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Review: Boolean satisfiability problem

Given a well-formed boolean formula �, determine 
whether there exists a satisfying solution

We will assume � to be in conjunctive normal form (CNF)
literals: variable or its negation, e.g., �3, ¬�3
clause: disjunction (or) of literals, e.g.,  �1 ∨ �2 ∨ ¬�3  
CNF formula: conjunction (and) of clauses, 

e.g.,  �1 ∨ �2 ∨ ¬�3 ∧  ¬�2 ∨ �1 
A variable may appear positively or negatively in a clause



Review: Boolean satisfiability problem

Restatement: ∃� ∈ 푣�� � : � ⊨ �?

If the answer is ”No” then � is said to be unsatisfiable

SAT problem example: 

�: =  ¬�1 ∨ �2 ∧  ¬�3 ∨ �4 
∧  ¬�2 ∨ ¬�5 ∨ ¬�6 ∧  ¬�5 ∨ �6 
∧  �5 ∨ �7 ∧  �1 ∨ �6 ∨ ¬�7 



Review: SAT is NP-complete
SAT was the first problem shown to be NP-complete [Cook 71]

1. Essentially we don’t know better (in terms of asymptotic 
complexity) than naïve enumeration

2. A solver for SAT can be used to solve any other problem in the 
NP class with only polytime slowdown. i.e., makes a lot of sense 
to build SAT solvers

3. SAT/SMT solving is the cornerstone of many verification 
procedures

Stephen Cook, The complexity of theorem-proving procedures. In Proceedings of 
the third annual ACM symposium on theory of computing. STOC ‘71.



A simple greedy algorithm for SAT (GSAT)

for i =  1 to max-tries

 푣 := random truth assignment in val(X) 

for j = 1 to max-flips

if 푣 ⊨ � then return 푣

� ≔ variable in C such that flipping its value gives the largest 

increase in the number of clauses of C that are satisfied by 푣

푣 ≔ 푣 with the assignment to � flipped

return ∅

e.g., x1x2x3x4x5 = 00100 -> 00110

Input: Set of clauses C over X, parameters max-flips, max-tires

Output: A satisfying assignment for C, or ∅ if none found



GSAT is a stochastic local search (SLS) algorithm

Local search algorithms are usually incomplete: they cannot show unsatisfiability!

Limitation of this approach?

Image Source: Alan Mackworth



SAT Solving with backtracking 

First, assume x1 is True, and substitute

But we still don’t know if it is satisfiable!

Sysmetically enumerating all possibilities!�: =  ¬�1 ∨ �2 ∧  ¬�3 ∨ �4 
∧  ¬�2 ∨ ¬�5 ∨ ¬�6 ∧  ¬�5 ∨ �6 
∧  �5 ∨ ¬�6∨ ¬�7 ∧  �1 ∨ �6 ∨ ¬�7 

�2 ∧  ¬�3 ∨ �4 ∧  ¬�2 ∨ ¬�5 ∨ ¬�6 ∧  ¬�5 ∨ �6 ∧  �5 ∨ �6∨ ¬�7 

Because (True ∨ A) = True, (False ∨ A) = A, we can simplify � and it becomes:



SAT Solving with backtracking 

After assuming x1 is True and we get:

�2 ∧  ¬�3 ∨ �4 ∧  ¬�2 ∨ ¬�5 ∨ ¬�6 ∧  ¬�5 ∨ �6 ∧  �5 ∨ ¬�6∨ ¬�7 

Search tree



SAT Solving with backtracking 
Then, let’s substitute x2 = True in

 ¬�3 ∨ �4 ∧  ¬�5 ∨ ¬�6 ∧  ¬�5 ∨ �6 ∧  �5 ∨ ¬�6∨ ¬�7 
� is still unresolved:

�2 ∧  ¬�3 ∨ �4 ∧  ¬�2 ∨ ¬�5 ∨ ¬�6 ∧  ¬�5 ∨ �6 ∧  �5 ∨ ¬�6∨ ¬�7 



SAT Solving with backtracking 
Keep setting and substituting variables

Set x3 = True

 ¬�3 ∨ �4 ∧  ¬�5 ∨ ¬�6 ∧  ¬�5 ∨ �6 ∧  �5 ∨ ¬�6∨ ¬�7 

�4 ∧  ¬�5 ∨ ¬�6 ∧  ¬�5 ∨ �6 ∧  �5 ∨ ¬�6∨ ¬�7 



SAT Solving with backtracking 
Keep setting variables

�4 ∧  ¬�5 ∨ ¬�6 ∧  ¬�5 ∨ �6 ∧  �5 ∨ ¬�6∨ ¬�7 

 ¬�5 ∨ ¬�6 ∧  ¬�5 ∨ �6 ∧  �5 ∨ ¬�6∨ ¬�7 Set x4 = True



SAT Solving with backtracking 
Keep setting variables

 ¬�5 ∨ ¬�6 ∧  ¬�5 ∨ �6 ∧  �5 ∨ ¬�6∨ ¬�7 Set x5 = True

¬�6 ∧ �6 ∧  ¬�6∨ ¬�7 Set x6 = True

Conflict, � evaluates to False!



SAT Solving with backtracking 

 ¬�5 ∨ ¬�6 ∧  ¬�5 ∨ �6 ∧  �5 ∨ �6∨ ¬�7 

Set x6 = True does not work. Backtrack and try a different x6.

Setting x6 = False also does not work. Backtrack one-level up and try x5 

¬�6 ∧ �6 ∧  �6∨ ¬�7 



SAT Solving with backtracking 
 ¬�5 ∨ ¬�6 ∧  ¬�5 ∨ �6 ∧  �5 ∨ �6∨ ¬�7 

Now set x5 = False ¬�6∨ ¬�7

Now set x6 = True

Now set x7 = True, does not work.
Set  x7= False,  � is now true!

¬�7



SAT Solving with backtracking

function BackTracking(�)
    if � is true then return true;
    if � is false then return false;
    // � is unresolved, need to decide on a literal
    l ← choose-literal(�);
    return (BackTracking(substitute l in � with true) or      
            BackTracking(substitute l in � with false));



Search tree can be large!

Each variable is tested with two cases (true and false). 
Complexity exponential to the number of variables.

To prove unsatifiability, the entire tree must be visited.

We need to reduce the number of variables that 
requires decision (try both true and false cases).



Davis Putnam Logemann Loveland Algorithm 
(DPLL) 1962
Backtracking with a few transformation rules to improve efficiency 
(reduce decision variables and search tree depth)

Transform the given formula � by applying a sequence of satisfiability 
preserving rules 

If final result has an empty clause then unsatisfiable

if final result has no clauses then the formula is satisfiable



Transform 1: Unit propagation

A clause has a single literal

� ≡ … ∧ … ∧ � ∧ … ∧ …
What choice do we really have? 

� ≡ … ∧  �1 ∨ ¬� ∨ �2 ∧ � ∧ … ∧  ¬�3 ∨ ¬� ∨ �1 …



Transform 1: Unit propagation

A clause has a single literal

� ≡ … ∧ … ∧ � ∧ … ∧ …
All clauses mentioning ¬� have this literal deleted

All clauses mentioning � are deleted

�′ ≡ … ∧  �1 ∨ �2 ∧ … ∧  ¬�3 ∨ �1 … 

� and �′ are equisatisfiable



Transform 1: Unit propagation

By deleting ¬�, we have an “empty clause” which means � is 
unsatisifiable

� ≡ … ∧ … ∧ … ∧   ∧ …

How about

� ≡ … ∧ … ∧ � ∧ … ∧  ¬� ∧ …



Transform 2: Pure literal

A literal appears only positively (or negatively) in �

� ≡ … ∧  �1 ∨ ¬� ∨ �2 ∧  �4 ∨ ¬� ∧ … ∧  ¬�3 ∨ ¬� ∨ �1 …
� does not appear anywhere

 

Makes sense to set � = 0 and remove all occurrences of ¬�



Transform 2: Pure literal

A literal appears only positively (or negatively) in �

� ≡ … ∧  �1 ∨ ¬� ∨ �2 ∧  �4 ∨ ¬� ∧ … ∧  ¬�3 ∨ ¬� ∨ �1 ∧  ¬�3 ∨ �4 …
� does not appear anywhere

 

Makes sense to set � = 0 and remove all occurrences of ¬�

�′ ≡ … ∧ … ∧ … ∧  ¬�3 ∨ �4 … [� = 0]

� and �′ are equisatisfiable



DPLL Algorithm: backtracking with unit-
propagation and pure-literal assignment
function DPLL(�)
    � ← unit-propagate(�);
    � ← pure-literal-assign(�);
    // stopping conditions:
    if � is empty then return true;
    if � contains an empty clause then return false;
    // DPLL procedure:
    l ← choose-literal(�);
    return DPLL(� ∧ {l}) or DPLL(� ∧ {¬l});



DPLL Algorithm example

�: =  ¬�1 ∨ �2 ∧  ¬�3 ∨ �4 
∧  ¬�2 ∨ ¬�5 ∨ ¬�6 ∧  ¬�5 ∨ �6 
∧  �5 ∨ ¬�6∨ ¬�7 ∧  �1 ∨ �6 ∨ ¬�7 

Possible to apply unit propagation?

Possible to apply pure literal assignment?

function DPLL(�)
    unit-propagate
    pure-literal-assign
    check-stopping-conditions
    l ← choose-literal(�);
    return (DPLL(� ∧ {l}) or     
           DPLL(� ∧ {¬l}));

We can essentially remove x3 and x4from the search tree!



DPLL Algorithm example

�: =  ¬�1 ∨ �2 ∧  ¬�3 ∨ �4 
∧  ¬�2 ∨ ¬�5 ∨ ¬�6 ∧  ¬�5 ∨ �6 
∧  �5 ∨ ¬�6∨ ¬�7 ∧  �1 ∨ �6 ∨ �7 

We decide to choose x1 and search the 
two cases

function DPLL(�)
    unit-propagate
    pure-literal-assign
    check-stopping-conditions
    l ← choose-literal(�);
    return (DPLL(� ∧ {l}) or     
           DPLL(� ∧ {¬l}));



DPLL Algorithm example

 ¬�1 ∨ �2 ∧  ¬�2 ∨ ¬�5 ∨ ¬�6 ∧  ¬�5 ∨ �6 ∧  �5 ∨ ¬�6∨ ¬�7 
∧  �1 ∨ �6 ∨ �7 ∧ �1

Possible to apply unit propagation?  Always Yes!



DPLL Algorithm example

 ¬�1 ∨ �2 ∧  ¬�2 ∨ ¬�5 ∨ ¬�6 ∧  ¬�5 ∨ �6 ∧  �5 ∨ ¬�6∨ ¬�7 
∧  �1 ∨ �6 ∨ �7 ∧ �1

Possible to apply unit propagation? Always Yes!

�2 ∧  ¬�2 ∨ ¬�5 ∨ ¬�6 ∧  ¬�5 ∨ �6 ∧  �5 ∨ ¬�6∨ ¬�7 

Possible to apply unit propagation again? 



DPLL Algorithm example

 ¬�1 ∨ �2 ∧  ¬�2 ∨ ¬�5 ∨ ¬�6 ∧  ¬�5 ∨ �6 ∧  �5 ∨ ¬�6∨ ¬�7 
∧  �1 ∨ �6 ∨ �7 ∧ �1

Possible to apply unit propagation? Always Yes!

�2 ∧  ¬�2 ∨ ¬�5 ∨ ¬�6 ∧  ¬�5 ∨ �6 ∧  �5 ∨ ¬�6∨ ¬�7 

Possible to apply unit propagation again? 

 ¬�5 ∨ ¬�6 ∧  ¬�5 ∨ �6 ∧  �5 ∨ ¬�6∨ ¬�7 

Possible to apply unit propagation again? 



DPLL Algorithm example

 ¬�5 ∨ ¬�6 ∧  ¬�5 ∨ �6 ∧  �5 ∨ ¬�6∨ ¬�7 

Possible to apply pure-literal assigment?



DPLL Algorithm example

 ¬�5 ∨ ¬�6 ∧  ¬�5 ∨ �6 ∧  �5 ∨ ¬�6∨ ¬�7 

Possible to apply pure-literal assigment?

 ¬�5 ∨ ¬�6 ∧  ¬�5 ∨ �6 

Possible to apply pure-literal assigment again?



DPLL Algorithm example

 ¬�5 ∨ ¬�6 ∧  ¬�5 ∨ �6 ∧  �5 ∨ ¬�6∨ ¬�7 

Possible to apply pure-literal assignment?

 ¬�5 ∨ ¬�6 ∧  ¬�5 ∨ �6 

Possible to apply pure-literal assignment again?

Empty clause left, we are done (return true).

With unit-propagation and pure-literal assignment, search process is 
much facster!



DPLL Algorithm

function DPLL(�)
    � ← unit-propagate(�);
    � ← pure-literal-assign(�);
    // stopping conditions:
    if � is empty then return true;
    if � contains an empty clause then return false;
    l ← choose-literal(�); // We decided to choose x1 

    return DPLL(� ∧ {l}) or DPLL(� ∧ {¬l});

First condition returns true. No need to execute the second DPLL call.



DPLL Algorithm

function DPLL(�)
    � ← unit-propagate(�);
    � ← pure-literal-assign(�);
    // stopping conditions:
    if � is empty then return true;
    if � contains an empty clause then return false;
    l ← choose-literal(�); // We decided to choose x1 

    return DPLL(� ∧ {l}) or DPLL(� ∧ {¬l});
The order of choosing literals is important - it usually defines the size of the 
search tree!



DPLL Algorithm: choosing literals

The order of choosing literals is important - it usually defines the size of the 
search tree!

Image from https://www.diag.uniroma1.it/~liberato/ar/dpll/dpll.html



DPLL Algorithm: choosing literals

Proving unsatifiability is even harder. To explore the search tree faster, we 
want to find conflicts earlier. Roughly speaking, more clauses lead to more 
conflicts.



Modern DPLL with Conflict-driven Clause Learning

What can we do if we find a conflict in DPLL?

Let’s say we set �1=1, �3=0, �5=1, leading to a conflict in �

Then we know that  �1 ∧ ¬�3 ∧ �5  => conflict

No conflict => ¬ �1 ∧ ¬�3 ∧ �5  = ¬�1 ∨ �3 ∨ ¬�5  

Then we know � ∧  ¬�1 ∨ �3 ∨ ¬�5   is equisatisfiable. The 
added clause helps to reduce search tree size.

if A => B, then
(not B) => (not A) 

Checkout “Handbook of Satisfiability” for more details



Assignments

• HW1 (due Feb 11th)
• Install Z3

• Keep thinking about class projects! Form teams (max 2 people).

• Next lecture: SMT solving


