Lecture 5: Satisfiability modulo theories

Huan Zhang

huan@huan-zhang.com
Previous lectures

• Boolean satisfiability problem

\[\alpha: = (\neg x_1 \lor x_2) \land (\neg x_2 \lor x_4) \land (\neg x_2 \lor \neg x_3 \lor \neg x_4) \]

DPLL algorithm (backtracking + unit propagation + pure literal assignment)

```plaintext
function DPLL(\alpha)
    unit-propagate
    pure-literal-assign
    check-stopping-conditions
    l ← choose-literal(\alpha);
    return (DPLL(\alpha \land \{l\}) or DPLL(\alpha \land \{-l\}));
```

Image from Wikipedia
Today

• Satisfiability modulo theories (SMT): more general satisfiability problem
 • Theories, models, decision procedures
 • Uninterpreted Functions
 • Difference Logic

• Brief z3 tutorial (see notebook)
Satisfiability modulo theories

• SAT: Given a well-formed formula in propositional logic, determine whether there exists a satisfying solution

\[\alpha: = (\neg x_1 \lor x_2) \land (\neg x_2 \lor x_4) \land (\neg x_2 \lor \neg x_3 \lor \neg x_4) \]

• A satisfiability modulo theory (SMT) problem is a generalization of SAT in which some of the binary variables are replaced by predicates over a suitable set of non-binary variables
Satisfiability modulo theories

• SAT: Given a well-formed formula in propositional logic, determine whether there exists a satisfying solution

\[
\alpha: = (\neg x_1 \lor x_2) \land (\neg x_2 \lor x_4) \land (\neg x_2 \lor \neg x_3 \lor \neg x_4)
\]

• A satisfiability modulo theory (SMT) problem is a generalization of SAT in which some of the binary variables are replaced by predicates over a suitable set of non-binary variables

• \(\phi_1(w, x, y, z): = (x - y = 5) \land (z - y \geq 2) \land (z - x > 2) \land (w - x = 2)\)

• \(\phi_2(x, y, z): = (3x^2 - 4y + 5z \leq 5) \land (-2x + 5z^3 \leq 7)\)

• \(\phi_1\) is a predicate in difference logic in which the variables are real-valued, and the clauses are constructed with standard comparison operations >, >=, =$ and –(minus)

• \(\phi_2\) is a predicate in real arithmetic
Architecture of an SMT solver
<model theory>
A short overview of theories, models, decision procedures
What is a theory in mathematical logic?

• When we talk about well-formed formulas with non-binary variables, we have to say exactly what type of formulas are allowed
• and, what it means for assignments to satisfy such formulas
• This brings us to some basic notions in mathematical logic
 • theory --- what does a well-formed formula look like?
 • models --- what does it mean to satisfy a formula?
Building up a theory

First, we define the syntax for writing formulas

A signature $\Sigma = (\Sigma_F, \Sigma_P, V)$

- Σ_F : set of function symbols, e.g., $\{+, -, f, g, \sin, \ldots\}$
- Σ_P : set of predicate symbols, e.g., $\{<, >, <=\ldots\}$
- $arity$ of each function: $arity: \Sigma_F \to \mathbb{N}$
- 0 arity functions are constants
- V : set of variables

Terms(Σ, V): combines variables and functions

- Elements of V are terms
- If $t_1, \ldots, t_k \in Terms(\Sigma, V)$ and $f \in \Sigma_F$ with arity k, then $f(t_1, \ldots, t_k) \in Terms(\Sigma, V)$
- Ground terms are terms without variables

- $\Sigma_F = \{0, +\}, \Sigma_P = \{<\}$
- $arity(0) = 0$
- $arity(+) = 2$
- $arity(<) = 2$
- $V = \{x, y, z\}$

Terms defined by this signature are $x, y, z, \ + (x, y), \ + (+ (x, y), 0), 0, \ldots$
Terms to Formulas

• **Atomic formulas** \(AF \): combines terms and predicates
 - True, False
 - If \(t_1, \ldots, t_k \in \text{Terms}(\Sigma, \mathcal{V}) \) and \(p \in \Sigma_p \) with arity \(k \), then \(p(t_1, \ldots, t_k) \in AF(\Sigma, \mathcal{V}) \)
 - A literal is an AF or its negation
 - Set of all atomic formulas \(AF(\Sigma, \mathcal{V}) \)

• **Quantifier free formulas** \(QFF(\Sigma, \mathcal{V}) \)
 - \(AF \)
 - if \(\phi_1, \phi_2 \in QFF \) then
 - \(\neg \phi_1 \in QFF, \phi_1 \land \phi_2 \in QFF, \phi_1 \lor \phi_2 \in QFF, \phi_1 \rightarrow \phi_2 \in QFF \)
 - Set of all quantifier free formulas \(QFF(\Sigma, \mathcal{V}) \)

• **First order formulas** is the set of quantifier free formulas under universal and existential quantifiers
 - **Bound variables** are those that are attached to quantifiers
 - **Free variables**: variables not bound

• **Sentence**: First order formula with no free variables

• **Theory** \((\Sigma, \mathcal{V}) \) set of all sentences over \((\Sigma, \mathcal{V}) \)

AF examples:
- \(x < y \)
- \(+ (x, y) = + (y, x) \)

QFF examples:
- \(+ (x, y) = 0 \land x > y \)

First order formulas:
- \(\forall x, \exists y: + (x, y) = 0 \)
- \(\forall x, \exists y: x < y \)
- \(\forall x, \exists y: + (x, y) = x \)

Sentence:
- \(\exists x: + (x, 1) = x \)
Models for theories

This notion of model from **mathematical logic** is not to be confused with the notion of a model for a computational or physical process

- A *model* gives meanings or *interpretations* to formulas in theory T
- A model M for $T = \text{Theory}(\Sigma, V)$ has to define
 - A *domain* $|M|$
 - interpretations of all *functions* and *predicate* symbols
 - $M(f): |M|^n \to |M|$ if $\text{arity}(f) = n$
 - $M(p) \subseteq |M|^n$ if $\text{arity}(p) = n$
 - Assignment $M(x) \in |M|$ for every variable $x \in V$
- A *formula* ϕ is true in M if it evaluates to true under the given interpretations over domain M
Example

A *model* gives meanings or *interpretations* to formulas in theory T

Example model for $\Sigma = \{\{0,+\}, <, \{x, y\}\}$

$|M| = \{a, b, c\}$

$M(0) = a$

$M(<) = \{\langle a, b \rangle, \langle a, c \rangle, \langle b, c \rangle\}$

If $M(x) = a$, $M(y) = b$

Then $M(+(x, y))$ is $M(+)\left(M(x), M(y)\right) = M(+(a, b)) = b$

$M(+(+ (x, y), y)) = c$

Define formula $\phi: = \forall x \exists y + (x, y) = x$

$M \models \forall x \exists y + (x, y) = x$

We say that the model M *T-satisfies* the formula ϕ
Decision procedures

Given a theory T a theory solver or a decision procedure for T takes as input a set of literals ϕ (atomic propositions) and determines whether ϕ is T-satisfiable, that is,

\exists a model M such that $M \models \phi$?
A short overview of theories and models in mathematical logic
Example theories

• (Real) Linear arithmetic
 • $4x - 3y + 6z \leq 10, x + y - z \leq 1$;

• Real nonlinear arithmetic
 • $4x^2 + 6y - 9z^3 \leq 5$

• Bit vectors

• Arrays
 • $x'[i] = x[i] + 1$

• Uninterpreted functions (UF) $\Sigma_F: = \{f, g, ...\}$, $\Sigma_P: = \{=\}$, $V: = \{x_i\}$
 • $x_1 = x_2 \land x_3 \neq x_2 \land f(x_3) \neq f(x_2)$

• Difference logic $\Sigma_F: = \{1,2,3,\ldots, - \}$, $\Sigma_P: = \{<, \leq, =, >, \geq\}$, $V: = \{x_i\}$
 • $x_1 - x_2 \not\succeq k$, where $\not\succeq \in \{<, \leq, =, >, \geq\}$
Uninterpreted functions

Useful for abstractly reasoning about programs

- $\Sigma_F: = \{f, g, \ldots\}, \quad \Sigma_P: = \{=\}, \quad V: = \{x_i\}$

- Literals are of the form $x_1 = x_2 \land x_3 \neq x_2 \land f(x_3) \neq f(x_2)$

We know nothing about f, g, \ldots except for its name and arity

How to check its satisfiability?
Decision procedure for Uninterpreted functions (UF)

\[\phi = (x_1 = x_2) \land (x_2 = x_3) \land (x_4 = x_5) \land (x_5 \neq x_1) \land (F(x_1) \neq F(x_3)) \]

Decision procedure

1. Put all variables and function instances in their own classes
2. If \(t_1 = t_2 \) is a literal then merge the classes containing them; do this repeatedly
3. If \(t_1 \) and \(t_2 \) are terms in the same class then merge classes containing \(F(t_1) \) and \(F(t_2) \); repeat
4. If \(t_1 \neq t_2 \) is a literal in \(\phi \) and they belong to the same class then return unsat else return sat \(t_1 \) and \(t_2 \)
Decision procedure for Uninterpreted functions (UF)

Initial classes $\phi = (x_1 = x_2) \land (x_2 = x_3) \land (x_4 = x_5) \land (x_5 \neq x_1) \land (F(x_1) \neq F(x_3))$

Classes

$\{x_1\} \{x_2\}\{x_3\}\{x_4\}\{x_5\}\{F(x_1)\}\{F(x_3)\}$

$\{x_1, x_2, x_3\} \{x_4, x_5\}\{F(x_1)\}\{F(x_3)\}$

$\{x_1, x_2, x_3\} \{x_4, x_5\}\{F(x_1), F(x_3)\}$

Unsat
Difference Logic (conjunctive fragment)

A useful fragment of linear arithmetic

Σ_F: = {1,2,…, − }
Σ_P: = {<, ≤, =, ≠, >, ≥}

Literals are of the form x_1 − x_2 ≥ k, where ≥∈ {<, ≤, =, >, ≥}
x_1, x_2 are Integers or rational variables

Example: φ = (x − y = 5) ∧ (z − y ≥ 2) ∧ (z − x > 2) ∧ (w − x = 2) ∧ (z − w < 0)

Satisfiability problem: checking whether this formula is consistent
An Application: Job shop scheduling problem

Given a finite set of n jobs. Each job i of which consists of a chain of operations \((m_1^i, d_1^i), (m_2^i, d_2^i), \ldots\) There is a finite set of m machines \(M = \{m_1, m_2, \ldots, m_m\}\), each of which can handle at most one operation at a time.

The problem of finding a shortest schedule---allocation of machine time to jobs---can be formulated in DL.
Decision procedure for Difference logic

\[\phi = (x - y = 5) \land (z - y \geq 2) \land (z - x > 2) \land (w - x = 2) \land (z - w < 0) \]

Decision procedure:
Convert each literal (AF) to \(x_1 - x_2 \leq c \) form:
Decision procedure for Difference logic

\[\phi = (x - y = 5) \land (z - y \geq 2) \land (z - x > 2) \land (w - x = 2) \land (z - w < 0) \]

Decision procedure:
Convert each literal (AF) to \(x_1 - x_2 \leq c \) form:

\[\phi' = (x - y \leq 5) \land (y - x \leq -5) \land (y - z \leq -2) \land (x - z \leq -3) \land (w - x \leq 2) \land (x - w \leq -2) \land (z - w \leq -1) \]

For integer domain \((x_1 - x_2 < k)\) is replaced by \((x_1 - x_2 \leq k - 1)\)

How to check satisfiability or consistency of formula \(\phi'\)?
\[\phi' = (x - y \leq 5) \land (y - x \leq -5) \land (y - z \leq -2) \land (x - z \leq -3) \land (w - x \leq 2) \land (x - w \leq -2) \land (z - w \leq -1) \]

Construct a graph \(G_{\phi'} \) with edge from \(x \rightarrow^c y \) for each literal \(x - y \leq c \) in \(\phi' \)
Construct a graph $G_{\phi'}$ with edge from $x \rightarrow y$ for each literal $x - y \leq c$ in ϕ'

Proposition. ϕ is satisfiable iff $G_{\phi'}$ is negative cycle free.

Proof. (<=) If there is a negative cycle then

$(x - z \leq -3); (z - w \leq -1); (w - x \leq 2)$

adding all up: $(0 \leq -2)$ which is inconsistent.
Proposition. \(\phi \) is satisfiable iff \(G_{\phi'} \) is negative cycle free.

Proof. \((\leq)\) If there is a negative cycle then
\[
(x - z \leq -3); (z - w \leq -1); (w - x \leq 2)
\]
adding all up: \((0 \leq -2)\) which is inconsistent.

\(\Rightarrow\) Let us assume that there is no negative cycle. We will construct a satisfying solution \(\sigma: V \rightarrow \mathbb{Z} \)

Consider additional vertex \(o \) with \(o \rightarrow v \) edges for all \(v \)

For each variable \(v \) define solution as the shortest distance from \(o \) to \(v \) (be aware of negative distances): \(\sigma(v) = - \text{dist}(o, v) \)

Suppose FSOC, \(\sigma \) does not satisfy a literal \(x - y \leq k \) then
\[
-\text{dist}(o, x) + \text{dist}(o, y) > k
\]
\[
\text{dist}(o, y) > k + \text{dist}(o, x)
\]
\[
\text{dist}(o, y) > \text{dist}(x, y) + \text{dist}(o, x)
\]
violates definition of \(\text{dist}(o, y) \)!
Summary of DP for Difference Logic

• Satisfiability check for conjunctive fragment of DL can be performed using Bellman-Ford algorithm in time $O(|V| \cdot |E|)$
• Inconsistency/unsatisfiability explanations are negative cycles
• Amenable to incremental checks
Return to SMT

\[\phi \equiv (g(a) = c) \land (f(g(a)) \neq f(c) \lor g(a) = d) \land c \neq d \]

Several approaches, lazy approach:
- Abstract \(\phi \) to propositional form
- Feed to DPLL
- Use theory decision procedure to refine propositional formula to a guide SAT

\[\phi \equiv x_1 \land (\neg x_2 \lor x_3) \land \neg x_4 \]
• $\phi \equiv g(a) = c \land f(g(a)) \neq f(c) \lor g(a) = d \land c \neq d$

1 2 3 4

• send $\{1, \overline{2} \lor 3, \overline{4}\}$ to DPLL
• returns model $\{1, \overline{2}, \overline{4}\}$
• UF solver concretizes to $g(a) = c$, $f(g(a)) \neq f(c)$, $c \neq d$
• checks this as UNSAT
• send $\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2 \lor 4\}$ to DPLL
• returns model $\{1, 2, 3, \overline{4}\}$
• UF solver concretizes and finds this to be UNSAT
• send $\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2 \lor 4, \overline{1} \lor \overline{2} \lor \overline{3} \lor 4\}$ to DPLL
• returns UNSAT
Assignments

• Learn z3
 • https://ericpony.github.io/z3py-tutorial/guide-examples.htm

Readings

• Reading more about decision procedures
• Learn neural networks if you never used them