Lecture 6: Satisfiability modulo theories Part 2: $\operatorname{DPLL}(T)$ and Simplex Algorithm

Huan Zhang
huan@huan-zhang.com

Seorage B. Auntrig

Today

- SMT (cont)
- Decision procedure for Linear Real Arithmetic Simplex Algorithm [Dantzig 1947]
- Next 2-3 weeks: Verification of Neural Networks and Machine Learning

Review: theories in SMT

- Linear (real) arithmetic
- $4 x-3 y+6 z \leq 10, x+y-z \leq 1 ;$
- Nonlinear real arithmetic
- $4 x^{2}+6 y-9 z^{3} \leq 5$
- Bit vectors
- Arrays
- $x^{\prime}[i]=x[i]+1$
- Uninterpreted functions (UF) $\Sigma_{F}:=\{f, g, \ldots\}, \Sigma_{P}:=\{=\}, V:=\left\{x_{i}\right\}$
- $x_{1}=x_{2} \wedge x_{3} \neq x_{2} \wedge f\left(x_{3}\right) \neq f\left(x_{2}\right)$
- Difference logic $\Sigma_{F}:=\{0,1,2,3, \ldots,-\}, \Sigma_{P}:=\{<, \leq,=,>, \geq\}, V:=\left\{x_{i}\right\}$
- $x_{1}-x_{2} \gtrless k$, where $\gtrless \in\{<, \leq,=,>, \geq\}$

Review: Uninterpreted functions

Useful for abstractly reasoning about programs

- $\Sigma_{F}:=\{f, g, \ldots\}, \Sigma_{P}:=\{=\}, V:=\left\{x_{i}\right\}$

Literals are of the form $x_{1}=x_{2} \wedge x_{3} \neq x_{2} \wedge f\left(x_{3}\right) \neq f\left(x_{2}\right)$

We know nothing about f, g, \ldots except for its name and arity

Review: Difference Logic

A useful fragment of linear arithmetic
$\Sigma_{F}:=\{0,1,2, . .,-\}$
$\Sigma_{P}:=\{<, \leq,=, \neq,>, \geq\}$
Literals are of the form $x_{1}-x_{2} \gtrless k$, where $\gtrless \in\{<, \leq,=,>, \geq\}$ x_{1}, x_{2} are Integers

Example: $\phi=(x-y=5) \wedge(z-y \geq 2) \wedge(z-x>2) \wedge(w-x=$ 2) $\wedge(z-w<0)$

Satisfiability problem: checking whether this formula is consistent

How to solve SMT

Several approaches, lazy approach:

- Abstract ϕ to propositional form
- Feed to DPLL

- Use theory decision procedure to refine propositional formula a guide SAT
literals/formula in
real arithmetic
s/formula in

solution or
counterexample

$$
\begin{aligned}
\phi \equiv(g(a)=c) \wedge(& f(g(a)) \neq f(c) \vee g(a)=d) \wedge c \neq d \\
& \text { abstract } \phi \equiv x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{4}
\end{aligned}
$$

DPLLT: DPLL modulo theories

How can we extend DPLL to handle formulas over other theories like

- Difference Logic (DL)
- Uninterpreted functions (UF)
- Linear Real Arithmetic (LRA)

Idea: Start with a Boolean abstraction (or skeleton) and incrementally add more theory information until we can conclusively say SAT or UNSAT

Example: DPLLLRA

$$
F \equiv(x \leq 0 \vee x \leq 10) \wedge(\neg x \leq 0)
$$

Boolean abstraction: replace every unique linear inequality with a Boolean variable $F^{B} \equiv(p \vee q) \wedge(\neg p)$
where p abstracts $x \leq 0$ and q abstracts $x \leq 10$
Abstraction because information is lost
The relationship $x>10 \Rightarrow x>0$, i.e., $\neg q \Rightarrow \neg p$ is lost in F_{B}
Notation. $\left(F^{B}\right)^{T}$ maps F^{B} back to theory T, i.e., $\left(F^{B}\right)^{T}=F$.
Proposition. If F^{B} is UNSAT then F is UNSAT, but the converse does not hold, i.e., F^{B} is SAT does not mean that F is SAT.
Example. $F_{1} \equiv(x \leq 0 \wedge x \geq 10)$ is clearly UNSAT, however $F_{1}^{B} \equiv p \wedge q$ is SAT.

Lazy DPLL ${ }^{\top}$ Algorithm using a Decision Procedure $T()$

Input: A formula F in CNF form over theory T Output: $I \vDash F$ or UNSAT
Let F^{B} be the abstraction of F while true do
if $\operatorname{DPLL}\left(F^{B}\right)$ is unsat then return UNSAT else
Let I be the model returned by $D P L L$
 Assume I is represented as a formula if $T\left(I^{T}\right)$ is sat then return SAT and the model returned by $T()$ else $F^{B}:=F^{B} \wedge \neg I$

- $\phi \equiv g(\underbrace{g(a)}_{1}=c \wedge \underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \vee \underbrace{g(a)=d)}_{3} \underbrace{\wedge}_{\overline{4}} c \neq d$
- abstract $\phi \equiv x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{4}$
- send $\phi^{B} \equiv\{1, \overline{2} \vee 3, \overline{4}\}$ to DPLL
- DPLL returns SAT with model $I:\{1, \overline{2}, \overline{4}\}$
- UF solver concretizes $I^{U F} \equiv g(a)=c, f(g(a)) \neq f(c), c \neq d$
- UF checks $I^{U F}$ as UNSAT
- send $\phi^{B} \wedge \neg I:\{1, \overline{2} \vee 3, \overline{4}, \overline{1} \vee 2 \vee 4\}$ to DPLL; this is a new fact learned by DPLL
- DPLL returns model $I^{\prime}:\{1,2,3, \overline{4}\}$
- UF solver concretizes $I^{\prime U F}$ and finds this to be UNSAT
- send $\phi^{B} \wedge \neg I \wedge \neg I^{\prime}:\{1, \overline{2} \vee 3, \overline{4}, \overline{1} \vee 2 \vee 4, \overline{1} \vee \overline{2} \vee \overline{3} \vee 4\}$ to DPLL; another fact
- returns UNSAT

DPLLT: DPLL modulo theories

How can we extend DPLL to handle formulas over other theories like

- Difference Logic (DL)
- Uninterpreted functions (UFs)
- Today: Linear Real Arithmetic (LRA)

$$
(x+y \geq 0) \wedge(-2 x+y \geq 2) \wedge(-10 x+y \geq-5)
$$

Decision Procedure for Linear Real Arithmetic

Input: $F \equiv \wedge_{i=1}^{n} \Sigma_{j=1}^{m} c_{i j} x_{j} \leq b_{i}$ where $c_{i j}, b_{i} \in \mathbb{R}$ Output: \exists a model $\boldsymbol{x} \in \mathbb{R}^{m}$ such that $\boldsymbol{x} \vDash F$?

Solution based on Simplex Algorithm [Dantzig 1947]
Simplex solves
$\max \sum_{j=1}^{m} a_{j} x_{j}$ subject to
$\wedge_{i=1}^{n} \Sigma_{j=1}^{m} c_{i j} x_{j} \leq b_{i}$
Our focus will be on finding any solution $\boldsymbol{x} \in \mathbb{R}^{m}$ that satisfies F

Decision Procedure for Linear Real Arithmetic

Input: $F \equiv \wedge_{i=1}^{n} \Sigma_{j=1}^{m} c_{i j} x_{j} \leq b_{i}$ where $c_{i j}, b_{i} \in \mathbb{R}$ Output: \exists a model $\boldsymbol{x} \in \mathbb{R}^{m}$ such that $\boldsymbol{x} \vDash F$?

Simplex expects F to be expressed in the Simplex form, which is a conjunction of

- Linear equalities: $\sum_{i=1}^{m} c_{i} x_{i}=0$
- Bounds: $1_{\mathrm{i}} \leq x_{i} \leq u_{i}$

Transforming to Simplex Form

Consider the $i^{\text {th }}$ inequality in $F: \Sigma_{j=1}^{m} c_{i j} x_{j} \leq b_{i}$
Rewrite this as:
$s_{i}=\sum_{j=1}^{m} c_{i j} x_{j} \wedge s_{i} \leq b_{i}$
s_{i} is called a slack variable
Putting together all the rewritten conjuncts we get F_{S}

Proposition.

1. Any model of F_{S} is a model of F, disregarding the assignments to the slack variables.
2. If F_{S} is UNSAT then F is UNSAT.

Simplex (Informal)

Idea. Simultaneously try to find a model or a proof of UNSAT

Start with some model (or valuation) that satisfies all linear equalities (say, $x_{i}=0$, $\forall i$)

In each iteration, pick a bound that is not satisfied and modify the model to satisfy the bound
OR
discover that the formula is UNSAT

Variable naming and ordering for Simplex

The input formula F_{S} (after rewriting) has two types of variables

- Basic variables appear on the LHS of one equality; initially these are the slack variables
- Non-basic variables all others

$$
\begin{aligned}
& s_{1}=x+y \\
& s_{2}=-2 x+y \\
& s_{3}=-10 x+y \\
& s_{1} \geq 0 \\
& s_{2} \geq 2 \\
& s_{3} \geq-5 \\
& -\infty \leq x \leq \infty
\end{aligned}
$$

$$
\begin{aligned}
& x=-0.5 s_{2}+0.5 y \\
& s_{1}=-0.5 s_{2}+1.5 y \\
& s_{3}=5 s_{2}-4 y \\
& s_{1} \geq 0 \\
& s_{2} \geq 2 \\
& s_{3} \geq-5 \\
& -\infty \leq x \leq \infty
\end{aligned}
$$

Variable naming and ordering for Simplex

The input formula F_{S} (after rewriting) has two types of variables

- Basic variables appear on the LHS of one equality; initially these are the slack variables
- Non-basic variables all others

We fix an arbitrary total ordering on variables x_{1}, \ldots, x_{n}
For a basic variable x_{i} and non-basic variable x_{j} we denote by $c_{i j}$ the coefficient of x_{j} in the definition of x_{i}, i.e.,
$x_{i}=\ldots+c_{i j} x_{j}+\ldots$
The upper and lower bounds of x_{i} are called u_{i} and l_{i} (possibly $\infty,-\infty$)

Pivoting: switch basic and non-basic variables

The pivoting operation change one non-basic variable to a basic variable (we say this variable is "entering"), while one other basic variable is changed to non-basic (we say this variable is "leaving")

$$
\begin{aligned}
& s_{1}=x+y \\
& s_{2}=-2 x+y \\
& s_{3}=-10 x+y \\
& s_{1} \geq 0 \\
& s_{2} \geq 2 \\
& s_{3} \geq-5 \\
& -\infty \leq x \leq \infty
\end{aligned}
$$

$$
\begin{aligned}
& x=-0.5 s_{2}+0.5 y \\
& s_{1}=-0.5 s_{2}+1.5 y \\
& s_{3}=5 s_{2}-4 y \\
& s_{1} \geq 0 \\
& s_{2} \geq 2 \\
& s_{3} \geq-5 \\
& -\infty \leq x \leq \infty
\end{aligned}
$$

Pivoting: switch basic and non-basic variables

The pivoting operation change one non-basic variable to a basic variable (we say this variable is "entering"), while one other basic variable is changed to non-basic (we say this variable is "leaving")

Pivoting: switch basic and non-basic variables

The pivoting operation change one non-basic variable to a basic variable (we say this variable is "entering"), while one other basic variable is changed to non-basic (we say this variable is "leaving")

$$
\begin{array}{lll}
\\
s_{1}=x+y \\
s_{2}=-2 x+y \\
s_{3}=-10 x+y & \begin{array}{l}
x=-0.5 s_{2}+0.5 y \\
s_{1} \geq 0
\end{array} & \begin{array}{l}
x_{i}=\sum_{k \in N}^{m} c_{i k} x_{k}, j \in N \\
s_{2} \geq 2 \\
s_{3} \geq-5 \\
-\infty \leq x \leq-0.5 s_{2}+0.5 y \\
s_{1}=-0.5 s_{2}+1.5 y \\
s_{3}=5 s_{2}-4 y
\end{array} \\
s_{1} \geq 0 & \text { Pivoting } x_{i} \text { and } x_{j} \text { rewrites } x_{j} \text { as } \\
\text { basic variable } \\
s_{2} \geq 2 & x_{i}=c_{i j} x_{j}+\sum_{k \in N \backslash\{j\}}^{m} c_{i k} x_{k} \\
s_{3} \geq-5 & x_{j}=\frac{x_{i}}{c_{i j}}-\sum_{k \in N \backslash\{j\}}^{m} \frac{C_{i k}}{c_{i j}} x_{k} \\
\hline
\end{array}
$$

Simplex (Formal) 1

The algorithm maintains two invariants

1. The model \boldsymbol{x} always satisfies the equalities; bounds may be violated.

Why is this invariant satisfied by our initialization of all $0 s$?
2. The bounds of all non-basic variables are all satisfied.

Why is this invariant satisfied by our initialization?

$$
F \equiv \wedge_{i=1}^{n} \Sigma_{j=1}^{m} c_{i j} x_{j} \leq b_{i} \text { where } c_{i j}, b_{i} \in \mathbb{R}
$$

Linear equalities: $\sum_{i=1}^{m} c_{i} x_{i}=0$
Bounds: $\mathrm{l}_{\mathrm{i}} \leq x_{i} \leq u_{i} \quad$ (only for slack variables)

Simplex Algorithm: DP for LRA

$$
x_{i}=\Sigma_{k \in N}^{m} c_{i k} x_{k}, j \in N
$$

Input: A formula F_{S} in Simplex form
Output: $\boldsymbol{x} \vDash F_{S}$ or UNSAT
$\boldsymbol{x}:=\left\langle x_{i} \mapsto 0\right\rangle$
while true do
if $\boldsymbol{x} \vDash F_{S}$ then return \boldsymbol{x}
Let x_{i} be the first basic variable s.t. $x_{i}<\mathrm{l}_{\mathrm{i}}$ or $x_{i}>\mathrm{u}_{\mathrm{i}}$ if $x_{i}<l_{i}$ then

Let x_{j} be the first non-basic variable s.t.
$\left(x_{j}<u_{j} \wedge c_{i j}>0\right) \vee\left(x_{j}>l_{j} \wedge c_{i j}<0\right)$
If no such x_{j} exists then return UNSAT
$x_{j}:=x_{j}+\frac{l_{i}-x_{i}}{c_{i j}} ; x_{i}:=l_{i}$
else Let x_{j} be the first non-basic variable s.t.
$\left(x_{j}>l_{j} \wedge c_{i j}>0\right) \vee\left(x_{j}<u_{j} \wedge c_{i j}<0\right)$
If no such x_{j} exists then return UNSAT

$$
x_{j}:=x_{j}+\frac{u_{i}-x_{i}}{c_{i j}} ; x_{i}:=\mathrm{u}_{i}
$$

Pivot x_{i} and x_{j}; update x_{i}, x_{j}, and all basic variables

Pivoting x_{i} and x_{j} rewrites x_{j} as basic variable

$$
\begin{aligned}
& x_{i}=c_{i j} x_{j}+\sum_{k \in N \backslash\{j\}}^{m} c_{i k} x_{k} \\
& x_{j}=\frac{x_{i}}{c_{i j}}-\Sigma_{k \in N \backslash\{j\}}^{m} \frac{c_{i k}}{c_{i j}} x_{k}
\end{aligned}
$$

Example

$$
\begin{aligned}
& x+y \geq 0 \\
& -2 x+y \geq 2 \\
& -10 x+y \geq-5
\end{aligned}
$$

Rewritten in Simplex form

$$
\begin{aligned}
& s_{1}=x+y \\
& s_{2}=-2 x+y \\
& s_{3}=-10 x+y \\
& s_{1} \geq 0 \\
& s_{2} \geq 2 \\
& s_{3} \geq-5
\end{aligned}
$$

Example continued

$$
\begin{aligned}
& s_{1}=x+y \\
& s_{2}=-2 x+y \\
& s_{3}=-10 x+y \\
& s_{1} \geq 0
\end{aligned}
$$

Variable ordering
$x, y, s_{1}, s_{2}, s_{3}$
Initialization $\boldsymbol{x}_{\mathbf{0}}=\left\langle x \mapsto 0, y \mapsto 0, s_{1} \mapsto 0, s_{2} \mapsto 0, s_{3} \mapsto 0\right\rangle$
$\boldsymbol{x}_{\mathbf{0}}$ satisfies equalities, bounds of $s_{1} s_{3}$ are satisfied
Pick the first variable x to fix the bound of s_{2}
Since upper and lower bounds of x are ∞ and $-\infty$ it easily satisfies the blue condition
To increase s_{2} to 2 and satisfy its lowerbound we decrease x to -1

Example continued

$x_{1}=\left\langle x \mapsto-1, y \mapsto 0, s_{1} \mapsto-1, s_{2} \mapsto 2, s_{3} \mapsto 10\right\rangle$
All equalities are still satisfied (invariant)
The only basic variable not satisfying its bounds is now s_{1} The first non-basic variable we can tweak is y

Setting $s_{1} \mapsto 0$ to satisfy the lowerbound of s1 we get
$\boldsymbol{x}_{2}=\left\langle x \mapsto-2 / 3, y \mapsto 0+\frac{0-(-1)}{1.5}=2 / 3\right.$,
$\left.s_{1} \mapsto 0, s_{2} \mapsto 2, s_{3} \mapsto 22 / 3\right\rangle$ Pivot s_{1} with y

$$
\begin{aligned}
& \quad s_{1}=-0.5 s_{2}+1.5 y \longrightarrow y=\frac{2}{3} s_{1}+\frac{1}{3} s_{2} \\
& \boldsymbol{x}_{2} \vDash F_{S}
\end{aligned}
$$

$x=-0.5 s_{2}+0.5 y$
$s_{1}=-0.5 s_{2}+1.5 y$
$s_{3}=5 s_{2}-4 y$
$s_{1} \geq 0$
$s_{2} \geq 2$
$s_{3} \geq-5$
$-\infty \leq x \leq \infty$

$$
\begin{aligned}
& y=\frac{2}{3} s_{1}+\frac{1}{3} s_{2} \\
& x=\frac{1}{3} s_{1}-\frac{1}{3} s_{2} \\
& s_{3}=-\frac{8}{3} s_{1}+\frac{11}{3} s_{2} \\
& s_{2} \geq 2 \\
& s_{1} \geq 0 \\
& s_{3} \geq-5 \\
& -\infty \leq x \leq \infty
\end{aligned}
$$

Why is simplex correct?

- Why does it terminate?

Because we always looks for the first variable violating the bounds. There is a property (Bland's rule) that ensures that we never revisit the same set of basic and non-basic variables.

- Why does it give the right answer (sound)?
- If it returns \boldsymbol{x} does it satisfy $\boldsymbol{x} \vDash F$?

This follows from the condition before return \boldsymbol{x}

- If it returns UNSAT is F really unsatisfiable?

For proofs, check Dutertre, B., de Moura, L.: Integrating Simplex with DPLL(T). Technical report, CSL-06-01, SRI International (2006)

Unsatisfiable example

$s_{1}=x+y$
$s_{2}=-x-2 y$
$s_{3}=-x+y$
$s_{1} \geq 0$
$s_{2} \geq 2$
$s_{3} \geq 1$
Consider a Simplex execution in which there are two pivots:
Pivot 1: s_{1} with x, s_{1} set to 0 .
$x=s_{1}-y$
$s_{2}=-s_{1}-y$
$s_{3}=-s_{1}+2 y$
Pivot 2: s_{2} with y, s_{2} set to 2
$x=2 s_{1}+s_{2}$
$y=-s_{1}-s_{2}$
$s_{3}=-3 s_{1}-2 s_{2}$

Non-basic variables satisfy their bounds (invariant), and so
$s_{1} \geq 0, s_{2} \geq 2$
If s_{3} violates the bound then
$s_{3}=-3 s_{1}-2 s_{2}<1$

We can make s_{3} bigger by decreasing s_{1} and s_{2} but even at the extreme (smallest possible) s_{1} and s_{2}
$s_{3}=-3 \times 0-2 \times 2=-4$
which is still less than 1 and Simplex concludes that the formula is UNSAT.

The blue conditions for choosing x_{j} encodes this condition.

Simplex Algorithm: DP for LRA

$$
x_{i}=\Sigma_{k \in N}^{m} c_{i k} x_{k}, j \in N
$$

Input: A formula F_{S} in Simplex form
Output: $\boldsymbol{x} \vDash F_{S}$ or UNSAT
$\boldsymbol{x}:=\left\langle x_{i} \mapsto 0\right\rangle$
while true do
if $\boldsymbol{x} \vDash F_{S}$ then return \boldsymbol{x}
Let x_{i} be the first basic variable s.t. $x_{i}<\mathrm{l}_{\mathrm{i}}$ or $x_{i}>\mathrm{u}_{\mathrm{i}}$ if $x_{i}<l_{\mathrm{i}}$ then

Let x_{j} be the first non-basic variable s.t.
$\left(x_{j}<u_{j} \wedge c_{i j}>0\right) \vee\left(x_{j}>l_{j} \wedge c_{i j}<0\right)$
If no such x_{j} exists then return UNSAT
$x_{j}:=x_{j}+\frac{l_{i}-x_{i}}{c_{i j}} ; x_{i}:=l_{i}$
else Let x_{j} be the first non-basic variable s.t.

$$
\left(x_{j}>l_{j} \wedge c_{i j}>0\right) \vee\left(x_{j}<u_{j} \wedge c_{i j}<0\right)
$$

If no such x_{j} exists then return UNSAT

$$
x_{j}:=x_{j}+\frac{u_{i}-x_{i}}{c_{i j}} ; x_{i}:=\mathrm{u}_{i}
$$

Pivot x_{i} and x_{j}; update x_{i}, x_{j}, and all basic variables

Pivoting x_{i} and x_{j} rewrites x_{j} as basic variable

$$
x_{i}=c_{i j} x_{j}+\Sigma_{k \in N \backslash\{j\}}^{m} c_{i k} x_{k}
$$

$$
x_{j}=\frac{x_{i}}{c_{i j}}-\Sigma_{k \in N \backslash\{j\}}^{m} \frac{c_{i k}}{c_{i j}} x_{k}
$$

i.e., find a non-basic variable that is not set to their extreme value u_{j} or l_{j} according to the sign of $c_{i j}$

[^0]
Summary and Takeaways

- Satisfiability modulo theory solvers use theory solvers and DPLL to check satisfiability of formulas in other theories
- DPLL takes care of disjunctions
- Theory solvers take care of conjunctions
- Simplex or more generally Linear programming (LP) solvers is a theory solver for linear real arithmetic
- Simplex algorithm solves LP by incrementally fixing the bounds of basic variables

[^0]: If the non-basic variable x_{j} has been set to its extreme, we cannot further change it to fix x_{i}

