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Outline

Goal of this course: model anything!

This lecture: model computations

Today: Automaton as a model for computations



Automata or discrete transition systems
• The “state” of a system captures all the information needed to predict 

the system’s future behavior

• Behavior of a system is a sequence of states

• Our ultimate goal: write programs that prove properties about all 
behaviors of a system

• “Transitions” capture how the state can change



All models are wrong, some are useful

The complete state of a computing system has a lot of information 

• values of program variables, network messages, position of the program 
counter, bits in the CPU registers, etc. 

• thus, modeling requires judgment about what is important and what is not

Mathematical formalism used is called automaton a.k.a. discrete transition 
system



Automata or discrete transition systems
• Example: you probably know the finite state machine (FSM)

• States: {1, 2, 3}

• Start state: {1}

• Transistions

• Automata is more general:
• We define “states” implicitly using variables

• The number of state is arbitrary



Example: Dijkstra’s mutual exclusion algorithm

Informal Description:  A token-based mutual exclusion 
algorithm on a ring network
• Collection of processes that send and receive bits over a 

ring network so that only one of them has a “token” to 
access a critical resource (e.g., a shared calendar)

Discrete model
• Each process has variables that take only discrete values 
• Time elapses in discrete steps

Self-stabilizing 
Systems in Spite of 
Distributed Control, 
CACM, 1974.



Token-based mutual exclusion in unidirectional ring

N processes with ids 0, 1, …, N-1
Unidirectional means: each i>0 process Pi reads the state of only the predecessor Pi-1; P0 
reads only PN-1

1. Legal configuration = exactly one “token” in the ring
2. Single token circulates in the ring
3. Even if multiple tokens arise because of faults, if the algorithm continues to work 

correctly, then eventually there is a single token; this is the self stabilizing property

Legal configuration IllegalP0
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Dijkstra’s mutual exclusion Algorithm [‘74]

N processes: 0, 1, …, N-1
state of each process j is a single integer variable x[j]  {0, 1, 2, K-1}, where K > N
The “update” action is defined differently for P0 vs. others
P0 if x[0] = x[N-1] then x[0] := x[0] + 1 mod K
Pj , j > 0 if x[j] ≠ x[j -1]  then x[j] := x[j-1] 

pi has TOKEN if and only if the blue conditional is true
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Sample executions: from a legal state (single token)

…

…
… …

P0

P1 P2

update

update update



Execution from an illegal state

Legal in single “step”

Legal in two steps

P0

P1 P2



Execution from an illegal state

P0

P1 P2



A language for specifying automata (IOA)
automaton DijkstraTR(N:Nat, K:Nat), where K > N
  type ID: enumeration [0,...,N-1]
  type Val: enumeration [0,...,K-1]
  actions
      update(i:ID)
  variables
      x:[ID -> Val]
   transitions
      update(i:ID) 
        pre i = 0 /\ x[i] = x[N-1]
        eff x[i] := (x[i] + 1) %  K
   
       update(i:ID)         
         pre i >0  /\ x[i] ~= x[i-1]
         eff x[i] := x[i-1]



A language for specifying automata
automaton DijkstraTR(N:Nat, K:Nat), where K > N
  type ID: enumeration [0,...,N-1]
  type Val: enumeration [0,...,K-1]
  actions
      update(i:ID)
  variables
      x:[ID -> Val]
   transitions
      update(i:ID) 
        pre i = 0 /\ x[i] = x[N-1]
        eff x[i] := (x[i] + 1) %  K
   
       update(i:ID)         
         pre i >0  /\ x[i] ~= x[i-1]
         eff x[i] := x[i-1]

Name of automaton and 
formal parameters

symbols -> maps, /\ and, \/ or, ~= not equal, % mod



A language for specifying automata
automaton DijkstraTR(N:Nat, K:Nat), where K > N
  type ID: enumeration [0,...,N-1]
  type Val: enumeration [0,...,K-1]
  actions
      update(i:ID)
  variables
      x:[ID -> Val]
   transitions
      update(i:ID) 
        pre i = 0 /\ x[i] = x[N-1]
        eff x[i] := (x[i] + 1) %  K
   
       update(i:ID)         
         pre i >0  /\ x[i] ~= x[i-1]
         eff x[i] := x[i-1]

user defined type 
declarations

symbols -> maps, /\ and, \/ or, ~= not equal, % mod



A language for specifying automata
automaton DijkstraTR(N:Nat, K:Nat), where K > N
  type ID: enumeration [0,...,N-1]
  type Val: enumeration [0,...,K-1]
  actions
      update(i:ID)
  variables
      x:[ID -> Val]
   transitions
      update(i:ID) 
        pre i = 0 /\ x[i] = x[N-1]
        eff x[i] := (x[i] + 1) %  K
   
       update(i:ID)         
         pre i >0  /\ x[i] ~= x[i-1]
         eff x[i] := x[i-1]

declaration of “actions” or 
transition labels; actions 
can have parameter; this 
declares the actions 
update(0), update(1), …, 
update(N-1)

symbols -> maps, /\ and, \/ or, ~= not equal, % mod



A language for specifying automata
automaton DijkstraTR(N:Nat, K:Nat), where K > N
  type ID: enumeration [0,...,N-1]
  type Val: enumeration [0,...,K-1]
  actions
      update(i:ID)
  variables
      x:[ID -> Val]
   transitions
      update(i:ID) 
        pre i = 0 /\ x[i] = x[N-1]
        eff x[i] := (x[i] + 1) %  K
   
       update(i:ID)         
         pre i >0  /\ x[i] ~= x[i-1]
         eff x[i] := x[i-1]

declaration of state 
variables or variables; this 
declares an array x[0], 
x[1], …, x[N-1] of Val’s

symbols -> maps, /\ and, \/ or, ~= not equal, % mod



A language for specifying automata
automaton DijkstraTR(N:Nat, K:Nat), where K > N
  type ID: enumeration [0,...,N-1]
  type Val: enumeration [0,...,K-1]
  actions
      update(i:ID)
  variables
      x:[ID -> Val]
   transitions
      update(i:ID) 
        pre i = 0 /\ x[i] = x[N-1]
        eff x[i] := (x[i] + 1) %  K
   
       update(i:ID)         
         pre i >0  /\ x[i] ~= x[i-1]
         eff x[i] := x[i-1]

declaration of transitions: 
for each action this defines 
when the action can occur 
(pre) and how the state is 
updated when the action 
does occur (eff)

symbols -> maps, /\ and, \/ or, ~= not equal, % mod



The language defines an automaton

An automaton is a tuple � = 〈�, Θ,  �,  �〉 where
• � is a set of names of variables; each variable � ∈ � is associated with 

a type, 푡푦��(�)
• A valuation for � maps each variable in X to its type
• Set of all valuations:푣��(�) this is sometimes identified as the state space of 

the automaton

• Θ ⊆ 푣��(�) is the set of initial or start states
• � is a set of names of actions or labels
• � ⊆ 푣��(�) × � × 푣��(�) is the set of transitions

• a transition is a triple (�, �, �’) 
• We write it as �→��′



Well formed specifications in IOA Language define automata
variables and valuations

variables s, v: Real; a: Bool
X = {s, v, a}
Example valuations of X
• 〈� ↦ 0,  푣 ↦ 5.5,  � ↦ 0〉
• 〈� ↦ 10,  푣 ↦− 2.5,  � ↦ 1〉

set of all possible valuations or “state 
space” is written as 푣��(�)

푣��(�)  =  {〈� ↦ �1,  푣 ↦ �2,  � ↦
�3〉| �1, �2 ∈ �,  �3 ∈ {0,1}}

type ID: [0,…,N-1]
variables x: [ID>Vals]
Fix N = 5, K = 7
x: [{0,…,4} -> {0,…,6}]
Example valuations:

〈� ↦ 〈0 ↦ 0,  1 ↦ 0,  2 ↦ 0,  3 ↦ 0,  4 ↦ 0 〉〉
〈� ↦ 〈0 ↦ 7,  1 ↦ 0,  2 ↦ 0,  3 ↦ 0,  4 ↦ 0,  〉〉

Valuations are usually denoted by bold small 
characters
E.g., 
� = 〈� ↦ 〈0 ↦ 0,  1 ↦ 0,  2 ↦ 0,  3 ↦ 0,  4 ↦ 0 〉〉

Notations 
�⌈� is the value of variable x in u
�⌈ �[4] =0 array notation [] works with ⌈ as expected



States and predicates
A predicate over a set of variable X is a Boolean-valued formula involving the variables in X Examples:

• �1: x 1 = 1
• �2: ∀� ∈ 퐼�,  � � = 0

A valuation u satisfies a predicate � if substituting the values of the variables in u in � makes it evaluate to True. 

We write u⊨ �

Examples: � = 〈� ↦ 〈0 ↦ 0,  1 ↦ 0,  2 ↦ 0,  3 ↦ 0,  4 ↦ 0 〉〉 ; 푣 = 〈� ↦ 〈0 ↦ 1,  1 ↦ 0,  2 ↦ 0,  3 ↦ 0,  4 ↦
0 〉〉

• � ⊨ �2,   (� ⊭ �1) , 푣 ⊨ �1 and 푣  ⊭ �2

  �  : set of all valuations that satisfy �

•   �1  =   〈� ↦ 〈1 ↦ 1,  � ↦ ��〉{�=0,2,…,5}〉 �� ∈ {0, …, 7}}

•   �2  = {〈� ↦ 〈0 ↦ 0,  1 ↦ 0,  2 ↦ 0,  3 ↦ 0,  4 ↦ 0,  5 ↦ 0 〉〉}

• Θ ⊆ 푣��(�) is the set of initial states of the automaton;  often specified by a predicate over X



Actions

• actions section defines the set of Actions of the automaton 
• Examples

• actions update(i:ID)
defines � = {��푑�푡� 0 , …, ��푑�푡� 5 }

• actions brakeOn, brakeOff
defines � = {푏푟�����, 푏푟������}



Transitions defined by preconditions and effects

� ⊆ 푣��(�) × � × 푣��(�) is the set of transitions
� = {(�, �, �′)| such that � ⊨ 푃푟�� and (�, �′) ⊨ 퐸���}
(�, �, �′) ∈ � is written as �→��′ 
Example:
internal update(i:ID)
   pre i = 0 /\ x[i] = x[n-1]
   eff x[i] := x[i] + 1 mod k;
internal update(i:ID)
   pre i ≠ 0 /\ x[ ≠x[i-1]
   eff x[i] := x[i-1];

(�, ��푑�푡�(�), �′) ∈ � iff

(a) (� = 0 ∧ �⌈ � 0 = �⌈� 5 
∧ �′⌈� 0 = � ⌈� 0 + 1 푚�푑 �) ∨

(b) (� ≠ 0 ∧ � ⌈� � ≠ � ⌈� � − 1 
∧ �′ ⌈� � = �⌈� � − 1 )



Executions, Reachability, and Invariants 
Automaton � = 〈�, Θ,  �,  �〉

An executions models a particular behavior of the automaton �

An execution of � is an alternating (possibly infinite) sequence of states 
and actions � = �0�1�1�2�3…such that:

1. �0 ∈ Θ

2. ∀ � in the sequence, ��→��+1��+1

For a finite execution, � = �0�1�1�2�3 the last state �. ��푡�푡� = �3 , 
the first state �. ��푡�푡� = �0, and the length of the execution is 3.

In general, how many executions does an � have? 



Nondeterminism

For an action � ∈ �, Pre(a) is the formula defining its precondition, and 
Eff(a) is the relation defining the effect.

States satisfying precondition are said to enable the action

In general eff(a) could be a relation, but for this example it is a function



Nondeterminism

Nondeterminism
• Multiple post-states from the same action (internal)
• Multiple actions enabled from the same state (external)

internal external



Reachable states and invariants

A state � is reachable if there exists an execution � such that 
�. ��푡�푡� = �

����ℎ�(Θ): set of states reachable from Θ by automaton �

An invariant is a set of states I such that ����ℎ� ⊆ 퐼



val(X): All states e.g. 퐼3 
퐼1: “Exactly one process has the token”.

퐼≥1: “At least one process has a token”.

퐼3: “All processes have values at most  K-1”.
Invariant e.g. 퐼1

����ℎ�(�0)

��

Candidate invariants for token Ring For any automaton 



Reachability as graph search

• Q1. Given �,  is a state � ∈ 푣��(�) reachable? 

• Define a graph �� = 〈�, 퐸〉 where 
• � = 푣��(�)
• 퐸 = {(�, �′)|∃ � ∈ �,  �→��′}

• Q2. Does there exist a path in �� from any state in Θ to � ?

• Perform DFS/BFS on �� 
  



Proving invariants by induction (Chapter 7)

Theorem 7.1. Given a automaton � = 〈�, Θ,  �,  �〉 and a set of states 퐼 ⊆ 푣��(�) if: 

• (Start condition) for any � ∈ Θ implies � ∈ 퐼, and

• (Transition closure) for any �→��’ and � ∈ 퐼 implies �′ ∈ 퐼
then 퐼 is an (inductive) invariant of �. That is ����ℎ�(Θ) ⊆ 퐼.



Proving invariants by induction (Chapter 7)

Proof. Consider any reachable state �.  By the definition of a reachable state, there exists an 
execution � of � such that �. ��푡�푡� =  �. 

We proceed by induction on the length �

For the base case, � consists of a single starting state � = � ∈ Θ, and by the Start condition, � ∈ 퐼. 

For the inductive step, � = �′� � where � ∈ �. By the induction hypothesis, we know that 
�′. ��푡�푡� ∈ 퐼. 

Invoking Transition closure on �′. ��푡�푡�→�� we obtain � ∈ 퐼. QED

Theorem 7.1. Given a automaton � = 〈�, Θ,  �,  �〉 and a set of states 퐼 ⊆ 푣��(�) if: 

• (Start condition) for any � ∈ Θ implies � ∈ 퐼, and

• (Transition closure) for any �→��′ and � ∈ 퐼 implies �′ ∈ 퐼
then 퐼 is an (inductive) invariant of �. That is ����ℎ�(Θ) ⊆ 퐼.



Proving invariants by induction for Dijkstra

• 퐼1:  “Exactly one process has the token”.
(Start condition): Fix a � ∈ Θ.  � ⊨ ∀� �⌈� � = 0 therefore � ⊨ 퐼1
(Transition closure): Fix a �→��′ such that � ∈ 퐼. 
Two cases to consider. 
1. If � = ��푑�푡�(0) then

a) since � ⊨ 푃푟� ��푑�푡�(0)  it follows that �⌈� 0 = �⌈� � − 1 
b) since � ⊨ 퐼1 it follows that ∀� > 0 �⌈� � = �⌈� � − 1 
c)  �′⌈� 0 ≠ �′⌈� � − 1  by applying (a) and 퐸�� ��푑�푡�(0)  to �
d)  �′⌈� 1 ≠ �′⌈� 0  by applying (b) 퐸�� ��푑�푡�(0)  to �
e) ∀� > 1 �′⌈� � = �′⌈� � − 1 by applying (b) 퐸�� ��푑�푡�(0)  to �
Therefore �′ ⊨ 퐼.

2. If � = ��푑�푡�(�),  i > 0 then fix arbitrary � > 0 … (do it as an exercise) 

automaton DijkstraTR(N:Nat, K:Nat), where K > N
  type ID: enumeration [0,...,N-1]
  type Val: enumeration [0,...,K-1]
  actions
      update(i:ID)
  variables
      x:[ID -> Val] initially forall i:ID x[i] = 0
   transitions
      update(i:ID) 
        pre i = 0 /\ x[i] = x[(N-1)]
        eff x[i] := (x[i] + 1) %  K
   
       update(i:ID)
         pre i >0  /\ x[i] ~= x[i-1]
         eff x[i] := x[i-1]

Theorem 7.1. Given a automaton � = 〈�, Θ,  �,  �〉 and a set of states 퐼 ⊆ 푣��(�) if: 

• (Start condition) for any � ∈ Θ implies � ∈ 퐼, and

• (Transition closure) for any �→��’ and � ∈ 퐼 implies �′ ∈ 퐼

then 퐼 is an (inductive) invariant of �. That is ����ℎ�(Θ) ⊆ 퐼.

From above  Theorem it follows that 퐼1 is an invariant of DijkstraTR



Assignments
• Read. Modeling computation: Chapter 2 of CPSBook, first part 

of Chapter 7 (7.1, 7.2), and section on SAT/SMT (7.5)

• HW1 due 02/10

• IOA Specification language: Appendix C of CPSBook 

• Keep thinking about class project!


