Lecture 13: Modeling Physics (Part II: Linear systems)

 Stability VerificationHuan Zhang
huan@huan-zhang.com

Deadlines

Project proposal is due $3 / 3,11: 59 \mathrm{pm} \mathrm{CT}$
See Canvas announcement for some example project ideas on ML + verification

Homework 2 due 3/10, 11:59 pm CT
Two writing problems + two programming problems

Some project ideas

https://canvas.illinois.edu/courses/44138/discussion_topics/604292

Review: dynamical systems

Behaviors of physical processes are described in terms of instantaneous laws

Common notation: $\frac{d x(t)}{d t}=f(x(t), u(t), t)-E q$. (1)
where time $t \in \mathbb{R}$; state $x(t) \in \mathbb{R}^{n} ;$ input $u(t) \in \mathbb{R}^{m} ; f: \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R} \rightarrow \mathbb{R}^{n}$

Example. $\frac{d x(t)}{d t}=v(t) ; \frac{d v(t)}{d t}=a$

Review: dynamical systems

Behaviors of physical processes are described in terms of instantaneous laws

Common notation: $\frac{d x(t)}{d t}=f(x(t), u(t), t)-E q$. (1)
where time $t \in \mathbb{R}$; state $x(t) \in \mathbb{R}^{n} ;$ input $u(t) \in \mathbb{R}^{m} ; f: \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R}^{\prime} \rightarrow \mathbb{R}^{n}$

Example. $\frac{d x(t)}{d t}=v(t) ; \frac{d v(t)}{d t}=-g$

Initial value problem: Given system (1) and initial state $x_{0} \in \mathbb{R}^{n}, t_{0} \in \mathbb{R}$, and input $u: \mathbb{R} \rightarrow$ \mathbb{R}^{m}, find a state trajectory or solution of (1).

Review: Existence and uniqueness of solutions

Theorem. If $f(x(t), u(t), t)$ is Lipschitz continuous in the first argument, and $u(t)$ is piece-wise continous then (1) has unique solutions.

In general, for nonlinear dynamical systems we do not have closed form solutions, but there are numerical solvers

Linear system and solutions

$\dot{x}(t)=A(t) x(t)+B(t) u(t) \quad$ (Linear time varying)
$\dot{x}(t)=A x(t)+B u(t) \quad$ (Linear time invariant)

For a given initial state $x_{0} \in \mathbb{R}^{n}, u(t) \in P C\left(\mathbb{R}, \mathbb{R}^{n}\right)$ the solution is a function

$$
\xi\left(t, x_{0}, u\right): \mathbb{R} \rightarrow \mathbb{R}^{n}
$$

Note that t is the variable.

We studied several properties of ξ : continuity with respect to first and third argument, linearity, decomposition

Linear system and solutions

$$
\dot{x}(t)=A x(t)+B u(t)
$$

$u(t)$ continuous everywhere except D_{x}

Theorem. Let $\xi\left(t, x_{0}, u\right)$ be the solution for (2) with points of discontinuity, D_{x}

1. $\forall x_{0} \in \mathbb{R}^{n}, u \in P C\left(\mathbb{R}, \mathbb{R}^{m}\right), \xi\left(\cdot, x_{0}, u\right): \mathbb{R} \rightarrow \mathbb{R}^{n}$ is continuous and differentiable $\forall t \in \mathbb{R} \backslash D_{x}$
2. $\forall t \in \mathbb{R}, u \in P C\left(\mathbb{R}, \mathbb{R}^{m}\right), \xi(t, \cdot, u): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is continuous
3. linearity: $\forall t \in \mathbb{R}, x_{01}, x_{02} \in \mathbb{R}^{n}, u_{1}, u_{2} \in P C\left(\mathbb{R}, \mathbb{R}^{m}\right), a_{1}, a_{2} \in \mathbb{R}, \xi\left(t, a_{1} x_{01}+a_{2} x_{02}, a_{1} u_{1}+\right.$ $\left.a_{2} u_{2}\right)=a_{1} \xi\left(t, x_{01}, u_{1}\right)+a_{2} \xi\left(t, x_{02}, u_{2}\right)$
4. decomposition: $\forall t \in \mathbb{R}, x_{0} \in \mathbb{R}^{n}, u \in P C\left(\mathbb{R}, \mathbb{R}^{m}\right), \xi\left(t, x_{0}, u\right)=\xi\left(t, x_{0}, \mathbf{0}\right)+\xi(t, 0, u)$

Linear system and solutions

- $\xi\left(., x_{0}, u\right): \mathbb{R} \rightarrow \mathbb{R}^{n}$ is a linear function of the initial state x_{0} and input u, (linearity property). Let us first focus on the linear function $\xi\left(., x_{0}, 0\right)$ about the initial state x_{0}
- Define $\Phi(.) x_{0}=\xi\left(., x_{0}, 0\right)$
- This $\Phi():. \mathbb{R} \rightarrow \mathbb{R}^{n \times n}$ is called the state transition matrix

Linear time invariant system

$$
\dot{x}(t)=A x(t)+B u(t)
$$

A and B are not function of t.

Solution of the system ξ can be explicitly derived. How to do that?

Consider the decomposition property, we solve two problems:

$$
\forall t \in \mathbb{R}, x_{0} \in \mathbb{R}^{n}, u \in P C\left(\mathbb{R}, \mathbb{R}^{m}\right), \xi\left(t, x_{0}, u\right)=\xi\left(t, x_{0}, \mathbf{0}\right)+\xi(t, 0, u)
$$

Linear time invariant system

First set input $u(t)$ to 0 (we do this due to the decomposition)

$$
\frac{d x(t)}{d t}=A x(t), x(t=0)=x_{0}
$$

Due to linearity, the solution is in this form:

$$
\begin{gathered}
x(t)=\phi(t) x_{0}=\left(E+\phi_{1} t+\phi_{2} t^{2}+\ldots+\phi_{n} t^{n}+\ldots\right) x_{0} \\
\text { Taylor expansion of } \Phi(\mathrm{t})
\end{gathered}
$$

Substitute into the differential equation:

$$
\begin{aligned}
\frac{d}{d t}\left(\phi(t) x_{0}\right) & =A \phi(t) x_{0} \\
\left(\phi_{1}+2 \phi_{2} t+\ldots+n \phi_{n} t^{n-1}+\ldots\right) x_{0} & =\left(A+A \phi_{1} t+A \phi_{2} t^{2}+\ldots+A \phi_{n} t^{n}+\ldots\right) x_{0}
\end{aligned}
$$

Linear time invariant system

$$
\begin{aligned}
\frac{d}{d t}\left(\phi(t) x_{0}\right) & =A \phi(t) x_{0} \\
\left(\phi_{1}+2 \phi_{2} t+\ldots+n \phi_{n} t^{n-1}+\ldots\right) x_{0} & =\left(A+A \phi_{1} t+A \phi_{2} t^{2}+\ldots+A \phi_{n} t^{n}+\ldots\right) x_{0}
\end{aligned}
$$

e want to solve $\Phi(\mathrm{t})$, by comparing the terms:

$$
\begin{aligned}
\phi_{1} & =A \\
\phi_{2} & =\frac{1}{2} A \phi_{1}=\frac{1}{2!} A^{2} \\
\phi_{3} & =\frac{1}{3} A \phi_{2}=\frac{1}{3!} A^{3} \\
& \cdots \\
\phi_{n} & =\frac{1}{n!} A^{n}
\end{aligned}
$$

Linear time invariant system

$$
\begin{gathered}
\phi_{1}=A \\
\phi_{2}=\frac{1}{2} A \phi_{1}=\frac{1}{2!} A^{2} \\
\phi_{3}=\frac{1}{3} A \phi_{2}=\frac{1}{3!} A^{3} \\
\ldots \\
\phi_{n}=\frac{1}{n!} A^{n} . \\
\phi(t)=e^{A t}=E+A t+\frac{1}{2!} A^{2} t^{2}+\frac{1}{3!} A^{3} t^{3}+\ldots+\frac{1}{n!} A^{n} t^{n}+\ldots \\
\forall t \in \mathbb{R}, x_{0} \in \mathbb{R}^{n}, u \in P C\left(\mathbb{R}, \mathbb{R}^{m}\right), \xi\left(t, x_{0}, u\right)=\left\{\left(t, x_{0}, \mathbf{0}\right)+\xi(t, 0, u)\right. \\
\text { This part done }
\end{gathered}
$$

Linear time invariant system

Consider the decomposition property, we solve two problems:

$$
\forall t \in \mathbb{R}, x_{0} \in \mathbb{R}^{n}, u \in P C\left(\mathbb{R}, \mathbb{R}^{m}\right), \xi\left(t, x_{0}, u\right)=\xi\left(t, x_{0}, \mathbf{0}\right)+\xi(t, 0, u)
$$

Now the second part
Now for $\xi(t, 0, u)$, assume $x_{0}=0$, solve

$$
\frac{d x(t)}{d t}=A x(t)+B u(t)
$$

Rearrange:

$$
\frac{d x(t)}{d t}-A x(t)=B u(t)
$$

Multiply a common factory:

$$
e^{-A t} \frac{d x(t)}{d t}-e^{-A t} A x(t)=e^{-A t} B u(t)
$$

Note the perfect differential:

$$
\frac{d}{d t}\left(e^{-A t} x(t)\right)=e^{-A t} B u(t)
$$

Linear time invariant system

$$
\frac{d}{d t}\left(e^{-A t} x(t)\right)=e^{-A t} B u(t)
$$

Integration on both sides:

$$
\begin{aligned}
& \int_{0}^{t} \frac{d}{d \tau}\left(e^{-A \tau} x(\tau)\right)=\int_{0}^{t} e^{-A \tau} B u(\tau) d \tau \\
& e^{-A t} x(t)-e^{A 0} x(0)=\int_{0}^{t} e^{-A \tau} B u(\tau) d \tau
\end{aligned}
$$

Since $x(0)=0$:

$$
\begin{aligned}
& x(t)=e^{A t} \int_{0}^{t} e^{-A \tau} B u(\tau) d \tau \\
& x(t)=\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau
\end{aligned}
$$

Linear time invariant system

$$
\dot{x}(t)=A x(t)+B u(t)
$$

Define Matrix exponential:
$e^{A t}=1+A t+\frac{1}{2!}(A t)^{2}+\ldots=\sum_{0}^{\infty} \frac{1}{k!}(A t)^{k}$

Theorem. $\xi\left(t, x_{0}, u\right)=\Phi(t) x_{0}+\int_{0}^{t} \mathrm{e}^{A(t-\tau)} B u(\tau) d \tau$

Here $\Phi(t):=e^{A t}$ is the state-transition matrix

Example

$$
\frac{d x(t)}{d t}=A x(t)+B u(t)
$$

States x : postion (0 m), velocity ($-2 \mathrm{~m} / \mathrm{s}$), Input $u(t)$: Force $f_{a}(t)=6$ Newtons

$$
\begin{gathered}
m \frac{d x_{2}(t)}{d t}=u(t)-b \frac{d x_{1}(t)}{d t}-k x_{1}(t) \\
x_{2}(t)=\frac{d x_{1}(t)}{d t}
\end{gathered}
$$

Zero state Complete Zero input

Source: https://lpsa.swarthmore.edu/Transient/TransZIZS.html

Solution of linear time-varying systems in Φ

More generally, for time varying systems we have
Theorem.

$$
\xi\left(t, t_{0}, x_{0}, u\right)=\Phi\left(t, t_{0}\right) x_{0}+\int_{t_{0}}^{t} \Phi(t, \tau) B(\tau) u(\tau) d \tau
$$

Note that $\Phi\left(t, t_{0}\right)$ here also includes t_{0} as an parameter

Discrete time models / discrete transition systems

- $x(t+1)=f(x(t), u(t))$
- $x(t+1)=f(x(t)) \quad$ No input (autonomous)
- Execution defined as: $x_{0}, f\left(x_{0}\right), f^{2}\left(x_{0}\right), \ldots$
- Can be define as an automaton $\boldsymbol{A}=\left\langle Q, Q_{0}, T\right\rangle$

$$
\begin{aligned}
& -Q=\mathbb{R}^{n}, Q_{0}=\left\{x_{0}\right\} \\
& -T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} ; \mathrm{T}(x)=f(x)
\end{aligned}
$$

- Deterministic

Discretized or sampled-time model

- $\dot{x}(t)=f(x(t), u(t))$
- Assume: $u \in P C(\mathbb{R}, U)$ where $U \subseteq \mathbb{R}^{m}$ is a finite set
- Given the solution $\xi\left(t, x_{0}, u\right)$
- Fix a sampling period $\delta>0$
- $\boldsymbol{A}_{\boldsymbol{\delta}}=\left\langle Q, Q_{0}, U, T\right\rangle$
$-Q=\mathbb{R}^{n}, Q_{0}=\left\{x_{0}\right\}$, Act $=U$,
$-T \subseteq \mathbb{R}^{n} \times U \times \mathbb{R}^{n} ;\left(x, u, x^{\prime}\right) \in \mathrm{T}$ iff $x^{\prime}=\xi(\delta, x, u)$

Properties for dynamical systems

What type of properties are we interested in?

- Invariance (as in the case of automata)
- State remains bounded
- Converges to target
- Bounded input gives bounded output (BIBO)

Requirements: Stability

- We will focus on time invariant autonomous systems (closed systems, systems without inputs)
- $\dot{x}(t)=f(x(t)), x_{0} \in \mathbb{R}^{n}, t_{0}=0$
- $\xi(t)$ is the solution
- $|\xi(t)|$ norm
- $x^{*} \in \mathbb{R}^{n}$ is an equilibrium point if $f\left(x^{*}\right)=0$.
- For analysis we will assume $\mathbf{0}$ to be an equilibrium point with out loss of generality

Example: Pendulum

Pendulum equation

$x_{1}=\theta \quad x_{2}=\dot{\theta}$
$x_{2}=\dot{x}_{1}$
$\dot{x}_{2}=-\frac{g}{l} \sin \left(x_{1}\right)-\frac{k}{m} x_{2}$
$\left[\begin{array}{l}\dot{x_{2}} \\ \dot{x_{1}}\end{array}\right]=\left[\begin{array}{c}-\frac{g}{l} \sin \left(x_{1}\right)-\frac{k}{m} x_{2} \\ x_{2}\end{array}\right]$
k : friction coefficient
Two equilibrium points: $(0,0),(\pi, 0)$

