ECE/CS 584: Verification of Embedded and Cyber-physical Systems

Lecture 9: Neural Network Verification with Bound Propagation Algorithms (Part I) Prof. Huan Zhang

huan@huan-zhang.com

Review: Neural Networks (NNs)

Nonlinear layers: $\hat{z}_{i}^{(i)} = \sigma(z_{i}^{(i)})$ (assume σ is ReLU for now)

Review: NN verification as an optimization problem

Review: stable vs. unstable neurons

Review: triangle relaxation for unstable ReLU neurons

Each ReLU is represented by $- {u_j^{(i)} l_j^{(i)} \over u_j^{(i)} - l_j^{(i)}}$ $\hat{z}_{j}^{(i)} \leq rac{u_{j}^{(i)}}{u_{z}^{(i)} - l_{z}^{(i)}} z_{j}^{(i)}$ – $\hat{z}_{j}^{(i)} \leq z_{j}^{(i)} - l_{j}^{(i)}(1-p_{j}^{(i)})$ $\hat{z}_{i}^{(i)} \geq z_{i}^{(i)}$ $\hat{z}_{i}^{(i)} \leq u_{i}^{(i)} p_{i}^{(i)}$ $\hat{z}_{i}^{(i)} \geq 0$ "Triangle" relaxation $\hat{z}_{j}^{(i)} \geq z_{j}^{(i)}$ **ĉ**;⁽ⁱ⁾ $\hat{z}_{i}^{(i)} \geq 0$ Z;⁽ⁱ⁾ 1;⁽ⁱ⁾ u;⁽ⁱ⁾

Today: more efficient algorithms for NN verification

Solving neural network verification using SMT solvers (Lecture 7)

Solving neural network verification using optimization (MIP/LP) (Lecture 8)

Solving neural network verification using **bound propagation (this lecture!)**

- Interval bound propagation (IBP)
- Linear (symbolic) bound propagation (CROWN)

Efficient methods are typically incomplete (solving a lower bound, as tight as possible)

 $y^* = \min_{x \in \mathcal{S}} f(x)$

Any faster ways to calculate the bounds on f(x)?

Let's look at one layer first

Given bounds on x, can we calculate the bounds on z?

$$x_1 \in [-1,2], \ x_2 \in [-2,1]$$

Let's look at one layer first

Given bounds on x, can we calculate the bounds on z?

$$x_1 \in [-1,2], \ x_2 \in [-2,1]$$

As an illustration, suppose we have

$$egin{array}{lll} z_1 = x_1 - x_2 \ z_2 = 2 x_1 - x_2 \end{array}$$

Can you infer bounds on z given bounds on x?

Interval Bound Propagation (IBP)

$$egin{aligned} x_1 \in [-1,2], \, x_2 \in [-2,1] \ & z_1 = x_1 - x_2 \ & z_2 = 2x_1 - x_2 \end{aligned}$$

Interval Bound Propagation (IBP)

 $egin{aligned} x_1 \in [-1,2], \, x_2 \in [-2,1] & oldsymbol{z}_1 = oldsymbol{x}_1 = oldsymbol{x}_2 = oldsymbol{z}_1 = oldsymbol{x}_1 = oldsymbol{x}_1 = oldsymbol{z}_1 = oldsymbol{z}_2 =$

In general:

$$\sum_{i \in \{i | w_i \geq 0\}} w_i l_i + \sum_{i \in \{i | w_i < 0\}} w_i u_i \leq \sum_i w_i x_i \leq \sum_{i \in \{i | w_i \geq 0\}} w_i u_i + \sum_{i \in \{i | w_i < 0\}} w_i l_i$$

Elements lower and upper bounds of x

Interval Bound Propagation: continue to the next layer

Let's say
$$y=z_1-z_2$$

We also know that:

$$z_1 \in [-2,4] \quad z_2 \in [-3,6]$$

The what can we conclude about y?

$$y\in [-8,7]$$

Interval Bound Propagation: limitations

Apply IBP we obtain $y \in [-8,7]$ for this simple linear network.

However observe that

$$egin{aligned} & z_1 = x_1 - x_2 \ & z_2 = 2x_1 - x_2 \ & y = z_1 - z_2 \ & y = x_1 - x_2 - (2x_1 - x_2) = -x_1 \end{aligned}$$

The actual bounds is [-2, 1], much tighter than [-8, 7]

A Better Idea: Keep the correlations between x and z

$$egin{aligned} &z_1 = x_1 - x_2 \ &z_2 = 2x_1 - x_2 \ &y = z_1 - z_2 \ &y = x_1 - x_2 - (2x_1 - x_2) = -x_1 \end{aligned}$$

The actual bounds is [-2, 1], much tighter than [-8, 7]

It is important to keep the correlations between z and x to obtain this tighter result!

We treat z as a **symbolic function of x**, rather than intervals

A Better Idea: linear bound propagation

$$egin{aligned} &z_1 = x_1 - x_2 \ &z_2 = 2x_1 - x_2 \ &y = z_1 - z_2 \ &y = x_1 - x_2 - (2x_1 - x_2) = -x_1 \end{aligned}$$

The actual bounds is [-2, 1], much tighter than [-8, 7]

It is important to keep the correlations between z and x to obtain this tighter result!

We treat z as a linear function of x, rather than intervals

A Better Idea: linear bound propagation

$$y = z_1 - z_2$$
 \longrightarrow $y = x_1 - x_2 - (2x_1 - x_2) = -x_1$
Plug in $z_1 = x_1 - x_2$ $z_2 = 2x_1 - x_2$

We treat z as a **linear function of x**, rather than concrete intervals.

After we plug in linear functions (z w.r.t. x), we still get a linear function (y w.r.t. x)

Bound propagation: how about nonlinear functions?

Can we improve IBP using symbolic linear bounds?

Instead of $y = z_1 - z_2$

Now we have $y = \text{ReLU}(z_1) - \text{ReLU}(z_2)$

From IBP we already know that

z₁∈[-2, 4], z₂∈[-3, 6],

ReLU(z_1) $\in [0, 4]$, ReLU(z_1) $\in [0, 6]$ y $\in [-6, 4]$

Instead of $y = z_1 - z_2$ Now we have $y = \text{ReLU}(z_1) - \text{ReLU}(z_2)$ We already know that $z_1 \in [-2, 4], z_2 \in [-3, 6],$

(Preactivation bounds)

Linear upper bound (same as the one of triangle relaxation in LP)

Linear lower bound (actually not unique)

$$\left\lfloor rac{2}{3}z_1
ight
angle \leq \operatorname{ReLU}(z_1) \leq \left\lfloor rac{2}{3}z_1 + rac{4}{3}
ight
angle$$

 $\hat{z}_2 = \text{ReLU}(z_2)$ z_2 z_2 z_3 $ReLU(z_2)$ can be bounded using linear functions similarly.

Now let's consider $y = \text{ReLU}(z_1) - \text{ReLU}(z_2)$. How to bound it using linear functions of z_1 and z_2 ?

$$egin{array}{l} rac{2}{3} z_1 \leq {
m ReLU}(z_1) \leq rac{2}{3} z_1 + rac{4}{3} \ rac{2}{3} z_2 \leq {
m ReLU}(z_2) \leq rac{2}{3} z_2 + 2 \end{array}$$

$$\left|\frac{2}{3}z_1\right| \leq \operatorname{ReLU}(z_1) \leq \frac{2}{3}z_1 + \frac{4}{3}$$

$$rac{2}{3}z_2 \leq \operatorname{ReLU}(z_2) \leq rac{2}{3}z_2 + 2$$

Negative coefficient, take upper bound $rac{2}{3}z_1 - ig(rac{2}{3}z_2 + 2ig) \leq$

$$y = \operatorname{ReLU}(z_1) - \operatorname{ReLU}(z_2)$$

 $\leq \left(rac{2}{3}z_1 + rac{4}{3}
ight) - rac{2}{3}z_2$

positive coefficient, take lower bound

$$rac{2}{3}z_1 - (rac{2}{3}z_2 + 2) \leq y \leq (rac{2}{3}z_1 + rac{4}{3}) - rac{2}{3}z_2$$

Now we have linear inequalities for y w.r.t. z!

Next step we can simply plug in, as in the linear $(y=z_1-z_2)$ case.

We now have symbolic linear bounds for y w.r.t. x

Can we do even better?

Let's recall that when we linearly bound the ReLU function, there are some flexibilities

Linear **upper bound** (same as the one of triangle relaxation in LP)

Linear lower bound (actually not unique)

$$rac{2}{3}z_1 \leq \operatorname{ReLU}(z_1) \leq rac{2}{3}z_1 + rac{4}{3}$$

Also valid: $z_1 \leq \operatorname{ReLU}(z_1) \leq rac{2}{3}z_1 + rac{4}{3}$

Choosing different linear bounds (α-CROWN)

Choosing different linear bounds (α-CROWN)

 $z_1 - (rac{2}{3}z_2 + 2) \le y \le (rac{2}{3}z_1 + rac{4}{3}) - z_2$ $igg| igg| igg| igg| z_1 = x_1 - x_2 \ z_2 = 2x_1 - x_2 \ igg|$ Plug in $-rac{1}{3}x_1 - rac{1}{3}x_2 - 2 \leq y \leq -rac{4}{3}x_1 + rac{1}{3}x_2 + rac{4}{3}x_1$ $x_1 \in [-1,2], \ x_2 \in [-2,1]$ Concretize $y \in [-3,3]$

Linear lower bounds for ReLU function matters!

 $egin{aligned} rac{2}{3}z_1 \leq ext{ReLU}(z_1) \leq rac{2}{3}z_1 + rac{4}{3} & z_1 \leq ext{Rec} \ rac{2}{3}z_2 \leq ext{ReLU}(z_2) \leq rac{2}{3}z_2 + 2 & z_2 \leq ext{Rec} \ & igcup_{igup_{igcup_{igu_{$

Linear lower bounds for ReLU function matters!

Both results are correct! But we want the bounds to be as tight as possible! So best result is **y** ∈ **[-3, 2]**

In general, the slope of the linear lower bound for every ReLU neuron can be optimized to find the best result.

Linear lower bounds for ReLU function matters!

In general, the slope of the linear lower bound for every ReLU neuron can be optimized to find the best result.

$$egin{aligned} lpha_1 z_2 &\leq \operatorname{ReLU}(z_2) \leq rac{2}{3} z_2 + rac{4}{3} \ lpha_2 z_2 &\leq \operatorname{ReLU}(z_2) \leq rac{2}{3} z_2 + 2 \end{aligned}$$

For optimal lower bound of y, set $\alpha_1 = 1$, $\alpha_2 = 1$

For optimal upper bound of y, set $\alpha_1 = \frac{2}{3}$, $\alpha_2 = \frac{2}{3}$

(note that the optimal α_1 and α_2 do not equal in general)

Linear bound propagation method (CROWN)

- 1. Obtain all pre-activation bounds (can be done via CROWN recursively)
- 2. Start from the output layer, form the initial linear (in)equality y = y
- 3. Recursively propagate linear inequality $y \le a^T z + b$ through each layer:
 - a. For a linear layer, z=Wz', directly plug in $a^Tz + b$ to get a linear bound of z'
 - b. For a non-linear layer (e.g., z=ReLU(z')), we first form the linear inequalities to bound the nonlinear layer itself. Then multiply either the lower or upper bound based on the sign of element in a
- 4. When the linear inequality propagates to the input layer, we can concretize the linear bound using bounds on input layer.

How to propagate the linear bounds?

Non-linear (activation) layer

$$z_2 = \operatorname{ReLU}(z_1)$$

- Propagate bounds through linear layers
- Propagate bounds through non-linear layers

What linear inequalities to propagate?

 $f(x) \geq a^ op z_3 + b$

Propagate it to one layer before, while keeping the lower bound valid

 $= f(x) \geq a^ op z_3 + b$

Inequality updated after propagation

 $\hspace{1.5cm} \longleftarrow \hspace{1.5cm} f(x) \geq a^ op W_2 z_2 + b \hspace{1.5cm} orall x \in \mathcal{S}$

Theorem (informal): we can efficiently find D, b' such that:

$$f(x) \geq oldsymbol{a}^ op W_2 D z_1 + b' ext{ (and } f(x) \geq oldsymbol{a}^ op W_2 z_2 + b \quad orall x \in \mathcal{S}$$

[Z*W*CHD NeurIPS 2018]

Proof sketch: conservatively use linear bounds to replace a non-linear function.

Theorem (informal): we can efficiently find D, b' such that:

$$f(x) \geq oldsymbol{a}^ op W_2 D z_1 + b' ext{ for all } f(x) \geq oldsymbol{a}^ op W_2 z_2 + b \quad orall x \in \mathcal{S}$$

Proof sketch: conservatively use linear bounds to replace a non-linear function.

Proof sketch: conservatively use linear bounds to replace a non-linear function.

 $f(x) \geq a^{ op} W_2 z_2 + b$ $f(x) \geq \sum_j \left[(a^{ op} W_2)_j \cdot z_{2,j}
ight] + b$ $(a^{ op} W_2)_j \geq 0$ Choose lower bound $(a^{ op} W_2)_j < 0$ Choose upper bound

 $\begin{array}{l} \textbf{Theorem (informal): we can efficiently find D, b' such that:} \\ f(x) \geq a^\top W_2 D z_1 + b' \longleftrightarrow f(x) \geq a^\top W_2 z_2 + b \quad \forall x \in \mathcal{S} \end{array}$

CROWN: a linear bound propagation algorithm

CROWN main theorem (simplified): $f(x) \geq a_{ ext{CROWN}}^ op x + b_{ ext{CROWN}} \quad orall x \in \mathcal{S}$

CROWN: a linear bound propagation algorithm

CROWN main theorem (simplified): $f(x) \geq a_{ ext{CROWN}}^{ op} x + b_{ ext{CROWN}} \quad orall x \in \mathcal{S}$

 $a_{
m CROWN}=W_3D_2W_2D_1W_1$

Prove the verification problem with CROWN

Lower bound > 0 $\implies f(x) > 0 \implies$ verified (always a stop sign)

auto_LiRPA: Verification Library for General Computation Graphs

http://PaperCode.cc/AutoLiRPA-Demo

The auto_LiRPA library on GitHub:

http://PaperCode.cc/AutoLiRPA

MILP/LP vs Bound Propagation

Bound propagation:

- Scalable and fast propagation
- GPU friendly
- Incomplete verification (will be extended in the next lecture)
- Bounds are looser compared to LP; much looser compared to MILP

MILP/LP:

- Tighter solution
- Does no scale (MILP ~10k neurons, LP ~100k neurons)
- Much slower; cannot utilize GPU