Introduction to Robotics Lecture: Motion Planning

ECE 470/AE 482/ME 445

Motion Planning

- Motion planning is the problem of finding a robot motion from a start state to a goal state that avoids obstacles in the environment and satisfies other constraints, such as joint limits or torque limits.
- Recall the configuration space (C-space): every point in the C-space $\mathcal{C} \subset \mathbb{R}^n$ corresponds to a unique configuration q of the robot

• Example: configuration of a robot arm is $q = (\theta_1, ..., \theta_n)$

• The free C-space \mathcal{C}_{free} consists of the configurations where the robot neither collides with obstacles nor violates constraints

Equations of Motion for Motion Planning

- Control inputs (m-vector)
 - $u \in U \subset \mathbb{R}^m$
- States
 - The **state** of the robot is defined by its configuration and velocity
 - $x = (q, v) \in X$ (for $q \in \mathbb{R}^n$, typically $v = \dot{q}$)
- $X_{free} = \{x | q(x) \in C_{free}\}$, where q(x) is the configuration q corresponding to the state x
- The equation of motion of the robot

$$\dot{x} = f(q, u)$$

or

$$x(T) = x(0) + \int_0^T f(x(t), u(t)) dt$$

Motion Planning

- Given an initial state $x(0) = x_{start}$ and a desired final state x_{goal} , find a time T and a set of controls $u: [0, T] \rightarrow U$ such that the motion satisfies $x(T) = x_{goal}$ and $q(x(t)) \in C_{free}$ for all $t \in [0, T]$
- Assumptions:
 - 1. A feedback controller can ensure that the planned motion is followed closely
 - 2. An accurate model of the robot and environment will evaluate \mathcal{C}_{free} during motion planning

Types of Motion Planning Problems

- Path planning versus motion planning
 - Trajectory generation versus these lectures
- Control inputs: m = n versus m < n
- Online versus offline
 - How reactive does your planner need to be?
- Optimal versus satisficing
 - Minimum cost or just reach goal?
- Exact versus approximate
 - What is sufficiently close to goal?
- With or without obstacles
 - How challenging is the problem?

Properties of Motion Planners

- Multiple-query versus single-query planning
- "Anytime" planning
 - Continues to look for better solutions after first solution is found
- Completeness
 - A planner is complete if it is guaranteed to find a solution in finite time if one exists, and report failure if no feasible plan exists
 - A planner is resolution complete if it is guaranteed to find a solution, if one exists, at the resolution of a discretized representation
 - A planner is probabilistically complete if the probability of finding a solution, if one exists, tends to 1 as planning time goes to infinity
- Computational complexity
 - Characterization of the amount of time a planner takes to run or the amount of memory it requires

Motion Planning Methods

- Complete methods
 - exact representations of the geometry of the problem and space
- Grid methods
 - discretize C_{free} and search the grid from q_{start} to goal
- Sampling methods
 - randomly sample from the C-space, evaluate if the sample is in X_{free} , and add new sample to previous samples
- Virtual potential fields
 - create forces on the robot that pull it toward goal and away from obstacles
- Nonlinear optimization
 - minimize some cost subject to constraints on the controls, obstacles, and goal
- Smoothing
 - given some guess or motion planning output, improve the smoothness while avoiding collisions

Configuration Space Obstacles

- We want to partition our C-space into two sets
 - The free space \mathcal{C}_{free}
 - The obstacle space \mathcal{C}_{obs}
 - Where $\mathcal{C} = \mathcal{C}_{free} \cup \mathcal{C}_{obs}$
- If obstacles break C_{free} into separate components and q_{start} and q_{goal} are not in the same connected components, then there is no collision-free path

Configuration Space: 2R Planar Arm

Configuration Space: Circular Mobile Bot

Polygonal Planar robot that translates and rotates

Polygonal Planar robot that translates and rotates

Collision Detection

• Given a C-obstacle B and a configuration q,

d(q, B) = distance between the robot and the obstacle

- $d(q,B) > 0 \Rightarrow$ no contact with the obstacle
- $d(q,B) = 0 \Rightarrow$ contact
- d(q,B) < 0 => penetration
- Distance-measurement algorithm
 - Determines d(q, B)
- Collision-detection routine
 - Determines whether $d(q, B_i) \leq 0$ for any C-obstacle B_i

Spherical Approximations

- One simple method is to approximate the robot and obstacles as unions of overlapping spheres
- Approximations must be conservative

Distance Measures

• Given a robot at q represented by k spheres of radius R_i centered at $r_i(q)$, i = 1, ..., k, and an obstacle B represented by l spheres of radius B_j centered at b_j , j = 1, ..., l, the distance between the robot and the obstacle can be calculated as d(q, B)

$$d(q, B) = \min \|r_i(q) - b_j\| - R_i - B_j$$

Summary

- Defined and discussed concepts relating to motion planning
- Overviewed motion planning types, properties, and methods
- Discussed configuration space components $\mathcal{C}_{obs} and \, \mathcal{C}_{free}$
- Gave example distance measurement approaches to check collision detection