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Plan

• Dynamical system models
– notions of solutions

– Linear dynamical systems

– Connection to automata

– Verification requirement: Stability

– Lyapunov method to verify stability



Map of CPS models

Discrete transition 
systems, automata

Markov chains

Probabilistic automata, 
Markov decision processes 
(MDP)

Continuous time, 
continuous state MDPs

Stochastic Hybrid systems

Dynamical systems
Differential 
inclusions

Hybrid systems



All this was in the two plague years 1665 and 1666, for in those 
days I was in my prime of age for invention, and minded 
mathematics and philosophy more than at any time since.

---Isaac Newton

From: Wilczek, Frank. A Beautiful Question: Finding Nature's Deep Design (p. 87). 



Introduction to dynamical systems

Behaviors of physical processes are described in terms of instantaneous laws

Example: growth of bacteria

푑� � 
푑�

= �

Vehicles, weather, circuits, biomedical processes, ... 



Introduction to dynamical systems

Behaviors of physical processes are described in terms of instantaneous laws
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Example: Pendulum

Pendulum equation
�1 = �  �2 = �

�2 = �1

�2 =−
�
� sin

 �1 −
�
��2

 �2
�1

 =  −
�
�
sin  �1 − �

�
�2

�2
 

�: friction coefficient 

Two equilibrium points:  0,0 ,   �, 0 
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Phase portrait of pendulum with friction



Example: Simple model of an economy

• �: national income 

• �: rate of consumer spending 

• �: rate government expenditure (control)

• � = � − ��
• � = � � − � − � 



Butterfly
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To plot ODE like this you can 
use odeint from scipy



Van der pol oscillator

Van der pol oscillator
푑�2
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�1 = �; �2 = �1;
coupling coefficient � = 2  0.1
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Introduction to dynamical systems

Behaviors of physical processes are described in terms of instantaneous laws

Common notation: 푑� � 
푑�

= � � � , � � , �  −  퐸�.  1  

where time � ∈ ℝ; state � � ∈ ℝ�;   퐢퐧���   � � ∈ ℝ�;  �: ℝ� ×  ℝ� ×  ℝ → ℝ�

Example. 
푑� � 
푑�

= � �  ; 
푑� � 
푑�

=− �

Initial value problem: Given system (1) and initial state �0 ∈ ℝ�,  �0 ∈ ℝ, and input u:ℝ → ℝ�, 
find a state trajectory or solution of (1).



Notions of solution

What is a solution? Many different notions.

Definition 1. (First attempt) Given  �0 and  �,  �:  ℝ → ℝ� is a solution 
or trajectory iff 
 1 � �0 = �0 and 

 2 푑
푑�

� � = � � � , � � , �  ,  ∀� ∈ ℝ. 

Mathematically makes sense, but too restrictive. Assumes that � is 
not only continuous, but also differentiable. This disallows u �  to be 
discontinuous, which is often required for optimal control.



Getting from point a to point b



Modified notion

Definition. � ⋅  is a piece-wise continuous with set of discontinuity 
points � ⊆ ℝ� if 

(1)  ∀� ∈ �, lim
�→�+

� � < ∞; lim
�→�− � � < ∞

(2) Continuous from right lim
�→�+

� � = � � 

(3)  ∀ �0 < �1 ,  �0, �1 ∩ � is finite 

푃�  �0, �1 , ℝ�) is the set of all piece-wise continuous functions 
over the domain  �0, �1 

Definition 2. Given  �� and  �,  �:  ℝ → ℝ� is a solution or trajectory 

iff (1) � �0 = �0 and (2) 
푑
푑�

� � = � � � , � � , � ,  ∀� ∈ ℝ \ D. 

�1 �2

� � 



When can we guarantee the existence of solutions? 

Example. � � =− 푠�� � �  ; �0 = �; �0 = 0; � > 0 
Solution: � � = � − � for � ≤ �; check � =− 1 =− 푠�� � �  
Problem: −푠�� � �   is discontinuous, cannot find � such that � exists 
and suddenly changes 

 푠�� � =  1, � ≥ 0
−1, � < 0

c



When can we guarantee the existence of solutions? 

Example. � � = �2; �0 = �; �0 = 0; � > 0 
Solution: � � = �

1−��
 works for � ≠ 1/�;  � = 

−�  −� 
 1−�� 2

=  � �  2

Problem: As � → 1
�
 then � � → ∞; � �  grows too fast

 



Lipschitz continuity

A function �:ℝ� → ℝ is Lipschitz continuous if there exist � > 0 
such that for any pair �, �′ ∈ ℝ�,   � � − � �′   ≤ �  � − �′  

Examples: 6� + 4;  � ; all differentiable functions with bounded 
derivatives 

Non-examples: �;  �2 (locally Lipschitz) 



Existence and uniqueness of solutions

Theorem. If � � � , � � , �  is Lipschitz continuous in the first 
argument, and � �  is PC then (1) has unique solutions. 

In general, for nonlinear dynamical systems we do not have 
closed form solutions for � � , but there are numerical solvers



Linear system and solutions

� � = � � � � + � � � � 

For a given initial state �0 ∈ ℝ�, �0 ∈ ℝ and � .  ∈ 푃� ℝ,ℝ�  
the solution is a function � . , �0, �0, � : ℝ → ℝ�

We studied several properties of �: continuity with respect to 
first and third argument, linearity, decomposition



Linear time-varying systems

� � = � � � � + � � � �  --- (2)

 � �   continuous everywhere except ��

Theorem. Let � �, �0, �0, �  be the solution for (2) with points of discontinuity , ��

1. ∀�0 ∈ ℝ, �0 ∈ ℝ�, � ∈ 푃� ℝ,ℝ� , � ⋅ , �0, �0, � : ℝ → ℝ� is continuous and differentiable 
∀ � ∈ ℝ ∖ ��

2. ∀�, �0 ∈ ℝ,  � ∈ 푃� ℝ,ℝ� , � �, �0, ⋅ , � : ℝ� → ℝ� is continuous
3. ∀�, �0 ∈ ℝ, �01, �02 ∈ ℝ�, �1,�2 ∈ 푃� ℝ,ℝ� , �1, �2 ∈ ℝ,  � �, �0, �1�01 + �2�02, �1�1 +

�2�2 = �1� �, �0,  �01,  �1 + �2� �, �0,  �02,  �2 
4. ∀�, �0 ∈ ℝ,  �0 ∈ ℝ�, � ∈ 푃� ℝ,ℝ� ,  � �, �0,  �0,  � = � �, �0,  �0,  � + � �, �0,  0,  � 


