
Lecture 2: Modeling Computation

Huan Zhang

huan@huan-zhang.com

Slides adapted from Prof. Sayan Mitra’s slides in Fall 2021

mailto:huan@huan-zhang.com

Outline

Goal of this course: model anything!

This lecture: model computations

Today: Automaton as a model for computations

Automata or discrete transition systems
• The “state” of a system captures all the information needed to predict

the system’s future behavior

• Behavior of a system is a sequence of states

• Our ultimate goal: write programs that prove properties about all
behaviors of a system

• “Transitions” capture how the state can change

All models are wrong, some are useful

The complete state of a computing system has a lot of information

• values of program variables, network messages, position of the program
counter, bits in the CPU registers, etc.

• thus, modeling requires judgment about what is important and what is not

Mathematical formalism used is called automaton a.k.a. discrete transition
system

Automata or discrete transition systems
• Example: you probably know the finite state machine (FSM)

• States: {1, 2, 3}

• Start state: {1}

• Transistions

• Automata is more general:
• We define “states” implicitly using variables

• The number of state is arbitrary

Example: Dijkstra’s mutual exclusion algorithm

Informal Description: A token-based mutual exclusion
algorithm on a ring network
• Collection of processes that send and receive bits over a

ring network so that only one of them has a “token” to
access a critical resource (e.g., a shared calendar)

Discrete model
• Each process has variables that take only discrete values
• Time elapses in discrete steps

Self-stabilizing
Systems in Spite of
Distributed Control,
CACM, 1974.

Token-based mutual exclusion in unidirectional ring

N processes with ids 0, 1, …, N-1
Unidirectional means: each i>0 process Pi reads the state of only the predecessor Pi-1; P0
reads only PN-1

1. Legal configuration = exactly one “token” in the ring
2. Single token circulates in the ring
3. Even if multiple tokens arise because of faults, if the algorithm continues to work

correctly, then eventually there is a single token; this is the self stabilizing property

Legal configuration IllegalP0

P5 P4

P3

P1 P2

P0

P5 P4

P3

P1 P2

Dijkstra’s mutual exclusion Algorithm [‘74]

N processes: 0, 1, …, N-1
state of each process j is a single integer variable x[j]  {0, 1, 2, K-1}, where K > N
The “update” action is defined differently for P0 vs. others
P0 if x[0] = x[N-1] then x[0] := x[0] + 1 mod K
Pj , j > 0 if x[j] ≠ x[j -1] then x[j] := x[j-1]

pi has TOKEN if and only if the blue conditional is true

P0

P5 P4

P3

P1 P2

Sample executions: from a legal state (single token)

…

…
… …

P0

P1 P2

update

update update

Execution from an illegal state

Legal in single “step”

Legal in two steps

P0

P1 P2

Execution from an illegal state

P0

P1 P2

A language for specifying automata (IOA)
automaton DijkstraTR(N:Nat, K:Nat), where K > N
 type ID: enumeration [0,...,N-1]
 type Val: enumeration [0,...,K-1]
 actions
 update(i:ID)
 variables
 x:[ID -> Val]
 transitions
 update(i:ID)
 pre i = 0 /\ x[i] = x[N-1]
 eff x[i] := (x[i] + 1) % K

 update(i:ID)
 pre i >0 /\ x[i] ~= x[i-1]
 eff x[i] := x[i-1]

A language for specifying automata
automaton DijkstraTR(N:Nat, K:Nat), where K > N
 type ID: enumeration [0,...,N-1]
 type Val: enumeration [0,...,K-1]
 actions
 update(i:ID)
 variables
 x:[ID -> Val]
 transitions
 update(i:ID)
 pre i = 0 /\ x[i] = x[N-1]
 eff x[i] := (x[i] + 1) % K

 update(i:ID)
 pre i >0 /\ x[i] ~= x[i-1]
 eff x[i] := x[i-1]

Name of automaton and
formal parameters

symbols -> maps, /\ and, \/ or, ~= not equal, % mod

A language for specifying automata
automaton DijkstraTR(N:Nat, K:Nat), where K > N
 type ID: enumeration [0,...,N-1]
 type Val: enumeration [0,...,K-1]
 actions
 update(i:ID)
 variables
 x:[ID -> Val]
 transitions
 update(i:ID)
 pre i = 0 /\ x[i] = x[N-1]
 eff x[i] := (x[i] + 1) % K

 update(i:ID)
 pre i >0 /\ x[i] ~= x[i-1]
 eff x[i] := x[i-1]

user defined type
declarations

symbols -> maps, /\ and, \/ or, ~= not equal, % mod

A language for specifying automata
automaton DijkstraTR(N:Nat, K:Nat), where K > N
 type ID: enumeration [0,...,N-1]
 type Val: enumeration [0,...,K-1]
 actions
 update(i:ID)
 variables
 x:[ID -> Val]
 transitions
 update(i:ID)
 pre i = 0 /\ x[i] = x[N-1]
 eff x[i] := (x[i] + 1) % K

 update(i:ID)
 pre i >0 /\ x[i] ~= x[i-1]
 eff x[i] := x[i-1]

declaration of “actions” or
transition labels; actions
can have parameter; this
declares the actions
update(0), update(1), …,
update(N-1)

symbols -> maps, /\ and, \/ or, ~= not equal, % mod

A language for specifying automata
automaton DijkstraTR(N:Nat, K:Nat), where K > N
 type ID: enumeration [0,...,N-1]
 type Val: enumeration [0,...,K-1]
 actions
 update(i:ID)
 variables
 x:[ID -> Val]
 transitions
 update(i:ID)
 pre i = 0 /\ x[i] = x[N-1]
 eff x[i] := (x[i] + 1) % K

 update(i:ID)
 pre i >0 /\ x[i] ~= x[i-1]
 eff x[i] := x[i-1]

declaration of state
variables or variables; this
declares an array x[0],
x[1], …, x[N-1] of Val’s

symbols -> maps, /\ and, \/ or, ~= not equal, % mod

A language for specifying automata
automaton DijkstraTR(N:Nat, K:Nat), where K > N
 type ID: enumeration [0,...,N-1]
 type Val: enumeration [0,...,K-1]
 actions
 update(i:ID)
 variables
 x:[ID -> Val]
 transitions
 update(i:ID)
 pre i = 0 /\ x[i] = x[N-1]
 eff x[i] := (x[i] + 1) % K

 update(i:ID)
 pre i >0 /\ x[i] ~= x[i-1]
 eff x[i] := x[i-1]

declaration of transitions:
for each action this defines
when the action can occur
(pre) and how the state is
updated when the action
does occur (eff)

symbols -> maps, /\ and, \/ or, ~= not equal, % mod

The language defines an automaton

An automaton is a tuple � = 〈�, Θ, �, �〉 where
• � is a set of names of variables; each variable � ∈ � is associated with

a type, 푡푦��(�)
• A valuation for � maps each variable in X to its type
• Set of all valuations:푣��(�) this is sometimes identified as the state space of

the automaton

• Θ ⊆ 푣��(�) is the set of initial or start states
• � is a set of names of actions or labels
• � ⊆ 푣��(�) × � × 푣��(�) is the set of transitions

• a transition is a triple (�, �, �’)
• We write it as �→��′

Well formed specifications in IOA Language define automata
variables and valuations

variables s, v: Real; a: Bool
X = {s, v, a}
Example valuations of X
• 〈� ↦ 0, 푣 ↦ 5.5, � ↦ 0〉
• 〈� ↦ 10, 푣 ↦− 2.5, � ↦ 1〉

set of all possible valuations or “state
space” is written as 푣��(�)

푣��(�) = {〈� ↦ �1, 푣 ↦ �2, � ↦
�3〉| �1, �2 ∈ �, �3 ∈ {0,1}}

type ID: [0,…,N-1]
variables x: [ID>Vals]
Fix N = 5, K = 7
x: [{0,…,4} -> {0,…,6}]
Example valuations:

〈� ↦ 〈0 ↦ 0, 1 ↦ 0, 2 ↦ 0, 3 ↦ 0, 4 ↦ 0 〉〉
〈� ↦ 〈0 ↦ 7, 1 ↦ 0, 2 ↦ 0, 3 ↦ 0, 4 ↦ 0, 〉〉

Valuations are usually denoted by bold small
characters
E.g.,
� = 〈� ↦ 〈0 ↦ 0, 1 ↦ 0, 2 ↦ 0, 3 ↦ 0, 4 ↦ 0 〉〉

Notations
�⌈� is the value of variable x in u
�⌈ �[4] =0 array notation [] works with ⌈ as expected

States and predicates
A predicate over a set of variable X is a Boolean-valued formula involving the variables in X Examples:

• �1: x 1 = 1
• �2: ∀� ∈ 퐼�, � � = 0

A valuation u satisfies a predicate � if substituting the values of the variables in u in � makes it evaluate to True.

We write u⊨ �

Examples: � = 〈� ↦ 〈0 ↦ 0, 1 ↦ 0, 2 ↦ 0, 3 ↦ 0, 4 ↦ 0 〉〉 ; 푣 = 〈� ↦ 〈0 ↦ 1, 1 ↦ 0, 2 ↦ 0, 3 ↦ 0, 4 ↦
0 〉〉

• � ⊨ �2, (� ⊭ �1) , 푣 ⊨ �1 and 푣 ⊭ �2

 � : set of all valuations that satisfy �

• �1 = 〈� ↦ 〈1 ↦ 1, � ↦ ��〉{�=0,2,…,5}〉 �� ∈ {0, …, 7}}

• �2 = {〈� ↦ 〈0 ↦ 0, 1 ↦ 0, 2 ↦ 0, 3 ↦ 0, 4 ↦ 0, 5 ↦ 0 〉〉}

• Θ ⊆ 푣��(�) is the set of initial states of the automaton; often specified by a predicate over X

Actions

• actions section defines the set of Actions of the automaton
• Examples

• actions update(i:ID)
defines � = {��푑�푡� 0 , …, ��푑�푡� 5 }

• actions brakeOn, brakeOff
defines � = {푏푟�����, 푏푟������}

Transitions defined by preconditions and effects

� ⊆ 푣��(�) × � × 푣��(�) is the set of transitions
� = {(�, �, �′)| such that � ⊨ 푃푟�� and (�, �′) ⊨ 퐸���}
(�, �, �′) ∈ � is written as �→��′
Example:
internal update(i:ID)
 pre i = 0 /\ x[i] = x[n-1]
 eff x[i] := x[i] + 1 mod k;
internal update(i:ID)
 pre i ≠ 0 /\ x[≠x[i-1]
 eff x[i] := x[i-1];

(�, ��푑�푡�(�), �′) ∈ � iff

(a) (� = 0 ∧ �⌈ � 0 = �⌈� 5
∧ �′⌈� 0 = � ⌈� 0 + 1 푚�푑 �) ∨

(b) (� ≠ 0 ∧ � ⌈� � ≠ � ⌈� � − 1
∧ �′ ⌈� � = �⌈� � − 1)

Executions, Reachability, and Invariants
Automaton � = 〈�, Θ, �, �〉

An executions models a particular behavior of the automaton �

An execution of � is an alternating (possibly infinite) sequence of states
and actions � = �0�1�1�2�3…such that:

1. �0 ∈ Θ

2. ∀ � in the sequence, ��→��+1��+1

For a finite execution, � = �0�1�1�2�3 the last state �. ��푡�푡� = �3 ,
the first state �. ��푡�푡� = �0, and the length of the execution is 3.

In general, how many executions does an � have?

Nondeterminism

For an action � ∈ �, Pre(a) is the formula defining its precondition, and
Eff(a) is the relation defining the effect.

States satisfying precondition are said to enable the action

In general eff(a) could be a relation, but for this example it is a function

Nondeterminism

Nondeterminism
• Multiple post-states from the same action (internal)
• Multiple actions enabled from the same state (external)

internal external

Reachable states and invariants

A state � is reachable if there exists an execution � such that
�. ��푡�푡� = �

����ℎ�(Θ): set of states reachable from Θ by automaton �

An invariant is a set of states I such that ����ℎ� ⊆ 퐼

val(X): All states e.g. 퐼3
퐼1: “Exactly one process has the token”.

퐼≥1: “At least one process has a token”.

퐼3: “All processes have values at most K-1”.
Invariant e.g. 퐼1

����ℎ�(�0)

��

Candidate invariants for token Ring For any automaton

Reachability as graph search

• Q1. Given �, is a state � ∈ 푣��(�) reachable?

• Define a graph �� = 〈�, 퐸〉 where
• � = 푣��(�)
• 퐸 = {(�, �′)|∃ � ∈ �, �→��′}

• Q2. Does there exist a path in �� from any state in Θ to � ?

• Perform DFS/BFS on ��

Proving invariants by induction (Chapter 7)

Theorem 7.1. Given a automaton � = 〈�, Θ, �, �〉 and a set of states 퐼 ⊆ 푣��(�) if:

• (Start condition) for any � ∈ Θ implies � ∈ 퐼, and

• (Transition closure) for any �→��’ and � ∈ 퐼 implies �′ ∈ 퐼
then 퐼 is an (inductive) invariant of �. That is ����ℎ�(Θ) ⊆ 퐼.

Proving invariants by induction (Chapter 7)

Proof. Consider any reachable state �. By the definition of a reachable state, there exists an
execution � of � such that �. ��푡�푡� = �.

We proceed by induction on the length �

For the base case, � consists of a single starting state � = � ∈ Θ, and by the Start condition, � ∈ 퐼.

For the inductive step, � = �′� � where � ∈ �. By the induction hypothesis, we know that
�′. ��푡�푡� ∈ 퐼.

Invoking Transition closure on �′. ��푡�푡�→�� we obtain � ∈ 퐼. QED

Theorem 7.1. Given a automaton � = 〈�, Θ, �, �〉 and a set of states 퐼 ⊆ 푣��(�) if:

• (Start condition) for any � ∈ Θ implies � ∈ 퐼, and

• (Transition closure) for any �→��′ and � ∈ 퐼 implies �′ ∈ 퐼
then 퐼 is an (inductive) invariant of �. That is ����ℎ�(Θ) ⊆ 퐼.

Proving invariants by induction for Dijkstra

• 퐼1: “Exactly one process has the token”.
(Start condition): Fix a � ∈ Θ. � ⊨ ∀� �⌈� � = 0 therefore � ⊨ 퐼1
(Transition closure): Fix a �→��′ such that � ∈ 퐼.
Two cases to consider.
1. If � = ��푑�푡�(0) then

a) since � ⊨ 푃푟� ��푑�푡�(0) it follows that �⌈� 0 = �⌈� � − 1
b) since � ⊨ 퐼1 it follows that ∀� > 0 �⌈� � = �⌈� � − 1
c) �′⌈� 0 ≠ �′⌈� � − 1 by applying (a) and 퐸�� ��푑�푡�(0) to �
d) �′⌈� 1 ≠ �′⌈� 0 by applying (b) 퐸�� ��푑�푡�(0) to �
e) ∀� > 1 �′⌈� � = �′⌈� � − 1 by applying (b) 퐸�� ��푑�푡�(0) to �
Therefore �′ ⊨ 퐼.

2. If � = ��푑�푡�(�), i > 0 then fix arbitrary � > 0 … (do it as an exercise)

automaton DijkstraTR(N:Nat, K:Nat), where K > N
 type ID: enumeration [0,...,N-1]
 type Val: enumeration [0,...,K-1]
 actions
 update(i:ID)
 variables
 x:[ID -> Val] initially forall i:ID x[i] = 0
 transitions
 update(i:ID)
 pre i = 0 /\ x[i] = x[(N-1)]
 eff x[i] := (x[i] + 1) % K

 update(i:ID)
 pre i >0 /\ x[i] ~= x[i-1]
 eff x[i] := x[i-1]

Theorem 7.1. Given a automaton � = 〈�, Θ, �, �〉 and a set of states 퐼 ⊆ 푣��(�) if:

• (Start condition) for any � ∈ Θ implies � ∈ 퐼, and

• (Transition closure) for any �→��’ and � ∈ 퐼 implies �′ ∈ 퐼

then 퐼 is an (inductive) invariant of �. That is ����ℎ�(Θ) ⊆ 퐼.

From above Theorem it follows that 퐼1 is an invariant of DijkstraTR

Assignments
• Read. Modeling computation: Chapter 2 of CPSBook, first part

of Chapter 7 (7.1, 7.2), and section on SAT/SMT (7.5)

• HW1 due 02/10

• IOA Specification language: Appendix C of CPSBook

• Keep thinking about class project!

