Lecture 3: Solving Boolean Satisfiability

Huan Zhang
huan@huan-zhang.com

Review: Boolean satisfiability problem

Given a well-formed boolean formula α, determine whether there exists a satisfying solution

We will assume α to be in conjunctive normal form (CNF)
literals: variable or its negation, e.g., $x_{3}, \neg x_{3}$
clause: disjunction (or) of literals, e.g., ($x_{1} \vee x_{2} \vee \neg x_{3}$)
CNF formula: conjunction (and) of clauses,

$$
\text { e.g., }\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee x_{1}\right)
$$

A variable may appear positively or negatively in a clause

Review: Boolean satisfiability problem

Restatement: $\exists \boldsymbol{x} \in \operatorname{val}(X): \boldsymbol{x} \vDash \alpha$?
If the answer is "No" then α is said to be unsatisfiable

SAT problem example:

$$
\begin{aligned}
& \alpha:=\left(\neg x_{1} \vee x_{2}\right) \wedge\left(\neg x_{3} \vee x_{4}\right) \\
& \wedge\left(\neg x_{2} \vee \neg x_{5} \vee \neg x_{6}\right) \wedge\left(\neg x_{5} \vee x_{6}\right) \\
& \wedge\left(x_{5} \vee x_{7}\right) \wedge\left(x_{1} \vee x_{6} \vee \neg x_{7}\right)
\end{aligned}
$$

Review: SAT is NP-complete

SAT was the first problem shown to be NP-complete [Cook 71]

1. Essentially we don't know better (in terms of asymptotic complexity) than naïve enumeration
2. A solver for SAT can be used to solve any other problem in the NP class with only polytime slowdown. i.e., makes a lot of sense to build SAT solvers
3. SAT/SMT solving is the cornerstone of many verification procedures

Stephen Cook, The complexity of theorem-proving procedures. In Proceedings of
the third annual ACM symposium on theory of computing. STOC ' 71 .

A simple greedy algorithm for SAT (GSAT)

Input: Set of clauses C over X, parameters max-flips, max-tires
Output: A satisfying assignment for C, or \varnothing if none found

```
for i= 1 to max-tries
```

$v:=$ random truth assignment in $\operatorname{val}(X)$
for $\mathrm{j}=1$ to max-flips
if $v \vDash C$ then return v
$p:=$ variable in C such that flipping its value gives the largest increase in the number of clauses of C that are satisfied by v

$$
v:=v \text { with the assignment to } p \text { flipped }
$$

$$
\text { e.g., } x_{1} x_{2} x_{3} x_{4} x_{5}=00100->00110
$$

return \emptyset

GSAT is a stochastic local search (SLS) algorithm

Limitation of this approach?
Local search algorithms are usually incomplete: they cannot show unsatisfiability!

SAT Solving with backtracking

Sysmetically enumerating all possibilities!

$$
\begin{aligned}
& \alpha:=\left(\neg x_{1} \vee x_{2}\right) \wedge\left(\neg x_{3} \vee x_{4}\right) \\
& \wedge\left(\neg x_{2} \vee \neg x_{5} \vee \neg x_{6}\right) \wedge\left(\neg x_{5} \vee x_{6}\right) \\
& \wedge\left(x_{5} \vee \neg x_{6} \vee \neg x_{7}\right) \wedge\left(x_{1} \vee x_{6} \vee x_{1}\right)
\end{aligned}
$$

First, assume x_{1} is True, and substitute

Because (True $\vee \mathrm{A}$) $=$ True, (False $\vee \mathrm{A})=\mathrm{A}$, we can simplify α and it becomes:

$$
x_{2} \wedge\left(\neg x_{3} \vee x_{4}\right) \wedge\left(\neg x_{2} \vee \neg x_{5} \vee \neg x_{6}\right) \wedge\left(\neg x_{5} \vee x_{6}\right) \wedge\left(x_{5} \vee x_{6} \vee \neg x_{7}\right)
$$

But we still don't know if it is satisfiable!

SAT Solving with backtracking

After assuming x_{1} is True and we get:

$$
x_{2} \wedge\left(\neg x_{3} \vee x_{4}\right) \wedge\left(\neg x_{2} \vee \neg x_{5} \vee \neg x_{6}\right) \wedge\left(\neg x_{5} \vee x_{6}\right) \wedge\left(x_{5} \vee \neg x_{6} \vee \neg x_{7}\right)
$$

Search tree

SAT Solving with backtracking

Then, let's substitute $\mathrm{x}_{2}=$ True in
$x_{2} \wedge\left(\neg x_{3} \vee x_{4}\right) \wedge\left(\neg x_{2} \vee \neg x_{5} \vee \neg x_{6}\right) \wedge\left(\neg x_{5} \vee x_{6}\right) \wedge\left(x_{5} \vee \neg x_{6} \vee \neg x_{7}\right)$
α is still unresolved:

$$
\left(\neg x_{3} \vee x_{4}\right) \wedge\left(\neg x_{5} \vee \neg x_{6}\right) \wedge\left(\neg x_{5} \vee x_{6}\right) \wedge\left(x_{5} \vee \neg x_{6} \vee \neg x_{7}\right)
$$

SAT Solving with backtracking

Keep setting and substituting variables

$$
\left(\neg x_{3} \vee x_{4}\right) \wedge\left(\neg x_{5} \vee \neg x_{6}\right) \wedge\left(\neg x_{5} \vee x_{6}\right) \wedge\left(x_{5} \vee \neg x_{6} \vee \neg x_{7}\right)
$$

Set $x_{3}=$ True

$$
x_{4} \wedge\left(\neg x_{5} \vee \neg x_{6}\right) \wedge\left(\neg x_{5} \vee x_{6}\right) \wedge\left(x_{5} \vee \neg x_{6} \vee \neg x_{7}\right)
$$

SAT Solving with backtracking

Keep setting variables

$$
x_{4} \wedge\left(\neg x_{5} \vee \neg x_{6}\right) \wedge\left(\neg x_{5} \vee x_{6}\right) \wedge\left(x_{5} \vee \neg x_{6} \vee \neg x_{7}\right)
$$

Set $x_{4}=$ True

$$
\left(\neg x_{5} \vee \neg x_{6}\right) \wedge\left(\neg x_{5} \vee x_{6}\right) \wedge\left(x_{5} \vee \neg x_{6} \vee \neg x_{7}\right)
$$

SAT Solving with backtracking

Keep setting variables
Set $x_{5}=$ True

$$
\left(\neg x_{5} \vee \neg x_{6}\right) \wedge\left(\neg x_{5} \vee x_{6}\right) \wedge\left(x_{5} \vee \neg x_{6} \vee \neg x_{7}\right)
$$

Set $x_{6}=$ True

$$
\neg x_{6} \wedge x_{6} \wedge\left(\neg x_{6} \vee \neg x_{7}\right)
$$

Conflict, α evaluates to False!

SAT Solving with backtracking

$$
\neg x_{6} \wedge x_{6} \wedge\left(x_{6} \vee \neg x_{7}\right)
$$

Set $x_{6}=$ True does not work. Backtrack and try a different x_{6}.
Setting $\mathrm{x}_{6}=$ False also does not work. Backtrack one-level up and try x_{5}

$$
\left(\neg x_{5} \vee \neg x_{6}\right) \wedge\left(\neg x_{5} \vee x_{6}\right) \wedge\left(x_{5} \vee x_{6} \vee \neg x_{7}\right)
$$

SAT Solving with backtracking

$$
\left(\neg x_{5} \vee \neg x_{6}\right) \wedge\left(\neg x_{5} \vee x_{6}\right) \wedge\left(x_{5} \vee x_{6} \vee \neg x_{7}\right)
$$

Now set $x_{5}=$ False

$$
\neg x_{6} \vee \neg x_{7}
$$

Now set $x_{6}=$ True $\neg x_{7}$

Now set $x_{7}=$ True, does not work.
Set $x_{7}=$ False, α is now true!

SAT Solving with backtracking

function BackTracking (α)
if α is true then return true;
if α is false then return false;
// α is unresolved, need to decide on a literal
$1 \leftarrow$ choose-literal (α);
return (BackTracking(substitute l in α with true) or BackTracking(substitute l in α with false));

Search tree can be large!

Each variable is tested with two cases (true and false). Complexity exponential to the number of variables.

To prove unsatifiability, the entire tree must be visited.
We need to reduce the number of variables that requires decision (try both true and false cases).

Davis Putnam Logemann Loveland Algorithm (DPLL) 1962

Backtracking with a few transformation rules to improve efficiency (reduce decision variables and search tree depth)

Transform the given formula α by applying a sequence of satisfiability preserving rules

If final result has an empty clause then unsatisfiable if final result has no clauses then the formula is satisfiable

Transform 1: Unit propagation

A clause has a single literal

$$
\alpha \equiv \ldots \wedge \ldots \wedge p \wedge \ldots \wedge \ldots
$$

What choice do we really have?

$$
\alpha \equiv \ldots \wedge\left(x_{1} \vee \neg n \vee x_{2}\right) \wedge R \wedge \ldots \wedge\left(\neg x_{3} \vee \neg_{\wedge} \vee x_{1}\right) \ldots
$$

Transform 1: Unit propagation

A clause has a single literal

$$
\alpha \equiv \ldots \wedge \ldots \wedge p \wedge \ldots \wedge \ldots
$$

All clauses mentioning $\neg p$ have this literal deleted All clauses mentioning p are deleted

$$
\alpha^{\prime} \equiv \ldots \wedge\left(x_{1} \vee x_{2}\right) \wedge \ldots \wedge\left(\neg x_{3} \vee x_{1}\right) \ldots
$$

α and α^{\prime} are equisatisfiable

Transform 1: Unit propagation

How about

$$
\alpha \equiv \ldots \wedge \ldots \wedge p \wedge \ldots \wedge(\neg p) \wedge \ldots
$$

By deleting $\neg p$, we have an "empty clause" which means α is unsatisifiable

$$
\alpha \equiv \ldots \wedge \ldots \wedge \ldots \wedge() \wedge \ldots
$$

Transform 2: Pure literal

A literal appears only positively (or negatively) in α

$$
\alpha \equiv \ldots \wedge\left(x_{1} \vee \neg p \vee x_{2}\right) \wedge\left(x_{4} \vee \neg p\right) \wedge \ldots \wedge\left(\neg x_{3} \vee \neg p \vee x_{1}\right) \ldots
$$ p does not appear anywhere

Makes sense to set $p=0$ and remove all occurrences of $\neg p$

Transform 2: Pure literal

A literal appears only positively (or negatively) in α

$$
\alpha \equiv \ldots \wedge\left(x_{1} \vee \neg p \vee x_{2}\right) \wedge\left(x_{4} \vee \neg p\right) \wedge \ldots \wedge\left(\neg x_{3} \vee \neg p \vee x_{1}\right) \wedge\left(\neg x_{3} \vee x_{4}\right) \ldots
$$ p does not appear anywhere

Makes sense to set $p=0$ and remove all occurrences of $\neg p$

$$
\alpha^{\prime} \equiv \ldots \wedge \ldots \wedge \ldots \wedge\left(\neg x_{3} \vee x_{4}\right) \ldots[p=0]
$$

α and α^{\prime} are equisatisfiable

DPLL Algorithm: backtracking with unitpropagation and pure-literal assignment

function DPLL (α)

```
\alpha
\alpha
// stopping conditions:
if \alpha is empty then return true;
if }\alpha\mathrm{ contains an empty clause then return false;
// DPLL procedure:
l }\leftarrow\mathrm{ choose-literal( }\alpha\mathrm{ );
return DPLL( }\alpha\wedge{l}) or DPLL( \alpha^ {\negl})
```


DPLL Algorithm example

$$
\begin{aligned}
& \alpha:=\left(\neg x_{1} \vee x_{2}\right) \wedge\left(\neg x_{3} \vee x_{4}\right) \\
& \wedge\left(\neg x_{2} \vee \neg x_{5} \vee \neg x_{6}\right) \wedge\left(\neg x_{5} \vee x_{6}\right) \\
& \wedge\left(x_{5} \vee \neg x_{6} \vee \neg x_{7}\right) \wedge\left(x_{1} \vee x_{6} \vee \neg x_{7}\right)
\end{aligned}
$$

Possible to apply unit propagation?
Possible to apply pure literal assignment?

We can essentially remove x_{3} and x_{4} from the search tree!

DPLL Algorithm example

$$
\begin{aligned}
& \alpha:=\left(\neg x_{1} \vee x_{2}\right) \wedge\left(\neg x_{3} \vee x_{4}\right) \\
& \wedge\left(\neg x_{2} \vee \neg x_{5} \vee \neg x_{6}\right) \wedge\left(\neg x_{5} \vee x_{6}\right) \\
& \wedge\left(x_{5} \vee \neg x_{6} \vee \neg x_{7}\right) \wedge\left(x_{1} \vee x_{6} \vee x_{7}\right)
\end{aligned}
$$

We decide to choose x_{1} and search the two cases
function DPLL (α)
unit-propagate
pure-literal-assign
check-stopping-conditions
$l \leftarrow$ choose-literal (α);
$\begin{array}{ll}\text { return } & (\operatorname{DPLL}(\alpha \wedge\{l\}) \text { or } \\ & \operatorname{DPLL}(\alpha \wedge\{\neg l\})) ;\end{array}$

DPLL Algorithm example

$$
\begin{aligned}
& \left(\neg x_{1} \vee x_{2}\right) \wedge\left(\neg x_{2} \vee \neg x_{5} \vee \neg x_{6}\right) \wedge\left(\neg x_{5} \vee x_{6}\right) \wedge\left(x_{5} \vee \neg x_{6} \vee \neg x_{7}\right) \\
& \wedge\left(x_{1} \vee x_{6} \vee x_{7}\right) \wedge x_{1}
\end{aligned}
$$

Possible to apply unit propagation? Always Yes!

DPLL Algorithm example

$$
\begin{aligned}
& \left(\neg x_{1} \vee x_{2}\right) \wedge\left(\neg x_{2} \vee \neg x_{5} \vee \neg x_{6}\right) \wedge\left(\neg x_{5} \vee x_{6}\right) \wedge\left(x_{5} \vee \neg x_{6} \vee \neg x_{7}\right) \\
& \wedge\left(x_{1} \vee x_{6} \vee x_{7}\right) \wedge x_{1}
\end{aligned}
$$

Possible to apply unit propagation? Always Yes!

$$
x_{2} \wedge\left(\neg x_{2} \vee \neg x_{5} \vee \neg x_{6}\right) \wedge\left(\neg x_{5} \vee x_{6}\right) \wedge\left(x_{5} \vee \neg x_{6} \vee \neg x_{7}\right)
$$

Possible to apply unit propagation again?

DPLL Algorithm example

$$
\begin{aligned}
& \left(\neg x_{1} \vee x_{2}\right) \wedge\left(\neg x_{2} \vee \neg x_{5} \vee \neg x_{6}\right) \wedge\left(\neg x_{5} \vee x_{6}\right) \wedge\left(x_{5} \vee \neg x_{6} \vee \neg x_{7}\right) \\
& \wedge\left(x_{1} \vee x_{6} \vee x_{7}\right) \wedge x_{1}
\end{aligned}
$$

Possible to apply unit propagation? Always Yes!

$$
x_{2} \wedge\left(\neg x_{2} \vee \neg x_{5} \vee \neg x_{6}\right) \wedge\left(\neg x_{5} \vee x_{6}\right) \wedge\left(x_{5} \vee \neg x_{6} \vee \neg x_{7}\right)
$$

Possible to apply unit propagation again?

$$
\left(\neg x_{5} \vee \neg x_{6}\right) \wedge\left(\neg x_{5} \vee x_{6}\right) \wedge\left(x_{5} \vee \neg x_{6} \vee \neg x_{7}\right)
$$

Possible to apply unit propagation again?

DPLL Algorithm example

$$
\left(\neg x_{5} \vee \neg x_{6}\right) \wedge\left(\neg x_{5} \vee x_{6}\right) \wedge\left(x_{5} \vee \neg x_{6} \vee \neg x_{7}\right)
$$

Possible to apply pure-literal assigment?

DPLL Algorithm example

$$
\left(\neg x_{5} \vee \neg x_{6}\right) \wedge\left(\neg x_{5} \vee x_{6}\right) \wedge\left(x_{5} \vee \neg x_{6} \vee \neg x_{7}\right)
$$

Possible to apply pure-literal assigment?

$$
\left(\neg x_{5} \vee \neg x_{6}\right) \wedge\left(\neg x_{5} \vee x_{6}\right)
$$

Possible to apply pure-literal assigment again?

DPLL Algorithm example

$$
\left(\neg x_{5} \vee \neg x_{6}\right) \wedge\left(\neg x_{5} \vee x_{6}\right) \wedge\left(x_{5} \vee \neg x_{6} \vee \neg x_{7}\right)
$$

Possible to apply pure-literal assignment?

$$
\left(\neg x_{5} \vee \neg x_{6}\right) \wedge\left(\neg x_{5} \vee x_{6}\right)
$$

Possible to apply pure-literal assignment again?

Empty clause left, we are done (return true).
With unit-propagation and pure-literal assignment, search process is much facster!

DPLL Algorithm

function DPLL (α)

```
\alpha
\alpha}\leftarrow\mathrm{ pure-literal-assign( }\alpha)
// stopping conditions:
if \alpha is empty then return true;
if }\alpha\mathrm{ contains an empty clause then return false;
l }\leftarrow\mathrm{ choose-literal( }\alpha\mathrm{ ); // We decided to choose x 
return DPLL( }\alpha\wedge {l}) or DPLL( \alpha^ {\negl})
```

First condition returns true. No need to execute the second DPLL call.

DPLL Algorithm

function DPLL (α)

```
\alpha
\alpha}\leftarrow\mathrm{ pure-literal-assign( }\alpha)
// stopping conditions:
if \alpha is empty then return true;
if }\alpha\mathrm{ contains an empty clause then return false;
l }\leftarrow\mathrm{ choose-literal( }\alpha\mathrm{ ); // We decided to choose x (1
return DPLL( }\alpha\wedge {l}) or DPLL( \alpha ^ {\negl})
```

The order of choosing literals is important - it usually defines the size of the search tree!

DPLL Algorithm: choosing literals

The order of choosing literals is important - it usually defines the size of the search tree!

DPLL Algorithm: choosing literals

Proving unsatifiability is even harder. To explore the search tree faster, we want to find conflicts earlier. Roughly speaking, more clauses lead to more conflicts.

Modern DPLL with Conflict-driven Clause Learning

What can we do if we find a conflict in DPLL?

Let's say we set $x_{1}=1, x_{3}=0, x_{5}=1$, leading to a conflict in α
Then we know that $\left(x_{1} \wedge \neg x_{3} \wedge x_{5}\right)$ => conflict
if $A=>B$, then
$(\operatorname{not} B)=>(\operatorname{not} A)$

No conflict $=>\neg\left(x_{1} \wedge \neg x_{3} \wedge x_{5}\right)=\neg x_{1} \vee x_{3} \vee \neg x_{5}$
Then we know $\alpha \wedge\left(\neg x_{1} \vee x_{3} \vee \neg x_{5}\right)$ is equisatisfiable. The added clause helps to reduce search tree size.

Assignments

- HW1 (due Feb 11 ${ }^{\text {th }}$)
- Install Z3
- Keep thinking about class projects! Form teams (max 2 people).
- Next lecture: SMT solving

