Lecture 3: Satisfiability

Huan Zhang
huan@huan-zhang.com

Readings

- Chapter 7
- Appendix C

Outline

- Review on the proofs of inductive invariance properties
- Propositional Satisfiability problem
- Normal forms
- DPLL algorithm (next lecture)

Dijkstra's mutual exclusion Algorithm ['74]

N processes: $0,1, \ldots, \mathrm{~N}-1$
state of each process j is a single integer variable $x[j] \in\{0,1,2, K-1\}$, where $K>N$ The "update" action is defined differently for PO vs. others
$P_{0} \quad$ if $x[0]=x[N-1] \quad$ then $x[0]:=x[0]+1 \bmod K$
$P_{j}, \mathrm{j}>0 \quad$ if $\mathrm{x}[\mathrm{j}] \neq \mathrm{x}[\mathrm{j}-1] \quad$ then $\mathrm{x}[\mathrm{j}]:=\mathrm{x}[\mathrm{j}-1]$
p_{i} has TOKEN if and only if the blue conditional is true

Dijkstra's mutual exclusion Algorithm ['74]

N processes: $0,1, \ldots, N-1$
state of each process j is a single integer variable $x[j] \in\{0,1,2, K-1\}$, where $K>N$ The "update" action is defined differently for PO vs. others
$P_{0} \quad$ if $\mathrm{x}[0]=\mathrm{x}[\mathrm{N}-1] \quad$ then $\mathrm{x}[0]:=\mathrm{x}[0]+1 \bmod \mathrm{~K}$
$P_{j}, \mathrm{j}>0 \quad$ if $\mathrm{x}[\mathrm{j}] \neq \mathrm{x}[\mathrm{j}-1] \quad$ then $\mathrm{x}[\mathrm{j}]:=\mathrm{x}[\mathrm{j}-1]$
p_{i} has TOKEN if and only if the blue conditional is true

A language for specifying automata (IOA)

 automaton DijkstraTR(N:Nat, K:Nat), where K > N type ID: enumeration [0,..., N-1] type Val: enumeration [0,..., K-1] actionsupdate(i:ID)
variables
$\mathrm{x}:[$ ID -> Val] initially forall $i: I D \mathrm{x}[\mathrm{i}]=0$
transitions

$$
\begin{aligned}
& \text { update(i:ID) } \\
& \text { pre } i=0 \wedge x[i]=x[N-1] \\
& \text { eff } x[i]:=(x[i]+1) \% \text { K }
\end{aligned}
$$

```
update(i:ID)
pre i>0 /\x[i] ~=x[i-1]
    eff x[i]:= x[i-1]
```

Automaton $\mathcal{A}=\langle X, \Theta, A, \mathcal{D}\rangle$

Reachable states and invariants

A state \boldsymbol{u} is reachable if there exists an execution α such that α.lstate $=\boldsymbol{u}$
$\operatorname{Reach}_{\mathcal{A}}(\Theta)$: set of states reachable from Θ by automaton \mathcal{A}

An invariant is a set of states I such that $\operatorname{Reach}_{\mathcal{A}} \subseteq I$

Proving invariants by induction (Chapter 7)

Theorem 7.1. Given a automaton $\mathcal{A}=\langle X, \Theta, A, \mathcal{D}\rangle$ and a set of states $I \subseteq \operatorname{val}(X)$ if:

- (Start condition) for any $\boldsymbol{x} \in \Theta$ implies $\boldsymbol{x} \in I$, and
- (Transition closure) for any $\boldsymbol{x} \rightarrow{ }_{a} \boldsymbol{x}^{\prime}$ and $\boldsymbol{x} \in I$ implies $\boldsymbol{x}^{\prime} \in I$
then I is an (inductive) invariant of \mathcal{A}. That is $\operatorname{Reach}_{\mathcal{A}}(\Theta) \subseteq I$.

Proving invariants by induction for Dijkstra

Theorem 7.1. Given a automaton $\mathcal{A}=\langle X, \Theta, A, \mathcal{D}\rangle$ and a set of states $I \subseteq \operatorname{val}(X)$ if:

- (Start condition) for any $x \in \Theta$ implies $x \in I$, and
- (Transition closure) for any $x \rightarrow{ }_{a} x^{\prime}$ and $x \in I$ implies $x^{\prime} \in I$
then I is an (inductive) invariant of \mathcal{A}. That is $\operatorname{Reach}_{\mathcal{A}}(\Theta) \subseteq I$.
- I_{1} : "Exactly one process has the token".
(Start condition): Fix a $\boldsymbol{x} \in \Theta . \boldsymbol{x} \vDash \forall i \boldsymbol{x}\left\lceil x[i]=0\right.$ therefore $\boldsymbol{x} \vDash I_{1}$
(Transition closure): Fix a $\boldsymbol{x} \rightarrow{ }_{a} \boldsymbol{x}^{\prime}$ such that $\boldsymbol{x} \in I$.
Two cases to consider.

1. If $a=$ update (0) then
a) since $\boldsymbol{x} \vDash \operatorname{Pre}($ update(0)) it follows that $\boldsymbol{x}\lceil x[0]=\boldsymbol{x}\lceil x[N-1]$
b) since $\boldsymbol{x} \vDash I_{1}$ it follows that $\forall i>0 \boldsymbol{x}\lceil x[i]=\boldsymbol{x}\lceil x[i-1]$
c) $\boldsymbol{x}^{\prime}\left\lceil x[0] \neq \boldsymbol{x}^{\prime}\lceil x[N-1] \quad\right.$ by applying (a) and $E f f($ update(0)) to \boldsymbol{x}
d) $\boldsymbol{x}^{\prime} \mid x[1] \neq \boldsymbol{x}^{\prime}\lceil x[0] \quad$ by applying (b) and $E f f($ update (0)) to \boldsymbol{x}
e) $\forall i>1 \boldsymbol{x}^{\prime}\left\lceil x[i]=\boldsymbol{x}^{\prime}\lceil x[i-1]\right.$ by applying (b) and Eff(update(0)) to \boldsymbol{x} Therefore $\boldsymbol{x}^{\prime} \vDash I$.
2. If $a=$ update(i), $\mathrm{i}>0$ then fix arbitrary $i>0 \ldots$ (do it as an exercise)
automaton DijkstraTR(N:Nat, K:Nat), where K > N type ID: enumeration [0,..., $\mathrm{N}-1$] type Val: enumeration [0,...,K-1] actions
update(i:ID)
variables
x:[ID -> Val] initially forall $i: I D x[i]=0$

transitions

update(i:ID)
pre $i=0 / \backslash x[i]=x[(N-1)]$
eff $x[i]:=(x[i]+1) \% K$
update(i:ID)
pre $\mathrm{i}>0 \wedge x[\mathrm{i}] \sim=x[i-1]$
eff $x[i]:=x[i-1]$

From above Theorem it follows that I_{1} is an invariant of DijkstraTR

Proving invariants by induction for Dijkstra

Theorem 7.1. Given a automaton $\mathcal{A}=\langle X, \Theta, A, \mathcal{D}\rangle$ and a set of states $I \subseteq \operatorname{val}(X)$ if:

- (Start condition) for any $x \in \Theta$ implies $x \in I$, and
- (Transition closure) for any $x \rightarrow{ }_{a} x^{\prime}$ and $x \in I$ implies $x^{\prime} \in I$
then I is an (inductive) invariant of \mathcal{A}. That is $\operatorname{Reach}_{\mathcal{A}}(\Theta) \subseteq I$.
- I_{1} : "Exactly one process has the token".
(Start condition): Fix a $\boldsymbol{x} \in \Theta . \boldsymbol{x} \vDash \forall i \boldsymbol{x}\left\lceil x[i]=0\right.$ therefore $\boldsymbol{x} \vDash I_{1}$ (Transition closure): Fix a $\boldsymbol{x} \rightarrow{ }_{a} \boldsymbol{x}^{\prime}$ such that $\boldsymbol{x} \in I$.
Two cases to consider.

1. If $a=$ update (0) then
a) since \boldsymbol{x} F $\operatorname{Pre}($ update(0)) it follows that $\boldsymbol{x}\lceil x[0]=\boldsymbol{x}\lceil x[N-1]$
automaton DijkstraTR(N:Nat, K:Nat), where K > N
type ID: enumeration [0,..., $\mathrm{N}-1$]
type Val: enumeration [0,...K-1]
actions
update(i:ID)
variables
x:[ID -> Val] initially forall $\mathrm{i}: I \mathrm{D} x[\mathrm{i}]=0$

transitions

update(i:ID)
pre $\mathrm{i}=0 / \mathrm{x}[\mathrm{i}]=\mathrm{x}[(\mathrm{N}-1)]$
eff $x[i]:=(x[i]+1) \% K$
update(i:ID)
pre $\mathrm{i}>0 \wedge x[\mathrm{i}] \sim \mathrm{x}[\mathrm{i}-1]$
eff $x[i]:=x[i-1]$
b) since $\boldsymbol{x} \vDash I_{1}$ it follows that $\forall i>0 \boldsymbol{x}\lceil x[i]=\boldsymbol{x}\lceil x[i-1]$
c) $\boldsymbol{x}^{\prime}\left\lceil x[0] \neq \boldsymbol{x}^{\prime}\lceil x[N-1] \quad\right.$ by applying (a) and $E f f($ update(0)) to \boldsymbol{x}
d) $\boldsymbol{x}^{\prime} \mid x[1] \neq \boldsymbol{x}^{\prime}\lceil x[0] \quad$ by applying (b) and $E f f($ update (0)) to \boldsymbol{x}
e) $\forall i>1 \boldsymbol{x}^{\prime}\left\lceil x[i]=\boldsymbol{x}^{\prime}\lceil x[i-1]\right.$ by applying (b) and $\operatorname{Eff}($ update(0)) to \boldsymbol{x}

Can we prove this part automatically? Yes! Use a satisifiability solver! (HW1)
2. If $a=$ update $(i), \mathrm{i}>0$ then fix arbitrary $i>0 \ldots$ (do it as an exercise)

From above Theorem it follows that I_{1} is an invariant of DijkstraTR

Boolean satisfiability problem

Given a well-formed formula in propositional logic, determine whether there exists a satisfying solution

Example: $\alpha\left(x_{1}, x_{2}, \ldots, x_{n}\right) \equiv\left(x_{1} \wedge x_{2} \vee x_{3}\right) \wedge\left(x_{1} \wedge \neg x_{3} \vee x_{2}\right)$
Set of variables: $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$,
Each variable is Boolean: type $\left(x_{i}\right)=\{0,1\}$
Formula α is well-formed if it uses propositional operators, and \wedge, or \vee, not \neg, iff \leftrightarrow etc., properly
Recall, a valuation \mathbf{x} of X maps each x_{i} to a value 0 or 1
A valuation \mathbf{x} of X satisfies α is each each x_{i} in α replaced by the corresponding value in \mathbf{x} evaluates to true. We write this as $\boldsymbol{x} \vDash \alpha$

Otherwise, we write $\boldsymbol{x} \not \vDash \alpha$
Example: with $\boldsymbol{x} \equiv\left\langle x_{1} \mapsto 1, x_{2} \mapsto 1, x_{3} \mapsto 0\right\rangle ; \boldsymbol{x} \vDash \alpha$

Boolean satisfiability problem (SAT)

Given a well-formed formula in propositional logic, determine whether there exists a satisfying solution

Restatement: $\exists \boldsymbol{x} \in \operatorname{val}(X): \boldsymbol{x} \vDash \alpha$?
If the answer is "No" then α is said to be unsatisfiable
Aside. If $\forall \boldsymbol{x} \in \operatorname{val}(X): \boldsymbol{x} \vDash \alpha$ then α is said to be valid or a tautology
If α is valid then $\neg \alpha$ is unsatisfiable
α and α^{\prime} are tautologically equivalent if they have the same truth tables

$$
\forall x \in \operatorname{val}(X): x \vDash \alpha \leftrightarrow \boldsymbol{x} \vDash \alpha^{\prime}
$$

What is a naïve method for solving SAT?
What is the complexity of this approach? How many evaluations of $\alpha\left(x_{1}, x_{2}, \ldots, x_{n}\right)$?

SAT is NP-complete

SAT was the first problem shown to be NP-complete [Cook 71]

- SATRennesPAEs - Solves formulas written in a user-friendly way. Ru - somerby.net/mack/logicers - Solves formulas written in symbolic logic

Offline SAT solvers [edit]

- MiniSAT ๒ - DIMACS-CNF format and OPB format for it's companio - Lingelingere - won a gold medal in a 2011 SAT competition.

2-SAT can be solved in polynomial time (Exercise)
(Read definition of NP: Nondeterministic Polytime in Appendix C)
This has real implications
CryptoMiniSatres - won a gold medal in a 2011 SAT competition C+ MiniSat 2.0 core, PrecoSat ver 236, and Glucose into one package,

- Speares - Supports bit-vector arithmetic. Can use the DIMACS-CNF - HyperSATE - Written to experiment with B-cubing search space solver from the developers of Spear.

- BASolveres

- ArgoSATほ
- Fast SAT Solveres - based on genetic algorithms.
- zChaffer - not supported anymore.
thousands variables millions of clauses are solvable

3. SAT/SMT solving is the cornerstone of many verification procedures
[^0]
Past Competitions

Details

We will assume α to be in conjunctive normal form (CNF)
litera/s: variable or its negation, e.g., $x_{3}, \neg x_{3}$
clause: disjunction (or) of literals, e.g., ($x_{1} \vee x_{2} \vee \neg x_{3}$)
CNF formula: conjunction (and) of clauses,

$$
\text { e.g., }\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee x_{1}\right)
$$

A variable may appear positively or negatively in a clause

Logic and circuits

$$
I \equiv(D \wedge(A \wedge B)) \vee(\neg C \wedge(A \wedge B))
$$

Repeated subexpression is inefficient
Solution: rename $(A \wedge B) \leftrightarrow E$

$$
I^{\prime} \equiv(D \wedge E) \vee(\neg C \wedge E) \wedge((A \wedge B) \leftrightarrow E)
$$

I and I^{\prime} are not tautologically equivalent

$$
\begin{gathered}
\text { Recall that: } \\
A \leftrightarrow B \\
(A \rightarrow B) \wedge(B \rightarrow A) \\
(\neg A \vee B) \wedge(\neg B \vee A)
\end{gathered}
$$

$C=0, A=B=1, E=0$ satisfies I
But they are equisatisfiable, i.e., I is satisfiable iff I^{\prime} is also satisfiable

Converting to CNF

- View the formula as a graph
- Give new names (variables) to non-leafs
- Relate the inputs and the outputs of the nonleafs and add this as a new clause
- Take conjunction of all of this

- $F \leftrightarrow \neg C$

Converting to CNF

- $F \rightarrow \neg C \wedge \neg C \rightarrow F$
- $(\neg F \vee \neg C) \wedge(C \vee F)$
- $(A \wedge B) \leftrightarrow E$
- $((A \wedge B) \rightarrow E) \wedge(E \rightarrow(A \wedge B))$
- $(\neg(A \wedge B) \vee E) \wedge(\neg E \vee(A \wedge B))$
- $(\neg A \vee \neg B \vee E) \wedge(\neg E \vee A) \wedge(\neg E \vee B))$
- $(G \vee H) \leftrightarrow I$
- $((G \vee H) \rightarrow I) \wedge(I \rightarrow(G \vee H))$
- $(\neg G \wedge \neg H \vee I) \wedge(\neg I \vee G \vee H)$
- $(\neg G \vee I) \wedge(\neg H \vee I) \wedge(\neg I \vee G \vee H)$
- $(D \wedge E) \leftrightarrow G$
- $(\neg D \vee \neg E \vee G) \wedge(\neg G \vee D) \wedge(\neg G \vee E)$
- $(F \wedge E) \leftrightarrow H$
- $(\neg F \vee \neg E \vee H) \wedge(\neg H \vee F) \wedge(\neg H \vee E))$

Standard representations of CNF

- $(\neg A \vee \neg B \vee E) \wedge(\neg E \vee A) \wedge(\neg E \vee B))$
- $\left(A^{\prime}+B^{\prime}+E\right)\left(E^{\prime}+A\right)\left(E^{\prime}+B\right)$
- $(-1-25)(-51)(-5 \quad 2)$ DIMACS
- SMTLib: computer readable, standard format
https://smtlib.cs.uiowa.edu/language.shtm|

Davis Putnam Logemann Loveland Algorithm (DPLL) 1962

Transform the given formula α by applying a sequence of satisfiability preserving rules

If final result has an empty clause then unsatisfiable if final result has no clauses then the formula is satisfiable

Davis Putnam Algorithm (DP) 1960

Rule 1. Unit propagation
Rule 2. Pure literal
Rule 3. Resolution

DP 1960

Rule 1. Unit propagation

A clause has a single literal

$$
\alpha \equiv \ldots \wedge \ldots \wedge p \wedge \ldots \wedge \ldots
$$

What choice do we really have?

$$
\alpha \equiv \ldots \wedge\left(x_{1} \vee \neg p \vee x_{2}\right) \wedge p \wedge \ldots \wedge\left(\neg x_{3} \vee \neg p \vee x_{1}\right) \ldots
$$

DP 1960

Rule 1. Unit propagation

A clause has a single literal

$$
\alpha \equiv \ldots \wedge \ldots \wedge p \wedge \ldots \wedge \ldots
$$

What choice do we really have?

$$
\alpha^{\prime} \equiv \ldots \wedge\left(x_{1} \vee x_{2}\right) \wedge \ldots \wedge\left(\neg x_{3} \vee x_{1}\right) \ldots
$$

α and α^{\prime} are equisatisfiable

Davis Putnam Logemann Loveland Algorithm (DPLL) 1962

Rule 1. Unit propagation

Rule 2. Pure literal

A literal appears only positively (or negatively) in α

$$
\alpha \equiv \ldots \wedge\left(x_{1} \vee \neg p \vee x_{2}\right) \wedge\left(x_{4} \vee \neg p\right) \wedge \ldots \wedge\left(\neg x_{3} \vee \neg p \vee x_{1}\right) \ldots
$$ p does not appear anywhere

Makes sense to set $p=0$ and remove all occurrences of $\neg p$

Davis Putnam Logemann Loveland Algorithm (DPLL) 1962

Rule 1. Unit propagation
Rule 2. Pure literal
A literal appears only positively (or negatively) in α

$$
\alpha \equiv \ldots \wedge\left(x_{1} \vee \neg p \vee x_{2}\right) \wedge\left(x_{4} \vee \neg p\right) \wedge \ldots \wedge\left(\neg x_{3} \vee x_{1}\right) \ldots
$$

p does not appear anywhere

Makes sense to set $p=0$ and remove all clauses in which $\neg p$ occurs
α and α^{\prime} are equisatisfiable

$$
\alpha^{\prime} \equiv \ldots \wedge \ldots \wedge \ldots \wedge\left(\neg x_{3} \vee x_{1}\right) \ldots[p=0]
$$

Davis Putnam Algorithm (DP) 1960

Rule 1. Unit propagation

Rule 2. Pure literal

Rule 3. Resolution

Choose a literal p that appears with both polarity in α. Suppose ($\ell_{1} \vee \ell_{2} \vee p$) be a clause in which p appears positively, and ($k_{1} \vee k_{2} \vee \neg p$) be a clause in which p appears negatively

Then the resolved clause is $\left(\ell_{1} \vee \ell_{2} \vee k_{1} \vee k_{2}\right)$

Pairwise, resolve each clause in which p appears positively with a clause in which p appears negatively, and take the conjunction of all the results

Why is the result equisatisfiable?
What is the size of the resulting formula?

DPLL modifies resolution in DP with recursive DFS rule

Rule 1. Unit propagation
Rule 2. Pure literal
Rule 3'. Let Δ be the current set of clauses. Choose a literal p in Δ. Check satisfiability of $\Delta \cup\{p\} \quad$ (guessing $p=1$) If satisfiable then return True else
return result of checking satisfiability of $\Delta \cup\{\neg p\}$
This is essentially a depth first search

Assignments

- HW1 (due Feb 11 ${ }^{\text {th }}$)
- Install Z3
- Keep thinking about class projects! Form teams (max 2 people).
- More on DPLL next lecture

[^0]: Stephen Cook, The complexity of theorem-proving procedures. In Proceedings of the third annual ACM symposium on theory of computing. STOC '71.

