’s rule) that ensures that we never revisit the same set of basic
and non-basic variables.

• Why does it give the right answer (sound)?
• If it returns � does it satisfy � ⊨ �?

This follows from the condition before return �
• If it returns UNSAT is � really unsatisfiable?

For proofs, check Dutertre, B., de Moura, L.: Integrating Simplex with DPLL(T). Technical report, CSL-06-01, SRI
International (2006)

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=55e1e23752da3458b3f25ae3072b83c2ca2fefeb

Unsatisfiable example
�1 = � + �
�2 =− � − 2�
�3 = − � + �
�1 ≥ 0
�2 ≥ 2
�3 ≥ 1
Consider a Simplex execution in which there

are two pivots:

Pivot 1: �1 with � , �1set to 0.
� = �1 − �
�2 =− �1 − �
�3 = − �1 + 2�
Pivot 2: �2 with � , �2set to 2
� = 2�1 + �2

� =− �1 − �2

�3 = − 3�1 − 2�2

Non-basic variables satisfy their bounds (invariant), and so
�1 ≥ 0, �2 ≥ 2
If �3 violates the bound then
�3 = − 3�1 − 2�2 < 1

We can make �3 bigger by decreasing �1 and �2 but even at

the extreme (smallest possible) �1 and �2
�3 = − 3 × 0 − 2 × 2 =− 4

which is still less than 1 and Simplex concludes that the

formula is UNSAT.

The blue conditions for choosing �� encodes this condition.

Simplex Algorithm: DP for LRA
Input: A formula �� in Simplex form
Output: � ⊨ �� or UNSAT
� ≔ ⟨�� ↦ 0⟩
while true do
if � ⊨ �� then return �
Let �� be the first basic variable s.t. �� < li or �� > ui
if �� < li then
 Let �� be the first non-basic variable s.t.
 �� < �� ∧ ��� > 0 ∨ �� > �� ∧ ��� < 0
 If no such �� exists then return UNSAT

 �� ≔ �� + ��−��
���

 ; �� ≔ l�
else Let �� be the first non-basic variable s.t.
 �� > �� ∧ ��� > 0 ∨ �� < �� ∧ ��� < 0
 If no such �� exists then return UNSAT

 �� ≔ �� + ��−��
���

 ; ��≔ u�

Pivot �� and ��; update ��, ��, and all basic variables

�� = Σ�∈�
� �����, � ∈ �

Pivoting �� and �� rewrites �� as
basic variable
�� = ����� + Σ�∈�\ �

� �����

�� =
��

���
− Σ�∈�\ �

� ���

���
��

i.e., find a non-basic variable that is not set to their
extreme value �� or �� according to the sign of ���

If the non-basic variable �� has been set to its
extreme, we cannot further change it to fix ��

Summary and Takeaways

• Satisfiability modulo theory solvers use theory solvers and DPLL
to check satisfiability of formulas in other theories

• DPLL takes care of disjunctions

• Theory solvers take care of conjunctions

• Simplex or more generally Linear programming (LP) solvers is a
theory solver for linear real arithmetic

• Simplex algorithm solves LP by incrementally fixing the bounds of basic
variables

