
Lecture 3: Satisfiability

Huan Zhang

huan@huan-zhang.com

Slides adapted from Prof. Sayan Mitra’s slides in Fall 2021
Some of the slides for this lecture are adapted from slides by Clark Barrett

mailto:huan@huan-zhang.com

Readings

• Chapter 7

• Appendix C

Outline

• Review on the proofs of inductive invariance properties

• Propositional Satisfiability problem

• Normal forms

• DPLL algorithm (next lecture)

Dijkstra’s mutual exclusion Algorithm [‘74]

N processes: 0, 1, …, N-1
state of each process j is a single integer variable x[j] {0, 1, 2, K-1}, where K > N
The “update” action is defined differently for P0 vs. others
P0 if x[0] = x[N-1] then x[0] := x[0] + 1 mod K
Pj , j > 0 if x[j] ≠ x[j -1] then x[j] := x[j-1]

pi has TOKEN if and only if the blue conditional is true

P0

P1 P2

P3

P4P5

Who has the token?

Dijkstra’s mutual exclusion Algorithm [‘74]

N processes: 0, 1, …, N-1
state of each process j is a single integer variable x[j] {0, 1, 2, K-1}, where K > N
The “update” action is defined differently for P0 vs. others
P0 if x[0] = x[N-1] then x[0] := x[0] + 1 mod K
Pj , j > 0 if x[j] ≠ x[j -1] then x[j] := x[j-1]

pi has TOKEN if and only if the blue conditional is true

P0

P1 P2

P3

P4P5

P0

P1 P2

P3

P4P5

Who has the token?

P1

A language for specifying automata (IOA)
automaton DijkstraTR(N:Nat, K:Nat), where K > N
 type ID: enumeration [0,...,N-1]
 type Val: enumeration [0,...,K-1]
 actions
 update(i:ID)
 variables
 x:[ID -> Val] initially forall i:ID x[i] = 0
 transitions
 update(i:ID)
 pre i = 0 /\ x[i] = x[N-1]
 eff x[i] := (x[i] + 1) % K

 update(i:ID)
 pre i >0 /\ x[i] ~= x[i-1]
 eff x[i] := x[i-1]

Automaton � = 〈�, Θ, �, �〉

Reachable states and invariants

A state � is reachable if there exists an execution � such that
�. 푙푠푡�푡� = �

푅���ℎ� Θ : set of states reachable from Θ by automaton �

An invariant is a set of states I such that 푅���ℎ� ⊆ �

Proving invariants by induction (Chapter 7)

Theorem 7.1. Given a automaton � = 〈�, Θ, �, �〉 and a set of states � ⊆ 푣�푙 � if:
• (Start condition) for any � ∈ Θ implies � ∈ �, and

• (Transition closure) for any �→��’ and � ∈ � implies �′ ∈ �
then � is an (inductive) invariant of �. That is 푅���ℎ� Θ ⊆ �.

Proving invariants by induction for Dijkstra

• �1: “Exactly one process has the token”.
(Start condition): Fix a � ∈ Θ. � ⊨ ∀� �⌈� � = 0 therefore � ⊨ �1
(Transition closure): Fix a �→��′ such that � ∈ �.
Two cases to consider.
1. If � = 푢푝푑�푡� 0 then

a) since � ⊨ 푃�� 푢푝푑�푡� 0 it follows that �⌈� 0 = �⌈� � − 1
b) since � ⊨ �1 it follows that ∀� > 0 �⌈� � = �⌈� � − 1
c) �′⌈� 0 ≠ �′⌈� � − 1 by applying (a) and 퐸�� 푢푝푑�푡� 0 to �
d) �′⌈� 1 ≠ �′⌈� 0 by applying (b) and 퐸�� 푢푝푑�푡� 0 to �
e ∀� > 1 �′⌈� � = �′⌈� � − 1 by applying (b) ��푑 퐸�� 푢푝푑�푡� 0 to �
Therefore �′ ⊨ �.

2. If � = 푢푝푑�푡� � , i > 0 then fix arbitrary � > 0 … (do it as an exercise)

automaton DijkstraTR(N:Nat, K:Nat), where K > N
 type ID: enumeration [0,...,N-1]
 type Val: enumeration [0,...,K-1]
 actions
 update(i:ID)
 variables
 x:[ID -> Val] initially forall i:ID x[i] = 0
 transitions
 update(i:ID)
 pre i = 0 /\ x[i] = x[(N-1)]
 eff x[i] := (x[i] + 1) % K

 update(i:ID)
 pre i >0 /\ x[i] ~= x[i-1]
 eff x[i] := x[i-1]

Theorem 7.1. Given a automaton � = 〈�, Θ, �, �〉 and a set of states � ⊆ 푣�푙 � if:

• (Start condition) for any � ∈ Θ implies � ∈ �, and

• (Transition closure) for any �→��’ and � ∈ � implies �′ ∈ �

then � is an (inductive) invariant of �. That is 푅���ℎ� Θ ⊆ �.

From above Theorem it follows that �1 is an invariant of DijkstraTR

Proving invariants by induction for Dijkstra

• �1: “Exactly one process has the token”.
(Start condition): Fix a � ∈ Θ. � ⊨ ∀� �⌈� � = 0 therefore � ⊨ �1
(Transition closure): Fix a �→��′ such that � ∈ �.
Two cases to consider.
1. If � = 푢푝푑�푡� 0 then

a) since � ⊨ 푃�� 푢푝푑�푡� 0 it follows that �⌈� 0 = �⌈� � − 1
b) since � ⊨ �1 it follows that ∀� > 0 �⌈� � = �⌈� � − 1
c) �′⌈� 0 ≠ �′⌈� � − 1 by applying (a) and 퐸�� 푢푝푑�푡� 0 to �
d) �′⌈� 1 ≠ �′⌈� 0 by applying (b) and 퐸�� 푢푝푑�푡� 0 to �
e ∀� > 1 �′⌈� � = �′⌈� � − 1 by applying (b) and 퐸�� 푢푝푑�푡� 0 to �
Therefore �′ ⊨ �.

2. If � = 푢푝푑�푡� � , i > 0 then fix arbitrary � > 0 … (do it as an exercise)

automaton DijkstraTR(N:Nat, K:Nat), where K > N
 type ID: enumeration [0,...,N-1]
 type Val: enumeration [0,...,K-1]
 actions
 update(i:ID)
 variables
 x:[ID -> Val] initially forall i:ID x[i] = 0
 transitions
 update(i:ID)
 pre i = 0 /\ x[i] = x[(N-1)]
 eff x[i] := (x[i] + 1) % K

 update(i:ID)
 pre i >0 /\ x[i] ~= x[i-1]
 eff x[i] := x[i-1]

Theorem 7.1. Given a automaton � = 〈�, Θ, �, �〉 and a set of states � ⊆ 푣�푙 � if:

• (Start condition) for any � ∈ Θ implies � ∈ �, and

• (Transition closure) for any �→��’ and � ∈ � implies �′ ∈ �

then � is an (inductive) invariant of �. That is 푅���ℎ� Θ ⊆ �.

From above Theorem it follows that �1 is an invariant of DijkstraTR

Can we prove this part automatically?
Yes! Use a satisifiability solver! (HW1)

Boolean satisfiability problem
Given a well-formed formula in propositional logic, determine whether
there exists a satisfying solution

Example: � �1, �2, …, �� ≡ �1 ∧ �2 ∨ �3 ∧ �1 ∧ ¬�3 ∨ �2

Set of variables: � = {�1, �2, …, ��},

Each variable is Boolean: 푡푦푝� �� = {0,1}

Formula � is well-formed if it uses propositional operators, and ∧ , or ∨, not ¬, iff ↔ etc., properly

Recall, a valuation x of � maps each �� to a value 0 or 1

A valuation x of � satisfies � is each each �� in � replaced by the corresponding value in x evaluates
to true. We write this as � ⊨ �

Otherwise, we write � ⊭ �

Example: with � ≡ ⟨�1 ↦ 1, �2 ↦ 1, �3 ↦ 0⟩; � ⊨ �

Boolean satisfiability problem (SAT)
Given a well-formed formula in propositional logic, determine whether there exists a satisfying
solution

Restatement: ∃� ∈ 푣�푙 � : � ⊨ �?
If the answer is ”No” then � is said to be unsatisfiable

Aside. If ∀� ∈ 푣�푙 � : � ⊨ � then � is said to be valid or a tautology

If α is valid then ¬α is unsatisfiable

� and �′ are tautologically equivalent if they have the same truth tables

∀� ∈ 푣�푙 � : � ⊨ � ↔ � ⊨ �′

What is a naïve method for solving SAT?

What is the complexity of this approach? How many evaluations of � �1, �2, …, �� ?

Slide by Sayan Mitra using pictures
from Wikipedia and cartoonstock.com

I Don’t Get No
Satisfaction,
but I try, try,

try,…

I can prove why.

Prof.
Cook

Stephen A. Cook:
The Complexity of Theorem-Proving Procedures. STOC 1971: 151-158

https://dblp.uni-trier.de/db/conf/stoc/stoc71.html#Cook71

SAT is NP-complete
SAT was the first problem shown to be NP-complete [Cook 71]

2-SAT can be solved in polynomial time (Exercise)

(Read definition of NP: Nondeterministic Polytime in Appendix C)

This has real implications

1. Essentially we don’t know better than the naïve algorithm

2. A solver for SAT can be used to solve any other problem in the
NP class with only polytime slowdown. i.e., makes a lot of sense
to build SAT solvers

3. SAT/SMT solving is the cornerstone of many verification
procedures

Stephen Cook, The complexity of theorem-proving procedures. In Proceedings of
the third annual ACM symposium on theory of computing. STOC ‘71.

thousands variables
millions of clauses
are solvable

Details

We will assume � to be in conjunctive normal form (CNF)
literals: variable or its negation, e.g., �3, ¬�3

clause: disjunction (or) of literals, e.g., �1 ∨ �2 ∨ ¬�3

CNF formula: conjunction (and) of clauses,

e.g., �1 ∨ �2 ∨ ¬�3 ∧ ¬�2 ∨ �1
A variable may appear positively or negatively in a clause

Logic and circuits

Repeated subexpression is inefficient
Solution: rename � ∧ � ↔ 퐸
�′ ≡ � ∧ 퐸 ∨ ¬� ∧ 퐸 ∧ � ∧ � ↔ 퐸
� and �′ are not tautologically equivalent
� = 0, � = � = 1, 퐸 = 0 satisfies �
But they are equisatisfiable, i.e., � is satisfiable iff �′ is also satisfiable

A

B

D

C

I

� ≡ � ∧ � ∧ � ∨ ¬� ∧ � ∧ �

� ↔ �
 � → � ∧ � → �

 ¬� ∨ � ∧ ¬� ∨ �

Recall that:

Converting to CNF

• View the formula as a graph

• Give new names (variables) to non-leafs

• Relate the inputs and the outputs of the nonleafs and add this as a
new clause

• Take conjunction of all of this

A

B

D

C

I

Converting to CNF
• � ↔ ¬�

• � → ¬� ∧ ¬� → �
• ¬� ∨ ¬� ∧ � ∨ �

• � ∧ � ↔ 퐸
• � ∧ � → 퐸 ∧ 퐸 → � ∧ �
• ¬ � ∧ � ∨ 퐸 ∧ ¬ 퐸 ∨ � ∧ �
• ¬� ∨ ¬� ∨ 퐸 ∧ ¬ 퐸 ∨ � ∧ ¬퐸 ∨ �

• � ∨ � ↔ �
• � ∨ � → � ∧ � → � ∨ �
• ¬� ∧ ¬� ∨ � ∧ ¬� ∨ � ∨ �
• ¬� ∨ � ∧ ¬� ∨ � ∧ ¬� ∨ � ∨ �

• � ∧ 퐸 ↔ �
• ¬� ∨ ¬퐸 ∨ � ∧ ¬ � ∨ � ∧ ¬� ∨ 퐸

• � ∧ 퐸 ↔ �
• ¬� ∨ ¬퐸 ∨ � ∧ ¬ � ∨ � ∧ ¬� ∨ 퐸

A

B

D

I

C

E

F

G

H

Standard representations of CNF

• ¬� ∨ ¬� ∨ 퐸 ∧ ¬ 퐸 ∨ � ∧ ¬퐸 ∨ �
• �′ + �′ + 퐸 퐸′ + � 퐸′ + �
• −1 − 2 5 −5 1 −5 2 DIMACS

• SMTLib: computer readable, standard format

https://smtlib.cs.uiowa.edu/language.shtml

https://smtlib.cs.uiowa.edu/language.shtml

Davis Putnam Logemann Loveland Algorithm
(DPLL) 1962
Transform the given formula � by applying a sequence of satisfiability
preserving rules

If final result has an empty clause then unsatisfiable

if final result has no clauses then the formula is satisfiable

Davis Putnam Algorithm (DP) 1960

Rule 1. Unit propagation

Rule 2. Pure literal

Rule 3. Resolution

DP 1960

Rule 1. Unit propagation

A clause has a single literal

� ≡ … ∧ … ∧ 푝 ∧ … ∧ …
What choice do we really have?

� ≡ … ∧ �1 ∨ ¬푝 ∨ �2 ∧ 푝 ∧ … ∧ ¬�3 ∨ ¬푝 ∨ �1 …

DP 1960

Rule 1. Unit propagation

A clause has a single literal

� ≡ … ∧ … ∧ 푝 ∧ … ∧ …
What choice do we really have?

�′ ≡ … ∧ �1 ∨ �2 ∧ … ∧ ¬�3 ∨ �1 …

� and �′ are equisatisfiable

Davis Putnam Logemann Loveland Algorithm
(DPLL) 1962
Rule 1. Unit propagation

Rule 2. Pure literal

A literal appears only positively (or negatively) in �

� ≡ … ∧ �1 ∨ ¬푝 ∨ �2 ∧ �4 ∨ ¬푝 ∧ … ∧ ¬�3 ∨ ¬푝 ∨ �1 …
푝 does not appear anywhere

Makes sense to set 푝 = 0 and remove all occurrences of ¬푝

Davis Putnam Logemann Loveland Algorithm
(DPLL) 1962
Rule 1. Unit propagation
Rule 2. Pure literal
A literal appears only positively (or negatively) in �

� ≡ … ∧ �1 ∨ ¬푝 ∨ �2 ∧ �4 ∨ ¬푝 ∧ … ∧ ¬�3 ∨ �1 …
푝 does not appear anywhere

Makes sense to set 푝 = 0 and remove all clauses in which ¬푝 occurs

�′ ≡ … ∧ … ∧ … ∧ ¬�3 ∨ �1 … [푝 = 0

� and �′ are equisatisfiable

Davis Putnam Algorithm (DP) 1960
Rule 1. Unit propagation

Rule 2. Pure literal

Rule 3. Resolution

Choose a literal 푝 that appears with both polarity in �. Suppose ℓ1 ∨ ℓ2 ∨ 푝 be a clause in
which 푝 appears positively, and �1 ∨ �2 ∨ ¬푝 be a clause in which 푝 appears negatively

Then the resolved clause is ℓ1 ∨ ℓ2 ∨ �1 ∨ �2

Pairwise, resolve each clause in which 푝 appears positively with a clause in which 푝
appears negatively, and take the conjunction of all the results

Why is the result equisatisfiable?

What is the size of the resulting formula?

DPLL modifies resolution in DP with recursive
DFS rule
Rule 1. Unit propagation

Rule 2. Pure literal

Rule 3’. Let Δ be the current set of clauses. Choose a literal 푝 in Δ.

Check satisfiability of Δ ∪ { 푝 } (guessing 푝 = 1)

If satisfiable then return True else

return result of checking satisfiability of Δ ∪ { ¬푝 }

This is essentially a depth first search

Assignments

• HW1 (due Feb 11th)
• Install Z3

• Keep thinking about class projects! Form teams (max 2 people).

• More on DPLL next lecture

