
Course Introduction
Verification of embeded & cyberphysical systems

Spring 2024

Huan Zhang
CSL 262

huan@huan-zhang.com

Slides adapted from Prof. Sayan Mitra’s slides in Fall 2021

Welcome to
Spring 24
edition of
ECE/CS 584!

INTRODUCTION
What is this class about?

Verification of embeded & cyberphysical systems

What is verification?

Definition. Verification is the action of demonstrating or proving
some statement to be true by means of evidence. OED

This class:

some statement = about cyber-physical systems

evidence = mathematical proof

What are cyber-physical systems (CPS)?

A computer system monitoring or controlling a physical process.

Examples: a drone for package delivery, control system for a smart electric grid, insulin pump for
blood glucose control, …

The number of possible behaviors of such systems is usually uncountably infinite

Requirements: Statements about all behaviors
– Drone visits waypoints while avoiding collisions

– Under all nominal conditions the vehicle stays within the lanes

– Insulin pump maintains blood glucose level to within the prescribed range

Testing: evaluates requirements on a finite number of behaviors

Verification: aims to prove requirements over all behaviors

Autonomous vehicle: An example CPS

Environment

Vehicle
dynamics

Perception Control

푒��: Lidar / vision

Planning
and

decision

Sensing

Open problem

7

Simulated race car following a track with
Lidar-based perception and control.

Problem: For a given track and initial
conditions check that the trajectory of the
car does not collide and stays in lane.

Can we check efficiently?
Can we generalize to similar tracks?
What should we assume about perception,
accuracy of the vehicle model?
What should we assume about the
execution of the controller?

Environment
/ Track

�

�

� = � �, � Perception
Controller

(program or
ML models)

푒��: Lidar / vision

Open problem

Simulated race car following a track with
Lidar-based perception and control.

Problem: For a given track and initial
conditions check that the trajectory of the
car does not collide and stays in lane.

Can we check efficiently?
Can we generalize to similar tracks?
What should we assume about perception,
accuracy of the vehicle model?
What should we assume about the
execution of the controller?
Even more challenging with multiple agents

https://github.com/waymo-research/waymax

https://github.com/waymo-research/waymax

Proof or Certificate

System Model/Code &
Property

Bug trace

Algorithm
or Method

The verification problem

9

Verification. The action of demonstrating or proving to be true
by means of evidence; formal assertion of truth. (OED)

9

Environme
nt

/ Track

�

�

�
= � �, � Perception Controller

Program verification

Certificate

System
Model/Code &

Property

Bug traceAlgorithm
or

Method

System. A subroutine
sort(int a[])
for returning a sorted
array of integers in some
programming language,
e.g. C

Requirement. Output of
sort(int a[])
is the sorted version of
the input array a[]

Verifying compiler.
Checks that sort meets
the requirement

counterexample. A
particular input array a
and initialization of sort
that produces wrong
output

A mathematical proof
that establishes that
sort(int a[])works
for all inputs in the given
model M of C

A model M for execution
of programs in C

A cyber-physical example

Proof
Certificate

System
Model/Code &

Property

Bug traceAlgorithm
or

Method

System. A
program/system for lane
keeping control for
vehicles

Requirement. The
vehicle does not go
outside the lane
boundaries

Verification tool

counterexample. A
particular environment
situation (lane geometry,
sensor failure, computer
configuration) that
makes the vehicle go
outside lanes

A mathematical proof
that establishes that for
all allowed inputs and
environments the vehicle
stays with the lane

Model/assumptions for
executing such programs
including the effects on
the physical vehicle

When can we build such a tool? How expensive is it? How well is it going to work? Under what assumptions?

Our goals in this course

Write programs (tools) that prove correctness

• Understand fundamental limits of creating such tools

• Learn models of CPS at different levels of abstractions

• Gain research experience

Algorithm
or Method

Successes of Verification
Hardware verification now standard in EDA tools from Synopsys, Cadence, etc.

SLAM tool from MSR routinely used for verification of Device Drivers at
Microsoft:

AMAZON AWS developers write proofs using CBMC and other Automated
reasoning tools

Google runs static analysis tools on their entire codebase

Airbus: verified C code on safety-critical software for various plane series,
including the A380

Formal modeling and analysis is becoming part of certification process for
avionics (e.g., ASTREE); DO-333 supplement of DO-178C identifies aspects of
airworthiness certification that pertains to of software using formal methods

Commercialization: Coverity, Galois, SRI, and others

Check out
https://github.com/ligurio/practical-fm

https://www.microsoft.com/en-us/research/project/slam/
https://aws.amazon.com/blogs/security/tag/automated-reasoning/
https://cacm.acm.org/magazines/2018/4/226371-lessons-from-building-static-analysis-tools-at-google/fulltext
https://www.erts2020.org/inc/telechargerPdf.php?pdf=ERTS2020_paper_54.pdf
https://github.com/ligurio/practical-fm

Intellectual successes

Turing Awards:

Lamport (2013): Verification of distributed and concurrent systems

Clarke, Sifakis & Emerson (2006): Model checking

Pnueli (1996): Temporal logic

Lampson (1992): Distributed system

Milner (1991): Logic for Computable Functions, Meta Language

Hoare (1980): Hoare logic, program verification

Rabin & Scott (1976): Finite Automata

Dijkstra (1972): Structured programming, algorithms, distributed systems

Intellectual successes

ACM Doctoral Dissertation Award: Chuchu Fan (2020) alumni of this class, now a professor at MIT

Covers and connects some of the brightest ideas in CS and control

Vibrant community: CAV, TACAS, PLDI (programming languages),

HSCC, EMSoft, ICCPS (hybrid and cyber-physical systems)

Robotics, automatic control (IROS, ICRA, RSS, CDC, ACC, ...)

AI and machine learning (NeurIPS, ICML, ICLR, ...)

Faculty and research positions: Alumni of this course are professors at Vanderbilt, UNC Chapel Hill,
MIT, Kansas, Stoney Brook, and researchers at Waymo, Toyota, Boeing

https://awards.acm.org/doctoral-dissertation
https://dblp.org/db/conf/cav/index.html
https://dblp.org/db/conf/tacas/index.html

Can you name a few challenges for CPS verification?

Challenge 1: Models

To prove anything, first we have to start with assumptions

Assumptions are captured in the models (of cyberphysical systems)

1/3 of this class is about models
• Programs, state machines, or differential equations, block diagrams
• Discrete or continuous time, state or both -- hybrid
• Deterministic or nondeterministic or probabilistic
• Composition and interfaces, abstraction
• Modeling languages, tools
• Modeling machine learning, deep neural networks

https://tribalsimplicity.com/2014/07/28/george-box-models-wrong-useful/

Challenge 2: Scalability

Verification of hybrid automaton is undecidable
– impossible to construct an algorithm that always leads to a

correct yes-or-no answer

Approximate and bounded time versions of the problem can
be solved algorithmically

Often the algorithms do not scale with the size of the model,
number of agents, time horizon, etc.

Certificat
e

System
Model/Code
& Property

Bug trace
Algorithm
or Method

Trilemma: Scalability of analysis vs Expressivity of model vs Precision of analysis

Perspectives on scalability

data scientist

Solution
does not
scale

algorithmist

This is
perfect!

verification engineer

Yay,
decidable!

O(n) O(n) O(2n)

New, underspecified, empirical Well-understood

Lateral
controller

Neural network-
based

Lane detection

Vehicle model
Environment

simulated

image

Uncontrolled variables
lighting, weather, etc.

Perceived variables
heading, dist

Controlled variables
angular velocity

def control(heading, dist):
 error = heading + arctan(KP*dist, VEL)
Calculate controller output
 ang_vel = error / CYCLE_TIME
 if ang_vel > VEL_MAX:
 ang_vel = VEL_MAX
 elif ang_vel < VEL_MIN:
 ang_vel = VEL_MIN
 return ang_vel

Challenge 3: Perception & Machine Learning

Learning objectives

• Introduction to key concepts in formal
methods and cyberphysical systems; exposure
to some of the most influential ideas in CS and
control theory

• Model anything

• Foundational connections between computer
science and control theory

• Learn powerful algorithms and tools

• Jumpstart research

Programs, state machines, or
differential equations, discrete
or continuous state or both,
Hybrid, switched, Deterministic
or nondeterministic or both,
composition, interfaces,
abstraction, modeling
languages, tools

Invariant, barrier certificates,
ranking functions, stability, self-
stabilization, convergence,
transition system

satisfiability modulo theory,
semantics, temporal logics,
theorem provers, SAF solvers,
ranking functions, data-driven
verification, HYLAA, C2E2,
SpaceEx, Flow*, Z3, …

semester-long project,
feedback, presentation,
hardware, software, and data
resources

Course Logistics

• Course website:
https://publish.illinois.edu/ece584-
spring2024/

• Canvas: homework submission &
announcement

• Lectures TR 11:00 – 12:20
• Textbook (by Prof. Sayan Mitra)
• Slides will be posted on website after lecture
• Please do the reading assignment before each

lecture

https://publish.illinois.edu/ece584-spring2024/
https://canvas.illinois.edu/courses/44138
https://www.amazon.com/gp/product/B097G4NF2D?pf_rd_r=MNT3VZ4P6Q0G864WDV0Q&pf_rd_p=8fe9b1d0-f378-4356-8bb8-cada7525eadd&pd_rd_r=ece02fcb-71b5-4761-b95a-4a3372b5f3f5&pd_rd_w=uKUaY&pd_rd_wg=N1bMh&ref_=pd_gw_unk

Homework

• Homeworks: 5 sets. Analysis and some coding
– Due 11:59 pm on the due date (hard deadline, no

exceptions)

– Late policy: 20% grade reduction per day; no late
homework will be accepted >=5 days after the due
date.

• Submit your homework on Canvas:
– https://canvas.illinois.edu/courses/44138

– HW1 will be released on 01/23 and due on 02/09

https://canvas.illinois.edu/courses/44138

Project

• Proposal due 2/23

• Work individually or in a team of 2 (if you
want to form a larger team, please talk to me)

• Mid-semester project review: after Spring
break

• Final presentation: last week of instruction

• Final report: due in finals week

Office Hours

• By appointment. 2 hours available per week:
– In-person: https://calendly.com/huan-lye/584-

spring24-inperson

– Virtual: https://calendly.com/huan-lye/ece-cs-
584-office-hours-virtual

https://calendly.com/huan-lye/584-spring24-inperson
https://calendly.com/huan-lye/ece-cs-584-office-hours-virtual

Grading

Homework 50%

Project 45%

Participation 5%

No exams. Spend time on making a successful
project!

Think about course project!

https://publish.illinois.edu/ece584-spring2024/project-jumpstart/

https://publish.illinois.edu/ece584-spring2024/project-jumpstart/

