Lecture 2: Modeling Computation

Huan Zhang

huan@huan-zhang.com

Slides adapted from Prof. Sayan Mitra's slides in Fall 2021

Outline

Goal of this course: model anything!

This lecture: model **computations**

Today: Automaton as a model for computations

Automata or discrete transition systems

- The "state" of a system captures all the information needed to predict the system's future behavior
- Behavior of a system is a sequence of states
- Our ultimate goal: write programs that prove properties about all behaviors of a system
- "Transitions" capture how the state can change

All models are wrong, some are useful

The complete state of a computing system has a lot of information

- values of program variables, network messages, position of the program counter, bits in the CPU registers, etc.
- thus, modeling requires judgment about what is important and what is not

Mathematical formalism used is called *automaton* a.k.a. *discrete* transition system

Automata or discrete transition systems

- Example: you probably know the finite state machine (FSM)
 - States: {1, 2, 3}
 - Start state: {1}
 - Transistions

- Automata is more general:
 - We define "states" implicitly using variables
 - The number of state is arbitrary

Example: Dijkstra's mutual exclusion algorithm

Informal Description: A token-based mutual exclusion algorithm on a ring network

• Collection of processes that send and receive bits over a ring network so that only one of them has a "token" to access a critical resource (e.g., a shared calendar)

Discrete model

- Each process has variables that take only discrete values
- Time elapses in discrete steps

Self-stabilizing Systems in Spite of Distributed Control, CACM, 1974.

Token-based mutual exclusion in unidirectional ring

N processes with ids 0, 1, ..., N-1

Unidirectional means: each i>0 process P_i reads the state of only the predecessor P_{i-1} , P_0 reads only P_{N-1}

- 1. Legal configuration = exactly one "token" in the ring
- 2. Single token circulates in the ring
- 3. Even if multiple tokens arise because of faults, if the algorithm continues to work correctly, then eventually there is a single token; this is the *self stabilizing* property

Dijkstra's mutual exclusion Algorithm ['74]

N processes: 0, 1, ..., N-1

state of each process j is a single integer variable $x[j] \in \{0, 1, 2, K-1\}$, where K > NThe "update" action is defined differently for P0 vs. others

 P_0 if x[0] = x[N-1]then $x[0] := x[0] + 1 \mod K$ $P_j, j > 0$ if $x[j] \neq x[j-1]$ then x[j] := x[j-1]

p_i has TOKEN if and only if the blue conditional is true

Sample executions: from a legal state (single token)

•••

Execution from an illegal state

Execution from an illegal state


```
automaton DijkstraTR(N:Nat, K:Nat), where K > N
 type ID: enumeration [0,...,N-1]
 type Val: enumeration [0,...,K-1]
 actions
   update(i:ID)
 variables
   x:[ID -> Val]
 transitions
   update(i:ID)
    pre i = 0 / x[i] = x[N-1]
    eff x[i] := (x[i] + 1) % K
    update(i:ID)
     pre i >0 /\ x[i] ~= x[i-1]
     eff x[i] := x[i-1]
```

automaton DijkstraTR(N:Nat, K:Nat), where K > N

```
type ID: enumeration [0,...,N-1]
type Val: enumeration [0,...,K-1]
actions
  update(i:ID)
variables
  x:[ID -> Val]
transitions
  update(i:ID)
   pre i = 0 / x[i] = x[N-1]
   eff x[i] := (x[i] + 1) \% K
```

```
update(i:ID)
pre i >0 /\ x[i] ~= x[i-1]
eff x[i] := x[i-1]
```

Name of automaton and formal parameters

symbols -> maps, /\ and, \/ or, ~= not equal, % mod

```
automaton DijkstraTR(N:Nat, K:Nat), where K > N
 type ID: enumeration [0,...,N-1]
 type Val: enumeration [0,...,K-1]
 actions
   update(i:ID)
 variables
   x:[ID -> Val]
 transitions
   update(i:ID)
    pre i = 0 / x[i] = x[N-1]
    eff x[i] := (x[i] + 1) \% K
    update(i:ID)
     pre i >0 /\ x[i] ~= x[i-1]
     eff x[i] := x[i-1]
```

user defined type declarations

symbols -> maps, /\ and, \/ or, ~= not equal, % mod

```
automaton DijkstraTR(N:Nat, K:Nat), where K > N
 type ID: enumeration [0,...,N-1]
 type Val: enumeration [0,...,K-1]
 actions
   update(i:ID)
 variables
   x:[ID -> Val]
 transitions
   update(i:ID)
    pre i = 0 / x[i] = x[N-1]
    eff x[i] := (x[i] + 1) % K
    update(i:ID)
     pre i >0 /\ x[i] ~= x[i-1]
```

eff x[i] := x[i-1]

declaration of "actions" or transition labels; actions can have parameter; this declares the actions update(0), update(1), ..., update(N-1)

symbols -> maps, /\ and, \lor or, ~= not equal, % mod

```
automaton DijkstraTR(N:Nat, K:Nat), where K > N
 type ID: enumeration [0,...,N-1]
 type Val: enumeration [0,...,K-1]
 actions
   update(i:ID)
 variables
   x:[ID -> Val]
 transitions
   update(i:ID)
    pre i = 0 / x[i] = x[N-1]
    eff x[i] := (x[i] + 1) % K
    update(i:ID)
     pre i >0 /\ x[i] ~= x[i-1]
     eff x[i] := x[i-1]
```

declaration of state variables or variables; this declares an array x[0], x[1], ..., x[N-1] of Val's

symbols -> maps, /\ and, \/ or, ~= not equal, % mod

```
automaton DijkstraTR(N:Nat, K:Nat), where K > N
 type ID: enumeration [0,...,N-1]
 type Val: enumeration [0,...,K-1]
 actions
   update(i:ID)
 variables
   x:[ID -> Val]
 transitions
   update(i:ID)
    pre i = 0 / x[i] = x[N-1]
    eff x[i] := (x[i] + 1) % K
    update(i:ID)
     pre i >0 /\ x[i] ~= x[i-1]
     eff x[i] := x[i-1]
```

declaration of transitions: for each action this defines when the action can occur (pre) and how the state is updated when the action does occur (eff)

symbols -> maps, /\ and, \/ or, ~= not equal, % mod

The language defines an automaton

An automaton is a tuple $\mathcal{A} = \langle X, \Theta, A, \mathcal{D} \rangle$ where

- X is a set of names of variables; each variable $x \in X$ is associated with a type, type(x)
 - A valuation for X maps each variable in X to its type
 - Set of all valuations: val(X) this is sometimes identified as the state space of the automaton
- $\Theta \subseteq val(X)$ is the set of initial or start states
- A is a set of names of actions or labels
- $\mathcal{D} \subseteq val(X) \times A \times val(X)$ is the set of transitions
 - a transition is a triple (*u*, *a*, *u*')
 - We write it as $u \rightarrow_a u'$

Well formed specifications in IOA Language define automata variables and valuations

variables s, v: Real; a: Bool

 $X = \{s, v, a\}$

Example valuations of X

- $\langle s \mapsto 0, v \mapsto 5.5, a \mapsto 0 \rangle$
- $\langle s \mapsto 10, v \mapsto -2.5, a \mapsto 1 \rangle$

set of all possible valuations or "state space" is written as val(X)

 $\begin{aligned} val(X) &= \{ \langle s \mapsto c_1, v \mapsto c_2, a \mapsto \\ c_3 \rangle | c_1, c_2 \in R, c_3 \in \{0,1\} \} \end{aligned}$

type ID: [0,...,N-1] variables x: [ID>Vals] *Fix N* = *5*, *K* = *7* x: [{0,...,4} -> {0,...,6}] Example valuations: $\langle x \mapsto \langle 0 \mapsto 0, 1 \mapsto 0, 2 \mapsto 0, 3 \mapsto 0, 4 \mapsto 0 \rangle \rangle$ $\langle x \mapsto \langle 0 \mapsto 7, 1 \mapsto 0, 2 \mapsto 0, 3 \mapsto 0, 4 \mapsto 0, \rangle \rangle$ Valuations are usually denoted by bold small characters E.g., $\boldsymbol{u} = \langle \boldsymbol{x} \mapsto \langle \boldsymbol{0} \mapsto \boldsymbol{0}, \ \boldsymbol{1} \mapsto \boldsymbol{0}, \ \boldsymbol{2} \mapsto \boldsymbol{0}, \ \boldsymbol{3} \mapsto \boldsymbol{0}, \ \boldsymbol{4} \mapsto \boldsymbol{0} \rangle \rangle$

Notations $\boldsymbol{u}[x \text{ is the value of variable } x \text{ in } \boldsymbol{u}$ $\boldsymbol{u}[x[4] = 0 \text{ array notation [] works with [as expected]$

States and predicates

A *predicate* over a set of variable X is a Boolean-valued formula involving the variables in X Examples:

- $\phi_1: x[1] = 1$
- ϕ_2 : $\forall i \in ID$, x[i] = 0

A valuation u satisfies a predicate ϕ if substituting the values of the variables in u in ϕ makes it evaluate to True. We write $u \models \phi$

Examples: $u = \langle x \mapsto \langle 0 \mapsto 0, 1 \mapsto 0, 2 \mapsto 0, 3 \mapsto 0, 4 \mapsto 0 \rangle \rangle$; $v = \langle x \mapsto \langle 0 \mapsto 1, 1 \mapsto 0, 2 \mapsto 0, 3 \mapsto 0, 4 \mapsto 0 \rangle \rangle$

• $u\vDash\phi_2$, $(u\nvDash\phi_1)$, $v\vDash\phi_1$ and $v\nvDash\phi_2$

 $[[\phi]]$: set of all valuations that satisfy ϕ

- $\left[\left[\phi_1 \right] \right] = \left\{ \langle x \mapsto \langle 1 \mapsto 1, i \mapsto c_i \rangle_{\{i=0,2,\dots,5\}} \rangle \middle| c_i \in \{0,\dots,7\} \right\}$
- $[[\phi_2]] = \{ \langle x \mapsto \langle 0 \mapsto 0, 1 \mapsto 0, 2 \mapsto 0, 3 \mapsto 0, 4 \mapsto 0, 5 \mapsto 0 \rangle \}$
- $\Theta \subseteq val(x)$ is the set of initial states of the automaton; often specified by a predicate over X

Actions

- actions section defines the set of Actions of the automaton
- Examples
 - actions update(i:ID)
 defines A = {update[0], ..., update[5]}
 - actions brakeOn, brakeOff
 defines A = {brakeOn, brakeOff}

Transitions defined by preconditions and effects

 $\mathcal{D} \subseteq val(X) \times A \times val(X)$ is the set of transitions $\mathcal{D} = \{(u, a, u') | \text{ such that } u \models Pre_a \text{ and } (u, u') \models Eff_a\}$ $(u, a, u') \in \mathcal{D}$ is written as $u \rightarrow_a u'$ Example:

internal update(i:ID) pre i = $0 \land x[i] = x[n-1]$ eff x[i] := x[i] + 1 mod k; internal update(i:ID) pre i $\neq 0 \land x[\neq x[i-1]$ eff x[i] := x[i-1];

 $(\boldsymbol{u}, update(i), \boldsymbol{u}') \in \mathcal{D}$ iff

```
(a) (i = 0 \land u[x[0] = u[x[5] \land u'[x[0] = u[x[0] + 1 \mod K) \lor

(b) (i \neq 0 \land u[x[i] \neq u[x[i - 1] \land u'[x[i] = u[x[i - 1])
```

Executions, Reachability, and Invariants

Automaton $\mathcal{A} = \langle X, \Theta, A, \mathcal{D} \rangle$

An executions models a particular behavior of the automaton ${\mathcal A}$

An *execution* of \mathcal{A} is an alternating (possibly infinite) sequence of states and actions $\alpha = u_0 a_1 u_1 a_2 u_3$...such that:

1. $u_0 \in \Theta$

2. $\forall i \text{ in the sequence, } u_i \rightarrow_{a_{i+1}} u_{i+1}$

For a *finite* execution, $\alpha = u_0 a_1 u_1 a_2 u_3$ the *last state* α . *lstate* $= u_3$, the *first state* α . *fstate* $= u_0$, and the length of the execution is 3. In general, how many executions does an \mathcal{A} have?

Nondeterminism

For an action $a \in A$, Pre(a) is the formula defining its precondition, and Eff(a) is the relation defining the effect.

States satisfying precondition are said to *enable* the action

In general eff(a) could be a relation, but for this example it is a function

Nondeterminism

Nondeterminism

- Multiple post-states from the same action (internal)
- Multiple actions enabled from the same state (external)

internal

external

Reachable states and invariants

A state u is *reachable* if there exists an execution α such that α . *lstate* = u

 $Reach_{\mathcal{A}}(\Theta)$: set of states reachable from Θ by automaton \mathcal{A}

An *invariant* is a set of states I such that $Reach_{\mathcal{A}} \subseteq I$

Candidate invariants for token Ring

 I_1 : "Exactly one process has the token". $I_{\geq 1}$: "At least one process has a token".

 I_3 : "All processes have values at most K-1".

Reachability as graph search

- Q1. Given \mathcal{A} , is a state $u \in val(X)$ reachable?
- Define a graph $G_{\mathcal{A}} = \langle V, E \rangle$ where
 - V = val(X)
 - $E = \{(u, u') | \exists a \in A, u \rightarrow_a u'\}$
- Q2. Does there exist a path in $G_{\mathcal{A}}$ from any state in Θ to u?
- Perform DFS/BFS on $G_{\mathcal{A}}$

Proving invariants by induction (Chapter 7)

Theorem 7.1. Given a automaton $\mathcal{A} = \langle X, \Theta, A, \mathcal{D} \rangle$ and a set of states $I \subseteq val(X)$ if:

- (Start condition) for any $x \in \Theta$ implies $x \in I$, and
- (Transition closure) for any $x \rightarrow_a x'$ and $x \in I$ implies $x' \in I$

then I is an (inductive) invariant of \mathcal{A} . That is $Reach_{\mathcal{A}}(\Theta) \subseteq I$.

Proving invariants by induction (Chapter 7)

Theorem 7.1. Given a automaton $\mathcal{A} = \langle X, \Theta, A, \mathcal{D} \rangle$ and a set of states $I \subseteq val(X)$ if:

- (Start condition) for any $x \in \Theta$ implies $x \in I$, and
- (Transition closure) for any $x \rightarrow_a x'$ and $x \in I$ implies $x' \in I$

then I is an (inductive) invariant of \mathcal{A} . That is $Reach_{\mathcal{A}}(\Theta) \subseteq I$.

Proof. Consider any reachable state x. By the definition of a reachable state, there exists an execution α of \mathcal{A} such that α . *Istate* = x.

We proceed by induction on the length α

For the base case, α consists of a single starting state $\alpha = x \in \Theta$, and by the Start condition, $x \in I$. For the inductive step, $\alpha = \alpha' \alpha x$ where $a \in A$. By the induction hypothesis, we know that α' . *Istate* $\in I$.

Invoking Transition closure on α' . $lstate \rightarrow_a x$ we obtain $x \in I$. QED

Proving invariants by induction for Dijkstra

Theorem 7.1. Given a automaton $\mathcal{A} = \langle X, \Theta, A, \mathcal{D} \rangle$ and a set of states $I \subseteq val(X)$ if:

- (Start condition) for any $x \in \Theta$ implies $x \in I$, and
- (Transition closure) for any $x \rightarrow_a x'$ and $x \in I$ implies $x' \in I$

then *I* is an (inductive) invariant of \mathcal{A} . That is $Reach_{\mathcal{A}}(\Theta) \subseteq I$.

• I_1 : "Exactly one process has the token". (Start condition): Fix a $x \in \Theta$. $x \models \forall i \ x[x[i] = 0$ therefore $x \models I_1$ (Transition closure): Fix a $x \rightarrow_a x'$ such that $x \in I$.

Two cases to consider.

1. If a = update(0) then

- a) since $x \models Pre(update(0))$ it follows that x[x[0] = x[x[N-1]])
- b) since $x \models I_1$ it follows that $\forall i > 0 \ x[x[i] = x[x[i-1]]$
- c) $x'[x[0] \neq x'[x[N-1]]$ by applying (a) and Eff(update(0)) to x
- d) $x'[x[1] \neq x'[x[0]]$ by applying (b) Eff(update(0)) to x
- e) $\forall i > 1 \ x'[x[i] = x'[x[i-1]]$ by applying (b) Eff(update(0)) to xTherefore $x' \models I$.
- 2. If a = update(i), i > 0 then fix arbitrary i > 0 ... (do it as an exercise)

From above **Theorem** it follows that I_1 is an invariant of DijkstraTR

```
automaton DijkstraTR(N:Nat, K:Nat), where K > N
type ID: enumeration [0,...,N-1]
type Val: enumeration [0,...,K-1]
actions
    update(i:ID)
variables
    x:[ID -> Val] initially forall i:ID x[i] = 0
transitions
    update(i:ID)
    pre i = 0 /\ x[i] = x[(N-1)]
    eff x[i] := (x[i] + 1) % K
update(i:ID)
```

pre i >0 /\ x[i] ~= x[i-1] eff x[i] := x[i-1]

Assignments

- Read. Modeling computation: Chapter 2 of CPSBook, first part of Chapter 7 (7.1, 7.2), and section on SAT/SMT (7.5)
- HW1 due 02/10
- IOA Specification language: Appendix C of CPSBook
- Keep thinking about class project!