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Deadlines

Project proposal is due 3/3, 11:59 pm CT

See Canvas announcement for some example project ideas on 

ML + verification

Homework 2 due 3/10, 11:59 pm CT

Two writing problems + two programming problems



Some project ideas

https://canvas.illinois.edu/courses/44138/discussion_topics/604292



Review: dynamical systems

Behaviors of physical processes are described in terms of instantaneous laws

Common notation: 푑� � 
푑�

= � � � , � � , �  −  퐸�.  1  

where time � ∈ ℝ; state � � ∈ ℝ�;   퐢퐧���   � � ∈ ℝ�;  �: ℝ� ×  ℝ� ×  ℝ → ℝ�

Example. 
푑� � 
푑�

= � �  ; 
푑� � 
푑�

= �
푑� � 
푑�

= � �, � 

� = � � 
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Initial value problem: Given system (1) and initial state �0 ∈ ℝ�,  �0 ∈ ℝ, and input u:ℝ →
ℝ�, find a state trajectory or solution of (1).



Review: Existence and uniqueness of solutions

Theorem. If � � � , � � , �  is Lipschitz continuous in the first 
argument, and � �  is piece-wise continous then (1) has unique 
solutions. 

In general, for nonlinear dynamical systems we do not have 
closed form solutions, but there are numerical solvers



Linear system and solutions

� � = � � � � + � � � �    (Linear time varying)

� � = �� � + �� �     (Linear time invariant)

For a given initial state �0 ∈ ℝ�, � � ∈ 푃� ℝ,ℝ�  the solution is a function 

� �, �0, � : ℝ → ℝ�

Note that t is the variable.

We studied several properties of �: continuity with respect to first and third argument, linearity, 
decomposition



Linear system and solutions

� � = �� � + �� � 

 � �   continuous everywhere except ��

Theorem. Let � �, �0, �  be the solution for (2) with points of discontinuity , ��

1. ∀�0 ∈ ℝ�, � ∈ 푃� ℝ,ℝ� , � ⋅ , �0, � : ℝ → ℝ� is continuous and differentiable ∀ � ∈ ℝ ∖ ��

2. ∀� ∈ ℝ,  � ∈ 푃� ℝ,ℝ� , � �, ⋅ , � : ℝ� → ℝ� is continuous

3. linearity: ∀� ∈ ℝ, �01, �02 ∈ ℝ�, �1,�2 ∈ 푃� ℝ,ℝ� , �1, �2 ∈ ℝ,  � �, �1�01 + �2�02, �1�1 +
�2�2 = �1� �, �01,  �1 + �2� �, �02,  �2 

4. decomposition: ∀� ∈ ℝ,  �0 ∈ ℝ�, � ∈ 푃� ℝ,ℝ� ,  � �,  �0,  � = � �,  �0,  � + � �, 0,  � 



Linear system and solutions

• � . , �0, � : ℝ → ℝ� is a linear function of the initial state �0 
and input �, (linearity property). Let us first focus on the linear 
function � . , �0, 0  about the initial state �0

• Define Φ . �0 = � . , �0, 0 
• This Φ . :ℝ → ℝ�×� is called the state transition matrix



Linear time invariant system

� � = �� � + �� � 

A and B are not function of t.

Solution of the system � can be explicitly derived. How to do that?

Consider the decomposition property, we solve two problems:

∀� ∈ ℝ,  �0 ∈ ℝ�, � ∈ 푃� ℝ,ℝ� ,  � �,  �0,  � = � �,  �0,  � + � �, 0,  � 



Linear time invariant system

Due to linearity, the solution is in this form:

Taylor expansion of Φ(t)

Substitute into the differential equation:

First set input u(t) to 0 (we do this due to the decomposition)



Linear time invariant system

Now we want to solve Φ(t), by comparing the terms:
 



Linear time invariant system

∀� ∈ ℝ,  �0 ∈ ℝ�, � ∈ 푃� ℝ,ℝ� ,  � �,  �0,  � = � �,  �0,  � + � �, 0,  � 

This part done



Linear time invariant system

Consider the decomposition property, we solve two problems:

∀� ∈ ℝ,  �0 ∈ ℝ�, � ∈ 푃� ℝ,ℝ� ,  � �,  �0,  � = � �,  �0,  � + � �, 0,  � 

Now for � �, 0,  � , assume x0 = 0, solve

Rearrange:

Multiply a common factory:

Note the perfect differential:

푑� � 
푑�

= �� �  +  �� � 

푑� � 
푑�

− �� � =   �� � 

�−�� 푑� � 
푑�

− �−���� � =  �−�� �� � 

푑
푑�

 �−��� �  =  �−�� �� � 

Now the second part



Linear time invariant system

Integration on both sides:

Since x(0) = 0:

 
0

� 푑
푑�

 �−��� �  =   
0

�
�−�� �� � 푑�

�−��� � − ��0� 0 =   
0

�
�−�� �� � 푑�

� � =  ���  
0

�
�−�� �� � 푑�

� � =   
0

�
�� �−�  �� � 푑�

푑
푑�

 �−��� �  =  �−�� �� � 



Linear time invariant system

� � = �� � + �� � 

Define Matrix exponential:

��� = 1 + �� +
1
2!

 �� 2 +  … =  
0

∞
1
�!

 �� �

Theorem. � �, �0, � = Φ � �0 +  0
� e� �−� �� � 푑�

Here Φ � : = ��� is the state-transition matrix

Zero stateZero input



Example

Complete

Zero input

Zero state

States x: postion (0m), velocity (-2m/s), 
Input u(t): Force fa(t) = 6 Newtons

stiffness

friction

Source: https://lpsa.swarthmore.edu/Transient/TransZIZS.html

푑� � 
푑�

= �� �  +  �� � 

�
푑�2 � 

푑�
 = � � − �

푑�1 � 
푑�

− ��1 � 

�2 � =
푑�1 � 

푑�

Complete
Zero state



Solution of linear time-varying systems in Φ

More generally, for time varying systems we have

Theorem. 

� �, �0, �0, � = Φ �, �0 �0 +  
�0

�
Φ �, � � � � � 푑�

Note that Φ �, �0  here also includes �0 as an parameter



Discrete time models / discrete transition systems

• � � + 1 = � � � ,  � �  
• � � + 1 = � � �       No input (autonomous)

• Execution defined as: �0, � �0 ,  �2 �0 , … 
• Can be define as an automaton � = ⟨�, �0, �⟩

– � = ℝ�,  �0 =  �0 
– �:ℝ� → ℝ�; T �  = � � 

• Deterministic



Discretized or sampled-time model

• � � = � � � ,  � �  
• Assume: � ∈ 푃� ℝ, �  �ℎ��� � ⊆ ℝ� is a finite set

• Given the solution  � �, �0, � 
• Fix a sampling period � > 0 
• �� = ⟨�, �0, �, �⟩

– � = ℝ�,  �0 =  �0 ,  ��� = �,  
– � ⊆ ℝ� × � ×  ℝ�;  �, �, �′ ∈ T iff  �′ = � �, �, � 



Properties for dynamical systems

What type of properties are we interested in? 

• Invariance (as in the case of automata)

• State remains bounded 

• Converges to target

• Bounded input gives bounded output (BIBO)



Requirements: Stability

• We will focus on time invariant autonomous systems (closed 
systems, systems without inputs) 

• � � = � � �  ,  �0 ∈ ℝ�,  �0 = 0
• � �  is the solution
• |� � | norm
• �∗ ∈ ℝ� is an equilibrium point if � �∗ = 0.
• For analysis we will assume 0 to be an equilibrium point with 

out loss of generality



Example: Pendulum

Pendulum equation
�1 = �  �2 = �

�2 = �1

�2 =−
�
� sin

 �1 −
�
��2

 �2
�1

 =  −
�
�
sin  �1 − �

�
�2

�2
 

�: friction coefficient 

Two equilibrium points:  0,0 ,   �, 0 
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