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Deadlines

Project proposal due 3/3

Discuss your class projects on Canvas, try to find a teammate with common 
interests.

● To be effective, don’t just post your name and say you are looking for a 
teammate

● Be sure to introduce your technical strengths, research interests, and your 
thoughts about the project to find people with similar interests

● Do it as soon as possible! Discuss with your teammates to finalize project 
ideas



Deadlines

Project proposal due 3/3

Up to 4 pages

● Introduction of the problem or system under study and why it is important
● Give clear mathematical description of your problem
● Related work (What has been done before? do a thorough literature review!)
● Proposed methodology (what is your planned technique to solve this 

problem? What are the risks?)
● Timeline and targets (what goals do you aim to achieve?)



Deadlines

Homework 2 will be released on Wednesday (Feb 21), due 3/10

Include two programming assignments

Contact the TA, Sanil Chawla <schawla7@illinois.edu> for technical assistance

mailto:schawla7@illinois.edu


Review: bound propagation & branch and bound

Goal: improve the loose lower bound



Review: Branch and bound

If LB(Si) > 0, if can be removed from our problem since the property is verified on 
this subdomain Si; branch and bound is needed for unverified subdomains only.

List of unverified subproblems 

{S}

{S1 , S2}

{S3 , S4}

{S5 , S6}

LB(S2) > 0

LB(S3) > 0



Review: Branch and bound on input

Split each into domain S, typically by 

S = {x1 ∈ [-1, 1], x2 ∈ [-1, 1]}    =>   

S1 = {x1 ∈ [-1, 0], x2 ∈ [-1, 1]}, S2 = {x2 ∈ [0, 1], x2 ∈ [-1, 1]}

Implementation is easy

Does not work well when input dimension is very high (e.g., image inputs)



Review: Branch and bound on ReLU

Implicitly split input domain S by considering a ReLU neuron in two cases: active 
and inactive.

ReLU becomes linear in both subproblems 
with split constraint (handled using 

β-CROWN)



What we have learned so far about NN verification

● Verification as optimization problems
● Mixed Integer programming formulation for verifying ReLU networks
● Linear programming formulation
● Interval bound propagation (IBP)
● Linear bound propagation algorithm (CROWN)
● Bound optimization to improve tightness (α-CROWN)
● Branch and bound to further improve tightness (β-CROWN)

What are missing to solve practical NN verification problems?



Several topics we will discuss today

Bound propagation on general computation graph

Falsification methods

Adversarial training and verification-friendly networks



Bound propagation for feedforward neural networks

Efficient Incomplete Verification with CROWN
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CROWN main theorem (simplified):

Always keep valid lower bounds

Initial (in)equality:



How about more complex networks?

Most modern neural networks have more than the “linear” feedforward structure



Requirement:
Each computation          can be 
bounded using linear 
hyperplanes w.r.t. its inputs

Verification on general computation graphs

Efficient Incomplete Verification with CROWN

The idea of bound propagation can be generalized to general computation graphs, 
as a graph algorithm
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Computational graph 
can be very complex 



Bound propagation on computation graphs

One compute node can have multiple inputs

z

v

ẑ = σ(z, v)

σ

For example:
ẑ = z + v
ẑ = z × v



Bound propagation on computation graphs

First step: bound σ using linear bounds of z and v

z

v

ẑ = σ(z, v)

σ

For ẑ = z + v, the function is already linear in z and v

For ẑ = z × v, need intermediate layer bounds for z and v



Bound propagation on computation graphs

z

v

ẑ = σ(z, v)

σ

For ẑ = z × v, need intermediate layer bounds for z and v

These bounds can be optimized as well!



Bound propagation on computation graphs

z

v

σ y

Choose lower or upper based on the sign of 

ẑ



Bound propagation on computation graphs

z

v

σ y

Choose lower or upper based on the sign of 

ẑ

We essentially propagate those coefficients on the graph



Bound propagation on computation graphs

One compute node’s output can be used by multiple nodes

copy
z

z2

yz1



Bound propagation on computation graphs

One compute node’s output can be used by multiple nodes

copy
z

z2

yz1

Must wait until both coefficients become available



Bound propagation on computation graphs

Efficient Incomplete Verification with CROWN

When to stop? Reaching a leaf node.
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✓✓

✓

✓

After all reachable leaf nodes are visited, we obtained all linear 
coefficients of the linear inequality



Verification Beyond Neural Networks

Efficient Incomplete Verification with CROWN

Actually, CROWN can work on general computation graphs, not limited to neural networks! 
Using CROWN for some novel applications that requires bounding is a great project idea!
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✓✓

✓

✓



Falsification methods

Lower bounds are good for verification, but are not very helpful for finding a 
counterexample (feasible solution) so far. Back to our original problem:

In some case, we want to find some x such that y ≤ 0

● Use these counterexamples to fix model bugs
Similar to failed test cases in software engineering

● For large models, lower bound can be loose.
Verification is challenging and falsification has
more hope

● Also called “adversarial attacks” in ML literature
Counterexample == adversarial example

counterexample

∃ x ∈ S  ∧  y ≤ 0  ∧  y = f(x) 



Falsification methods

To find a counterexample, we minimize the objective function using any method

● Randomly sample some x ∈ S and check f(x)?
● Gradient-based method



Projected gradient descent

Follow the “downhill” to decrease f(x)

In the meanwhile, do not go outside of the set S

- Gradient 
direction

Gradient = 0, stationary point



Projected gradient descent

After a few 
iterations

f(x) < 0, counterexample found!



Projected gradient descent may fail

After a few 
iterations

Get stuck! No further 
improvements possible

Local minimum



Projected gradient descent with random restarts

After a few 
iterations

Try random starting points to 
increase chance



Falsification gives an upper bound of the verification problem

Upper bound

Lower bound

Verification gives a lower bound of y*:
Lower bound ≥ 0  =>  verified

Falsification gives an upper bound of y*:
Upper bound ≤ 0  =>  falsified

Stronger falsifier

Stronger verifier



Adversarial training

While not converged:

x ← sample training data
S ← a small neighborhood around x
xadv ← counterexample: xadv ∈ S  ∧ fθ(xadv) ≤ 0
Update model parameter θ using gradient ascent to maximize fθ(xadv)

Fix this point



Adversarial training

Pros: (relatively) efficient to find counterexamples, less impact on model 
performance

Cons: just fixing a finite number of counterexamples may not lead to a 
truly verified model; usually challenging for verifiers

Fix this point



Verification-guided training

While not converged:

x ← sample training data
S ← a small neighborhood around x
LBθ(S) ← lower bound of fθ(x) in S
Update model parameter θ using gradient ascent to maximize LBθ(S) 

Push up



Verification-guided training

Push up

Pros: Maximizing the lower bound guarantees f(x) > 0; models trained in 
this way are typically very easy to verify (verification friendly)

Cons: Calculating lower bounds is expensive; lower bounds can be too 
conservative, leading to poor model performance



Adversarial training vs Verification-guided training

CIFAR10: pixel-wise perturbation 8/255

Adversarial training: 90% clean accuracy, 70% accuracy under adversarial attack, 
~0% verified accuracy

Verification-guided training: 55% clean accuracy, ~40% accuracy under 
adversarial attack, ~35% verified accuracy


