
Lecture 9: Neural Network Verification with
Bound Propagation Algorithms (Part I)

Prof. Huan Zhang

huan@huan-zhang.com

ECE/CS 584: Verification of Embedded and Cyber-physical Systems

Review: Neural Networks (NNs)

Nonlinear layers: ẑj
(i)=σ(zj

(i)) (assume σ is ReLU for now)

z(2)

x1

x2

ẑ1
(1)

ẑ2
(1)

ẑ3
(1)z3

(1)

z2
(1)

z1
(1) ẑ(2)

y=f(x)

Linear layers: z(1) = W(1) x
 z

(2) = W(2) ẑ(1)
 y = w(3)T ẑ(2)

Review: NN verification as an optimization problem

z(2)

x1

x2

ẑ1
(1)

ẑ2
(1)

ẑ3
(1)z3

(1)

z2
(1)

z1
(1) ẑ(2)

y=f(x)

∃ x ∈ S ∧ y ≤ 0 ∧ y = f(x)

Negation of the
desired property

Input domain under
consideration

Speed
Limit

Stop

0.9

0.1

MILP and LP

Review: stable vs. unstable neurons

ẑj
(i)

zj
(i)

lj
(i) uj

(i)

ẑj
(i)

zj
(i)

lj
(i) uj

(i)

ẑj
(i)

zj
(i)

lj
(i) uj

(i)

activeinactiveunstable

Review: triangle relaxation for unstable ReLU neurons

Each ReLU is represented by

ẑj
(i)

zj
(i)

lj
(i) uj

(i)

“Triangle” relaxation

Today: more efficient algorithms for NN verification

Solving neural network verification using SMT solvers (Lecture 7)

Solving neural network verification using optimization (MIP/LP) (Lecture 8)

Solving neural network verification using bound propagation (this lecture!)

● Interval bound propagation (IBP)
● Linear (symbolic) bound propagation (CROWN)

Efficient methods are
typically incomplete

(solving a lower
bound, as tight as

possible)

f(x)

Any faster ways to calculate the bounds on f(x)?

x1

x2

y=f(x)

f(x)

Let’s look at one layer first

x1

x2 z3
(1)

z2
(1)

z1
(1) Given bounds on x, can we

calculate the bounds on z?

Let’s look at one layer first

Given bounds on x, can we
calculate the bounds on z?x1

x2

z1

z2
As an illustration, suppose we have

Can you infer bounds on z given bounds on x?

Interval Bound Propagation (IBP)

Interval Bound Propagation (IBP)

In general:

Elements lower and upper bounds of x

Interval Bound Propagation: continue to the next layer

x1

x2

z1

z2

y

Let’s say

We also know that:

The what can we conclude about y?

Interval Bound Propagation: limitations

Apply IBP we obtain
for this simple linear network.

However observe that

x1

x2

z1

z2

y

The actual bounds is [-2, 1], much tighter than [-8, 7]

A Better Idea: Keep the correlations between x and z

The actual bounds is [-2, 1], much tighter than [-8, 7]

It is important to keep the correlations between z and x to obtain this
tighter result!

We treat z as a symbolic function of x, rather than intervals

A Better Idea: linear bound propagation

The actual bounds is [-2, 1], much tighter than [-8, 7]

It is important to keep the correlations between z and x to obtain this
tighter result!

We treat z as a linear function of x, rather than intervals

A Better Idea: linear bound propagation

We treat z as a linear function of x, rather than concrete intervals.

After we plug in linear functions (z w.r.t. x), we still get a linear function (y
w.r.t. x)

Plug in

Bound propagation: how about nonlinear functions?

x1

x2

z1

z2

ẑ1

ẑ2

y
Instead of y = z1 - z2

Now we have y = ReLU(z1) - ReLU(z2)

From IBP we already know that

z1∈[-2, 4], z2∈[-3, 6],

Can we improve IBP using symbolic
linear bounds?

y ∈ [-6, 4]

ReLU(z1) ∈[0, 4], ReLU(z1) ∈[0,
6]

Linear bound propagation for ReLU function (CROWN)

Instead of y = z1 - z2

Now we have y = ReLU(z1) - ReLU(z2)

We already know that

z1∈[-2, 4], z2∈[-3, 6],

ẑ1=ReLU(z1)

z1

-2 4

(Preactivation bounds)

Linear bound propagation for ReLU function (CROWN)

ẑ1=ReLU(z1)

z1

-2 4

Linear upper bound (same as the one of
triangle relaxation in LP)

Linear lower bound (actually not unique)

Linear bound propagation for ReLU function (CROWN)

ẑ2=ReLU(z2)

z2

-3 6

ReLU(z2) can be bounded using linear functions
similarly.

Now let’s consider y = ReLU(z1) - ReLU(z2). How
to bound it using linear functions of z1 and z2?

Linear bound propagation for ReLU function (CROWN)

Negative coefficient, take
upper bound

positive coefficient, take
lower bound

Linear bound propagation for ReLU function (CROWN)

Now we have linear inequalities for y w.r.t. z!

Next step we can simply plug in, as in the linear (y=z1-z2) case.

Linear bound propagation for ReLU function (CROWN)

Plug in

Linear bound propagation for ReLU function (CROWN)

We now have symbolic linear bounds for y w.r.t. x

Concrete interval bounds

Take lower bound given x Take upper bound given x

A lot more tighter than IBP bounds y ∈ [-6, 4]

Can we do even better?

Let’s recall that when we linearly bound the ReLU function, there are some
flexibilities

ẑ1=ReLU(z1)

z1

-2 4

Linear upper bound (same as the one of
triangle relaxation in LP)

Linear lower bound (actually not unique)

Also valid:

Choosing different linear bounds (α-CROWN)

ẑ2=ReLU(z2)

z2

-3 6

Now what are the linear bounds of
y = ReLU(z1) - ReLU(z2)?

Choosing different linear bounds (α-CROWN)

Plug in

Concretize

Linear lower bounds for ReLU function matters!

Which one is correct?

Linear lower bounds for ReLU function matters!

Both results are correct! But we want the bounds to be as tight as
possible! So best result is y ∈ [-3, 2]

In general, the slope of the linear lower bound for every ReLU
neuron can be optimized to find the best result.

Linear lower bounds for ReLU function matters!

In general, the slope of the linear lower bound for every ReLU
neuron can be optimized to find the best result.

For optimal lower bound of y, set α1=1, α2=1

For optimal upper bound of y, set α1=⅔, α2=⅔

(note that the optimal α1 and α2 do not equal in general)

Linear bound propagation method (CROWN)

1. Obtain all pre-activation bounds (can be done via CROWN recursively)
2. Start from the output layer, form the initial linear (in)equality y = y
3. Recursively propagate linear inequality y <= aTz + b through each layer:

a. For a linear layer, z=Wz’, directly plug in aTz + b to get a linear bound of z’
b. For a non-linear layer (e.g., z=ReLU(z’)), we first form the linear inequalities to bound the

nonlinear layer itself. Then multiply either the lower or upper bound based on the sign of
element in a

4. When the linear inequality propagates to the input layer, we can concretize
the linear bound using bounds on input layer.

x1

x2

ẑ1

ẑ2

y

How to propagate the linear bounds?

Efficient Incomplete Verification with CROWN

32

Linear layer

Non-linear
(activation) layer

Steps:
• Propagate bounds through linear layers
• Propagate bounds through non-linear layers

What linear inequalities to propagate?

Efficient Incomplete Verification with CROWN

33

A linear lower bound for an
intermediate layer

1-D case for illustration.
Generally it’s a linear

hyperplane

CROWN: propagating bounds through linear layers

Efficient Incomplete Verification with CROWN

34

?

Propagate it to one layer before,
while keeping the lower bound valid

CROWN: propagating bounds through linear layers

Efficient Incomplete Verification with CROWN

35

?

CROWN: propagating bounds through linear layers

Efficient Incomplete Verification with CROWN

36

Inequality updated after propagation

CROWN: propagating bounds through non-linear layers

Efficient Incomplete Verification with CROWN

37

?

ReLU is NOT a simple linear function

CROWN: propagating bounds through non-linear layers

Efficient Incomplete Verification with CROWN

38

?

CROWN: propagating bounds through non-linear layers

Efficient Incomplete Verification with CROWN

39

Theorem (informal): we can efficiently find such that:

[Z*W*CHD NeurIPS 2018]

CROWN: propagating bounds through non-linear layers

Efficient Incomplete Verification with CROWN

Proof sketch: conservatively use linear bounds to replace a non-linear function.

40

Pre-activation bounds
(can be pre-computed using CROWN)

Theorem (informal): we can efficiently find such that:

[Z*W*CHD NeurIPS 2018]

CROWN: propagating bounds through non-linear layers

Efficient Incomplete Verification with CROWN

Proof sketch: conservatively use linear bounds to replace a non-linear function.

41

Pre-activation bounds
(can be pre-computed using CROWN)

Theorem (informal): we can efficiently find such that:

[Z*W*CHD NeurIPS 2018]

ReLU’s lower bound can be optimized (α-CROWN)

CROWN: propagating bounds through non-linear layers

Efficient Incomplete Verification with CROWN

Proof sketch: conservatively use linear bounds to replace a non-linear function.

42

Theorem (informal): we can efficiently find such that:

[Z*W*CHD NeurIPS 2018]

Choose lower bound

Choose upper bound

CROWN: a linear bound propagation algorithm

Efficient Incomplete Verification with CROWN

43
[Z*W*CHD NeurIPS 2018]

CROWN main theorem (simplified):

Always keep valid lower bounds

Initial (in)equality:

CROWN: a linear bound propagation algorithm

Efficient Incomplete Verification with CROWN

44
[Z*W*CHD NeurIPS 2018]

CROWN main theorem (simplified):

Always keep valid lower bounds

Bounds propagated through
simple matrix multiplations!

Fast and GPU-friendly

Prove the verification problem with CROWN

Efficient Incomplete Verification with CROWN

45

Lower bound > 0 verified (always a stop sign)

…

Prove:

CROWN lower bound

auto_LiRPA: Verification Library for General
Computation Graphs

The auto_LiRPA Robustness Verification Library

Colab Demo:

http://PaperCode.cc/AutoLiRPA-Demo

46

The auto_LiRPA library on GitHub:

http://PaperCode.cc/AutoLiRPA

http://papercode.cc/AutoLiRPA-Demo
http://papercode.cc/AutoLiRPA

MILP/LP vs Bound Propagation

Bound propagation:
● Scalable and fast propagation
● GPU friendly
● Incomplete verification (will be extended in the next lecture)
● Bounds are looser compared to LP; much looser compared to MILP

MILP/LP:
● Tighter solution
● Does no scale (MILP ~10k neurons, LP ~100k neurons)
● Much slower; cannot utilize GPU

