Lecture 13: Modeling Physics (Part II: Linear systems) Stability Verification

Huan Zhang huan@huan-zhang.com

Slides adapted from Prof. Sayan Mitra's slides in Fall 2021

Deadlines

Project proposal is due 3/3, 11:59 pm CT

See Canvas announcement for some example project ideas on ML + verification

Homework 2 due 3/10, 11:59 pm CT

Two writing problems + two programming problems

Some project ideas

https://canvas.illinois.edu/courses/44138/discussion_topics/604292

Review: dynamical systems

Behaviors of physical processes are described in terms of instantaneous laws

Common notation:
$$\frac{dx(t)}{dt} = f(x(t), u(t), t) - Eq. (1)$$

where time $t \in \mathbb{R}$; state $x(t) \in \mathbb{R}^n$; input $u(t) \in \mathbb{R}^m$; $f: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R} \to \mathbb{R}^n$

Example.
$$\frac{dx(t)}{dt} = v(t)$$
; $\frac{dv(t)}{dt} = a$

Review: dynamical systems

Behaviors of physical processes are described in terms of instantaneous laws

Common notation: $\frac{dx(t)}{dt} = f(x(t), u(t), t) - Eq. (1)$ where time $t \in \mathbb{R}$; state $x(t) \in \mathbb{R}^n$; input $u(t) \in \mathbb{R}^m$; $f: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R} \to \mathbb{R}^n$

Example.
$$rac{dx(t)}{dt} = v(t)$$
 ; $rac{dv(t)}{dt} = -g$

Initial value problem: Given system (1) and initial state $x_0 \in \mathbb{R}^n$, $t_0 \in \mathbb{R}$, and input u: $\mathbb{R} \to \mathbb{R}^m$, find a state trajectory or *solution* of (1).

Review: Existence and uniqueness of solutions

Theorem. If f(x(t), u(t), t) is Lipschitz continuous in the first argument, and u(t) is piece-wise continous then (1) has unique solutions.

In general, for nonlinear dynamical systems we do not have closed form solutions, but there are numerical solvers

Linear system and solutions

 $\dot{x}(t) = A(t)x(t) + B(t)u(t)$ (Linear time varying)

 $\dot{x}(t) = Ax(t) + Bu(t)$ (Linear time invariant)

For a given initial state $x_0 \in \mathbb{R}^n$, $u(t) \in PC(\mathbb{R}, \mathbb{R}^n)$ the *solution* is a function

 $\xi(t,x_0,u) \colon \mathbb{R} \to \mathbb{R}^n$

Note that *t* is the variable.

We studied several properties of ξ : continuity with respect to first and third argument, linearity, decomposition

Linear system and solutions

 $\dot{x}(t) = Ax(t) + Bu(t)$

u(t) continuous everywhere except D_x

Theorem. Let $\xi(t, x_0, u)$ be the solution for (2) with points of discontinuity, D_x

- 1. $\forall x_0 \in \mathbb{R}^n, u \in PC(\mathbb{R}, \mathbb{R}^m), \xi(\cdot, x_0, u) : \mathbb{R} \to \mathbb{R}^n$ is continuous and differentiable $\forall t \in \mathbb{R} \setminus D_x$
- 2. $\forall t \in \mathbb{R}, u \in PC(\mathbb{R}, \mathbb{R}^m), \xi(t, \cdot, u) : \mathbb{R}^n \to \mathbb{R}^n$ is continuous
- 3. linearity: $\forall t \in \mathbb{R}, x_{01}, x_{02} \in \mathbb{R}^n, u_{1,}u_2 \in PC(\mathbb{R}, \mathbb{R}^m), a_1, a_2 \in \mathbb{R}, \xi(t, a_1x_{01} + a_2x_{02}, a_1u_1 + a_2u_2) = a_1\xi(t, x_{01}, u_1) + a_2\xi(t, x_{02}, u_2)$
- 4. decomposition: $\forall t \in \mathbb{R}, x_0 \in \mathbb{R}^n, u \in PC(\mathbb{R}, \mathbb{R}^m), \xi(t, x_0, u) = \xi(t, x_0, 0) + \xi(t, 0, u)$

Linear system and solutions

• $\xi(., x_0, u): \mathbb{R} \to \mathbb{R}^n$ is a linear function of the initial state x_0 and input u, (linearity property). Let us first focus on the linear function $\xi(., x_0, 0)$ about the initial state x_0

- Define $\Phi(.)x_0 = \xi(., x_0, 0)$
- This $\Phi(.): \mathbb{R} \to \mathbb{R}^{n \times n}$ is called the state transition matrix

 $\dot{x}(t) = Ax(t) + Bu(t)$

A and B are not function of t.

Solution of the system ξ can be explicitly derived. How to do that?

Consider the decomposition property, we solve two problems:

 $\forall t \in \mathbb{R}, x_0 \in \mathbb{R}^n, u \in PC(\mathbb{R}, \mathbb{R}^m), \xi(t, x_0, u) = \xi(t, x_0, \mathbf{0}) + \xi(t, 0, u)$

First set input u(t) to 0 (we do this due to the decomposition)

$$rac{dx(t)}{dt}=A\,x(t),\,x(t=0)=x_0$$

Due to linearity, the solution is in this form:

$$x(t) = \phi(t)x_0 = (E + \phi_1 t + \phi_2 t^2 + \ldots + \phi_n t^n + \ldots)x_0$$

Taylor expansion of $\Phi(t)$

Substitute into the differential equation:

$$rac{d}{dt}(\phi(t)x_0) = A\,\phi(t)\,x_0 \ (\phi_1+2\,\phi_2\,t+\ldots+n\,\phi_n\,t^{n-1}+\ldots)x_0 = (A+A\phi_1t+A\phi_2t^2+\ldots+A\phi_nt^n+\ldots)\,x_0$$

$$rac{d}{dt}(\phi(t)x_0) = A\,\phi(t)\,x_0 \ (\phi_1+2\,\phi_2\,t+\ldots+n\,\phi_n\,t^{n-1}+\ldots)x_0 = (A+A\phi_1t+A\phi_2t^2+\ldots+A\phi_nt^n+\ldots)\,x_0$$

we want to solve $\Phi(t)$, by comparing the terms:

$$egin{aligned} \phi_1 &= A \ \phi_2 &= rac{1}{2} A \, \phi_1 = rac{1}{2!} A^2 \ \phi_3 &= rac{1}{3} A \, \phi_2 = rac{1}{3!} A^3 \ & \dots \ \phi_n &= rac{1}{n!} A^n. \end{aligned}$$

$$egin{aligned} \phi_1 &= A \ \phi_2 &= rac{1}{2} A \, \phi_1 = rac{1}{2!} A^2 \ \phi_3 &= rac{1}{3} A \, \phi_2 = rac{1}{3!} A^3 \end{aligned}$$

$$\phi_n = rac{1}{n!} A^n.$$
 $\phi(t) = e^{At} = E + At + rac{1}{2!} A^2 t^2 + rac{1}{3!} A^3 t^3 + \ldots + rac{1}{n!} A^n t^n + \ldots$

$$\forall t \in \mathbb{R}, \, x_0 \in \mathbb{R}^n, u \in PC(\mathbb{R}, \mathbb{R}^m), \, \xi(t, \, x_0, \, u) = \xi(t, \, x_0, \, \mathbf{0}) + \xi(t, 0, \, u)$$

This part done

Consider the decomposition property, we solve two problems:

$$\forall t \in \mathbb{R}, x_0 \in \mathbb{R}^n, u \in PC(\mathbb{R}, \mathbb{R}^m), \xi(t, x_0, u) = \xi(t, x_0, \mathbf{0}) + \xi(t, 0, u)$$

Now the second part

Now for $\xi(t, 0, u)$, assume $x_0 = 0$, solve $\frac{dx(t)}{dt} = Ax(t) + Bu(t)$

$$\frac{dx(t)}{dt} - Ax(t) = Bu(t)$$

Multiply a common factory:

Rearrange:

$$e^{-At}\frac{dx(t)}{dt} - e^{-At}Ax(t) = e^{-At}Bu(t)$$

Note the perfect differential:

$$\frac{d}{dt}(e^{-At}x(t)) = e^{-At} Bu(t)$$

$$\frac{d}{dt}(e^{-At}x(t)) = e^{-At} Bu(t)$$

Integration on both sides:

$$\int_0^t \frac{d}{d\tau} (e^{-A\tau} x(\tau)) = \int_0^t e^{-A\tau} Bu(\tau) d\tau$$

$$e^{-At}x(t) - e^{A0}x(0) = \int_0^t e^{-A\tau} Bu(\tau) d\tau$$

Since x(0) = 0:

$$x(t) = e^{At} \int_0^t e^{-A\tau} Bu(\tau) d\tau$$

$$x(t) = \int_0^t e^{A(t-\tau)} Bu(\tau) d\tau$$

 $\dot{x}(t) = Ax(t) + Bu(t)$

Define Matrix exponential:

$$e^{At} = 1 + At + \frac{1}{2!}(At)^2 + \dots = \sum_{0}^{\infty} \frac{1}{k!}(At)^k$$

Theorem.
$$\xi(t, x_0, u) = \Phi(t)x_0 + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$$

Zero input Zero state

Here $\Phi(t)$: = e^{At} is the state-transition matrix

Example

$$\frac{dx(t)}{dt} = Ax(t) + Bu(t)$$

States x: postion (0m), velocity (-2m/s), $m\frac{dx_2(t)}{dt} = u(t) - b\frac{dx_1(t)}{dt} - kx_1(t)$ Input u(t): Force $f_a(t) = 6$ Newtons $x_2(t) = \frac{dx_1(t)}{dt}$ fa(t)stiffness ~~~~~~ m Zero state \sim 5 friction Complete 8 Zero input fa(t) -5 10 20 5 15 t, (s) -2

Source: https://lpsa.swarthmore.edu/Transient/TransZIZS.html

Solution of linear time-varying systems in $\boldsymbol{\Phi}$

More generally, for time varying systems we have

Theorem.

$$\xi(t, t_0, x_0, u) = \Phi(t, t_0) x_0 + \int_{t_0}^t \Phi(t, \tau) B(\tau) u(\tau) d\tau$$

Note that $\Phi(t, t_0)$ here also includes t_0 as an parameter

Discrete time models / discrete transition systems

- x(t+1) = f(x(t), u(t))
- x(t+1) = f(x(t)) No input (autonomous)
- Execution defined as: x_0 , $f(x_0)$, $f^2(x_0)$, ...
- Can be define as an automaton $\mathbf{A} = \langle Q, Q_0, T \rangle$

$$-Q = \mathbb{R}^n, Q_0 = \{x_0\}$$

- $-T: \mathbb{R}^n \to \mathbb{R}^n; T(x) = f(x)$
- Deterministic

Discretized or sampled-time model

- $\dot{x}(t) = f(x(t), u(t))$
- Assume: $u \in PC(\mathbb{R}, U)$ where $U \subseteq \mathbb{R}^m$ is a finite set
- Given the solution $\xi(t, x_0, u)$
- Fix a sampling period $\delta > 0$
- $A_{\delta} = \langle Q, Q_0, U, T \rangle$ $-Q = \mathbb{R}^n, Q_0 = \{x_0\}, Act = U,$ $-T \subseteq \mathbb{R}^n \times U \times \mathbb{R}^n; (x, u, x') \in T \text{ iff } x' = \xi(\delta, x, u)$

Properties for dynamical systems

What type of properties are we interested in?

- Invariance (as in the case of automata)
- State remains bounded
- Converges to target
- Bounded input gives bounded output (BIBO)

Requirements: Stability

- We will focus on time invariant autonomous systems (closed systems, systems without inputs)
- $\dot{x}(t) = f(x(t)), x_0 \in \mathbb{R}^n, t_0 = 0$
- $\xi(t)$ is the solution
- $|\xi(t)|$ norm
- $x^* \in \mathbb{R}^n$ is an **equilibrium point** if $f(x^*) = 0$.
- For analysis we will assume **0** to be an equilibrium point with out loss of generality

Example: Pendulum

Pendulum equation

 $x_{1} = \theta \quad x_{2} = \dot{\theta}$ $x_{2} = \dot{x}_{1}$ $\dot{x}_{2} = -\frac{g}{l} \sin(x_{1}) - \frac{k}{m} x_{2}$ $\begin{bmatrix} \dot{x}_{2} \\ \dot{x}_{1} \end{bmatrix} = \begin{bmatrix} -\frac{g}{l} \sin(x_{1}) - \frac{k}{m} x_{2} \\ x_{2} \end{bmatrix}$

k: friction coefficient

Two equilibrium points: (0,0), (π , 0)

