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Deadlines

Project proposal is due 3/3, 11:59 pm CT

See Canvas announcement for some example project ideas on 

ML + verification

Homework 2 due 3/10, 11:59 pm CT

Two writing problems + two programming problems

START EARLY!



Review: Linear time invariant system

� � = 퐴� � + 퐵� � 

Define Matrix exponential:

��� = 1 + 퐴� +
1
2!

 퐴� 2 +  … =  
0

∞
1
�!

 퐴� �

Theorem. � �, �0, � = Φ � �0 +  �0

� e� �−� 퐵� � ��

Here Φ � : = ��� is the state-transition matrix

Zero stateZero input



Properties for dynamical systems

What type of properties are we interested in? 

• Invariance (as in the case of automata)

• State remains bounded 

• Converges to target

• Bounded input gives bounded output (BIBO)



Requirements: Stability

• We will focus on time invariant autonomous systems (closed 
systems, systems without inputs) 

� � = � � �  ,  �0 ∈ ℝ�,  �0 = 0                              Eq.  1 

• � �  is the solution
• �∗ ∈ ℝ� is an equilibrium point if � �∗ = 0.
• For analysis we will assume 0 to be an equilibrium point of (1) 

with out loss of generality



Example: Pendulum

Pendulum equation
�1 = �  �2 = �

�2 = �1
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�: friction coefficient 

Two equilibrium points:  0,0 ,   �, 0 
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Phase portrait of pendulum with friction



Aleksandr M. Lyapunov 

Aleksandr Mikhailovich Lyapunov (June 6 
1857–November 3, 1918) was a Russian 
mathematician and physicist. 

His methods make it possible to define the 
stability of ordinary differential equations. In 
the theory of probability, he generalized the 
works of Chebyshev and Markov, and proved 
the Central Limit Theorem under more general 
conditions than his predecessors.



Lyapunov stability

Lyapunov stability: The system (1) is said to be Lyapunov stable 
(at the origin) if 
 ∀� > 0,  ∃ �� > 0 such that  �0 ≤ �� ⇒ ∀ t ≥ 0,   � �0, �  ≤ �.

“if we start the system close enough to the equilibrium, it 
remains close enough”

How is this related to 
invariants and 
reachable states ?

��

�
�0



Asymptotically stability

The system (1) is said to be Asymptotically stable (at the origin) 
if it is Lyapunov stable and 

 ∃�2 > 0 such that ∀ �0 ≤ �2 as t → ∞,   � �0, �  → �.
If the property holds for any �2 then Globally Asymptotically 
Stable

�2
�0



Butterfly

 �2
�1

 =  
2�1�2

�1
2 − �2

2 

All solutions converge to 0 
but the equilibrium point 
(0,0) is not Lyapunov stable

Figure from Prof. João P. Hespanha (UCSB)



Van der pol oscillator

Van der pol oscillator
��2

��2 − � 1 − �2 
��
��

+ � = 0

Define �1 = �; �2 = �1;

 �2
�1

 =  � 1 − �1
2 �2 −  �1
�2

 

stable ? 
� = 2

simulation � from 0.01 to 4
phase portrait



Stability of solutions* (instead of points)

• For any � ∈ PC ℝ≥0, ℝ�  define the s-norm   �  � = sup
�∈ℝ

  � �    

• A dynamical system can be seen as an operator that maps initial states to signals  
�: ℝ� → 푃� ℝ≥0, ℝ� 

• Lyapunov stability required that this operator is continuous

• The solution �∗ is Lyapunov stable if � is continuous as �∗ 0  .   i. e. ,  for every � >
0 there exists �� > 0 such that for every �0 ∈ ℝ� if  �∗ 0 − �0 ≤ �� then 
  � �∗ �  − � �0   

�
≤ �.

*Not discussed in class



Verifying Stability for Linear Systems

Consider the linear system � = 퐴�

Theorem. 

1. It is asymptotically stable iff all the eigenvalues of A have strictly negative 
real parts (Hurwitz).

2. It is Lyapunov stable iff all the eigenvalues of A have real parts that are 
either zero or negative and the Jordan blocks corresponding to the 
eigenvalues with zero real parts are of size 1.



Why eigenvalues matter? (proof sketch)

� � = 퐴� � 
Solution is  � �, �0 = ����0
Assume A is diagonalizable, 퐴 = 푆�푆−1

D is a diagal matrix containing all eigenvalues

We want all ���  to be < 1 so the exponential with t does not blow 
up. That means 푅� �� < 0



Verifying Stability for Linear Systems

Consider the linear system � = 퐴�

Graphs from Peter 
Woolf's lecture from 
Fall'08 titled Dynamic 
Systems Analysis II: 
Evaluation Stability, 
Eigenvalues



Jordan decomposition

For every n x n matrix A, there exists a nonsingular n x n matrix P such that 

where each �� is a upper triangular matrix called a Jordan block



Example 1: Simple model of an economy

• �: national income �: rate of consumer spending; �: rate government 
expenditure

• � = �  − ��
• � = � � − � − � 
• � = �0 + �� �,  �,  � are positive constants

• Dynamics: (this is a linear system!)

•  �� =  1 −�
� 1 − � −�  

�
� 



Example: Simple linear model of an economy

• � = 3,  � = 1,  � = 0

• �1, �1
∗ =  −. 25 ± � 1.714 

• Negative real parts, therefore, 
asymptotically stable and the 
national income and consumer 
spending rate converge to � =
1.764 � = 5.294



Stability of nonlinear systems

• For any positive definite function of state �: ℝ� → ℝ
that is, � � ≥ 0 and � � = 0 iff � = 0

• Sublevel sets of ��: = {� ∈ ℝ�   � � ≤ �}
• Now consider  � � �  ; V differentiable with continuous first 

derivative

• � =  � � � �  
��

=  ?



Stability of nonlinear systems

• For any positive definite function of state �: ℝ� → ℝ
that is, � � ≥ 0 and � � = 0 iff � = 0

• Sublevel sets of ��: = {� ∈ ℝ�   � � ≤ �}
• Now consider  � � �  ; V differentiable with continuous first 

derivative

• � =  � � � �  
��

=  ?
��
��

. �
��

 � �  = ��
��

. � �  

 



Verifying Stability

Theorem. (Lyapunov) Consider the system (1) with state space 
� � ∈ ℝ� and suppose there exists a positive definite, 
continuously differentiable function �: ℝ� → ℝ. The system is: 

1. Lyapunov stable if � � �  = ��
��

� � ≤ 0, for all � ≠ 0

2. Asymptotically stable if � � �  < 0, for all � ≠ 0
3. It is globally AS if V is also radially unbounded. 

 � is radially unbounded if   �  → ∞ ⇒ � � → ∞)



Proof sketch: Lyapunov stable if � ≤ 0

• Assume � ≤ 0 
• Consider a ball  B� around the origin of 

radius � > 0.  
• Pick a positive number � <min

 � =�
� � .

• Let � be a radius of ball around origin 
which is inside B� =  {�  � � ≤ �}

• Since along all trajectories V is non-
increasing, starting from 퐵� each 
solution satisfies � � �  ≤ � and 
therefore remains in B�

B�
�� 퐵�



Proof sketch: Asymptotically stable if � < 0
• Assume � < 0 for all � ≠ 0
• Take arbitrary initial state  � 0  ≤ �,  where this � comes from some � 

for Lyapunov stability

• Since � � .  > 0 and decreasing along � it has a limit � ≥ 0 at � → ∞
• It suffices to show that this limit is actually 0, since� � = 0 iff � = 0
• Suppose not, c > 0 then the solution � 0  evolves in the compact set 푆 =

{�   � ≤  � ≤ �} for some sufficiently small �
• Let � =max

�∈S
� � , � is well-defined and negative

• � � �  ≤ � for all t

• � � �  ≤ � � 0  + �� 
• But then eventually � � �  < �

B�

�
푆



Example 2: Reasoning about stability without solving ODEs

�1 =− �1 + � �2 ; �2 =− �2 + ℎ �1 

Given that  � �2  ≤  �2 
2

,  ℎ �1  ≤  �1 
2

• Use � = 1
2
 �1

2 + �2
2 ≥ 0

• � = �1 �1 + �2 �2

=−�1
2−�2

2 + �1� �2 + �2ℎ �1 

≤ −�1
2−�2

2 + 1
2
  �1�2 +  �2�1  

≤− 1
2
 �1

2 + �2
2 =− � 

We conclude global asymptotic stability (in fact global 
exponential stability) without knowing solutions

  �1 −  �2  2 ≥ 0 

�1
2 + �2

2 ≥ 2 �1�2 

 �1�2 ≤
1
2

 �1
2 + �2

2 

�1 =− �1 + � �2 

�2 =− �2 + ℎ �1 



Lyapunov function vs. Invariant

Proposition. If V is a Lyapunov function then every sublevel set of 
V is an invariant

Proof. � � �  =  � � 0  +  0
� � � �  ��

≤ � � 0  



An aside: Checking inductive invariants

• � =  �, �0, � 
– �: set of variables
– �0 ⊆ 푣�� � 
– � ⊆ 푣�� � × 푣�� �  written as a program �′ ⊆ � � 

• How do we check that � ⊆ 푣�� �  is an inductive invariant?
– �0 ⇒ � � 
– � � ⇒ � � �  

• Implies that 푅���ℎ� �0 ⊆ � without computing the executions or reachable 
states of A

• The key is to find such �



Finding Lyapunov Functions

• The key to using Lyapunov theory is to find a Lyapunov 
function and verify that it has the properties

• In general, for nonlinear systems this is hard
• There are several approaches

– Quadratic Lyapunov functions for linear systems
– Decide the form/template of the function (e.g., quadratic, 

polynomial), parameterized by some parameters and find values of 
the parameters so that the conditions hold (Chapter 3 last section)

– Use a neural network + neural network verification for checking the 
Lyapunov condition



Linear autonomous systems

• � = 퐴�,  퐴 ∈ ℝ�×�

• The Lyapunov equation: 퐴�푃 + 푃퐴 + � = 0  
where 푃, � ∈ ℝ�×� are symmetric

• Interpretation: � � = ��푃� then 

� � =  퐴� �푃� + ��푃 퐴�  

[using chain rule  
���푃푣

��
= ��

��
푃푣 + �푣

��
푃��]

= �� 퐴�푃 + 푃퐴 �
Let � � =− ���� we obtain the equation above

• If ��푃� is the generalized energy then − ���� is the associated dissipation



Quadratic Lyapunov Functions

• If 푃 > 0 (positive definite)

• � � = ��푃� = 0 ⇔ � = 0
• The sub-level sets are ellipsoids

• If � > 0 (positive definite) then the system is globally 
asymptotically stable 



Same example

Lyapunov equations are solved as a set of 
� �+1 

2
 equations in � � + 1 /2 variables. Cost 

O(�6  

Choose � =  1 0
0 1  solving Lyapunov 

equations we get 푃 =    2.59 −2.29
−2.29 4.92   and 

we get the quadratic Lyapunov function  � −
�∗ 푃 � − �∗ � an a sequence of invariants



Converse Lyapunov

Converse Lyapunov theorems show that conditions of the previous 
theorem are also necessary. For example, if the system is asymptotically 
stable then there exists a positive definite, continuously differentiable 
function V, that satisfies the inequalities. 

For example if the LTI system � = 퐴� is globally asymptotically stable then 
there is a quadratic Lyapunov function that proves it. 


