
Lecture 11: Neural Network Verification:
falsification, training verifiable NNs, and practical verifiers

Prof. Huan Zhang

huan@huan-zhang.com

ECE/CS 584: Verification of Embedded and Cyber-physical Systems

Deadlines

Project proposal due 3/3

Discuss your class projects on Canvas, try to find a teammate with common
interests.

● To be effective, don’t just post your name and say you are looking for a
teammate

● Be sure to introduce your technical strengths, research interests, and your
thoughts about the project to find people with similar interests

● Do it as soon as possible! Discuss with your teammates to finalize project
ideas

Deadlines

Project proposal due 3/3

Up to 4 pages

● Introduction of the problem or system under study and why it is important
● Give clear mathematical description of your problem
● Related work (What has been done before? do a thorough literature review!)
● Proposed methodology (what is your planned technique to solve this

problem? What are the risks?)
● Timeline and targets (what goals do you aim to achieve?)

Deadlines

Homework 2 will be released on Wednesday (Feb 21), due 3/10

Include two programming assignments

Contact the TA, Sanil Chawla <schawla7@illinois.edu> for technical assistance

mailto:schawla7@illinois.edu

Review: bound propagation & branch and bound

Goal: improve the loose lower bound

Review: Branch and bound

If LB(Si) > 0, if can be removed from our problem since the property is verified on
this subdomain Si; branch and bound is needed for unverified subdomains only.

List of unverified subproblems

{S}

{S1 , S2}

{S3 , S4}

{S5 , S6}

LB(S2) > 0

LB(S3) > 0

Review: Branch and bound on input

Split each into domain S, typically by

S = {x1 ∈ [-1, 1], x2 ∈ [-1, 1]} =>

S1 = {x1 ∈ [-1, 0], x2 ∈ [-1, 1]}, S2 = {x2 ∈ [0, 1], x2 ∈ [-1, 1]}

Implementation is easy

Does not work well when input dimension is very high (e.g., image inputs)

Review: Branch and bound on ReLU

Implicitly split input domain S by considering a ReLU neuron in two cases: active
and inactive.

ReLU becomes linear in both subproblems
with split constraint (handled using

β-CROWN)

What we have learned so far about NN verification

● Verification as optimization problems
● Mixed Integer programming formulation for verifying ReLU networks
● Linear programming formulation
● Interval bound propagation (IBP)
● Linear bound propagation algorithm (CROWN)
● Bound optimization to improve tightness (α-CROWN)
● Branch and bound to further improve tightness (β-CROWN)

What are missing to solve practical NN verification problems?

Several topics we will discuss today

Bound propagation on general computation graph

Falsification methods

Adversarial training and verification-friendly networks

Bound propagation for feedforward neural networks

Efficient Incomplete Verification with CROWN

11

CROWN main theorem (simplified):

Always keep valid lower bounds

Initial (in)equality:

How about more complex networks?

Most modern neural networks have more than the “linear” feedforward structure

Requirement:
Each computation can be
bounded using linear
hyperplanes w.r.t. its inputs

Verification on general computation graphs

Efficient Incomplete Verification with CROWN

The idea of bound propagation can be generalized to general computation graphs,
as a graph algorithm

13

Computational graph
can be very complex

Bound propagation on computation graphs

One compute node can have multiple inputs

z

v

ẑ = σ(z, v)

σ

For example:
ẑ = z + v
ẑ = z × v

Bound propagation on computation graphs

First step: bound σ using linear bounds of z and v

z

v

ẑ = σ(z, v)

σ

For ẑ = z + v, the function is already linear in z and v

For ẑ = z × v, need intermediate layer bounds for z and v

Bound propagation on computation graphs

z

v

ẑ = σ(z, v)

σ

For ẑ = z × v, need intermediate layer bounds for z and v

These bounds can be optimized as well!

Bound propagation on computation graphs

z

v

σ y

Choose lower or upper based on the sign of

ẑ

Bound propagation on computation graphs

z

v

σ y

Choose lower or upper based on the sign of

ẑ

We essentially propagate those coefficients on the graph

Bound propagation on computation graphs

One compute node’s output can be used by multiple nodes

copy
z

z2

yz1

Bound propagation on computation graphs

One compute node’s output can be used by multiple nodes

copy
z

z2

yz1

Must wait until both coefficients become available

Bound propagation on computation graphs

Efficient Incomplete Verification with CROWN

When to stop? Reaching a leaf node.

21

✓✓

✓

✓

After all reachable leaf nodes are visited, we obtained all linear
coefficients of the linear inequality

Verification Beyond Neural Networks

Efficient Incomplete Verification with CROWN

Actually, CROWN can work on general computation graphs, not limited to neural networks!
Using CROWN for some novel applications that requires bounding is a great project idea!

22

✓✓

✓

✓

Falsification methods

Lower bounds are good for verification, but are not very helpful for finding a
counterexample (feasible solution) so far. Back to our original problem:

In some case, we want to find some x such that y ≤ 0

● Use these counterexamples to fix model bugs
Similar to failed test cases in software engineering

● For large models, lower bound can be loose.
Verification is challenging and falsification has
more hope

● Also called “adversarial attacks” in ML literature
Counterexample == adversarial example

counterexample

∃ x ∈ S ∧ y ≤ 0 ∧ y = f(x)

Falsification methods

To find a counterexample, we minimize the objective function using any method

● Randomly sample some x ∈ S and check f(x)?
● Gradient-based method

Projected gradient descent

Follow the “downhill” to decrease f(x)

In the meanwhile, do not go outside of the set S

- Gradient
direction

Gradient = 0, stationary point

Projected gradient descent

After a few
iterations

f(x) < 0, counterexample found!

Projected gradient descent may fail

After a few
iterations

Get stuck! No further
improvements possible

Local minimum

Projected gradient descent with random restarts

After a few
iterations

Try random starting points to
increase chance

Falsification gives an upper bound of the verification problem

Upper bound

Lower bound

Verification gives a lower bound of y*:
Lower bound ≥ 0 => verified

Falsification gives an upper bound of y*:
Upper bound ≤ 0 => falsified

Stronger falsifier

Stronger verifier

Adversarial training

While not converged:

x ← sample training data
S ← a small neighborhood around x
xadv ← counterexample: xadv ∈ S ∧ fθ(xadv) ≤ 0
Update model parameter θ using gradient ascent to maximize fθ(xadv)

Fix this point

Adversarial training

Pros: (relatively) efficient to find counterexamples, less impact on model
performance

Cons: just fixing a finite number of counterexamples may not lead to a
truly verified model; usually challenging for verifiers

Fix this point

Verification-guided training

While not converged:

x ← sample training data
S ← a small neighborhood around x
LBθ(S) ← lower bound of fθ(x) in S
Update model parameter θ using gradient ascent to maximize LBθ(S)

Push up

Verification-guided training

Push up

Pros: Maximizing the lower bound guarantees f(x) > 0; models trained in
this way are typically very easy to verify (verification friendly)

Cons: Calculating lower bounds is expensive; lower bounds can be too
conservative, leading to poor model performance

Adversarial training vs Verification-guided training

CIFAR10: pixel-wise perturbation 8/255

Adversarial training: 90% clean accuracy, 70% accuracy under adversarial attack,
~0% verified accuracy

Verification-guided training: 55% clean accuracy, ~40% accuracy under
adversarial attack, ~35% verified accuracy

