Introduction to Robotics
 Lecture: Motion Planning

ECE 470/AE 482/ME 445

Motion Planning

- Motion planning is the problem of finding a robot motion from a start state to a goal state that avoids obstacles in the environment and satisfies other constraints, such as joint limits or torque limits.
- Recall the configuration space (C-space): every point in the C-space $\mathcal{C} \subset \mathbb{R}^{n}$ corresponds to a unique configuration q of the robot
- Example: configuration of a robot arm is $q=\left(\theta_{1}, \ldots, \theta_{n}\right)$
- The free C-space $\mathcal{C}_{\text {free }}$ consists of the configurations where the robot neither collides with obstacles nor violates constraints

Equations of Motion for Motion Planning

- Control inputs (m-vector)
- $u \in U \subset \mathbb{R}^{m}$
- States
- The state of the robot is defined by its configuration and velocity
- $x=(q, v) \in X\left(\right.$ for $q \in \mathbb{R}^{n}$, typically $\left.v=\dot{q}\right)$
- $X_{\text {free }}=\left\{x \mid q(x) \in \mathcal{C}_{\text {free }}\right\}$, where $q(x)$ is the configuration q corresponding to the state x
- The equation of motion of the robot

$$
\dot{x}=f(q, u)
$$

or

$$
x(T)=x(0)+\int_{0}^{T} f(x(t), u(t)) d t
$$

Motion Planning

- Given an initial state $x(0)=x_{\text {start }}$ and a desired final state $x_{\text {goal }}$, find a time T and a set of controls $u:[0, T] \rightarrow U$ such that the motion satisfies $x(T)=x_{\text {goal }}$ and $q(x(t)) \in \mathcal{C}_{\text {free }}$ for all $t \in[0, T]$
- Assumptions:

1. A feedback controller can ensure that the planned motion is followed closely
2. An accurate model of the robot and environment will evaluate $\mathcal{C}_{\text {free }}$ during motion planning

Types of Motion Planning Problems

- Path planning versus motion planning
- Trajectory generation versus these lectures
- Control inputs: $m=n$ versus $m<n$
- Online versus offline
- How reactive does your planner need to be?
- Optimal versus satisficing
- Minimum cost or just reach goal?
- Exact versus approximate
- What is sufficiently close to goal?
- With or without obstacles
- How challenging is the problem?

Properties of Motion Planners

- Multiple-query versus single-query planning
- "Anytime" planning
- Continues to look for better solutions after first solution is found
- Completeness
- A planner is complete if it is guaranteed to find a solution in finite time if one exists, and report failure if no feasible plan exists
- A planner is resolution complete if it is guaranteed to find a solution, if one exists, at the resolution of a discretized representation
- A planner is probabilistically complete if the probability of finding a solution, if one exists, tends to 1 as planning time goes to infinity
- Computational complexity
- Characterization of the amount of time a planner takes to run or the amount of memory it requires

Motion Planning Methods

- Complete methods
- exact representations of the geometry of the problem and space
- Grid methods
- discretize $\mathcal{C}_{\text {free }}$ and search the grid from $q_{\text {start }}$ to goal
- Sampling methods
- randomly sample from the C-space, evaluate if the sample is in $X_{\text {free }}$, and add new sample to previous samples
- Virtual potential fields
- create forces on the robot that pull it toward goal and away from obstacles
- Nonlinear optimization
- minimize some cost subject to constraints on the controls, obstacles, and goal
- Smoothing
- given some guess or motion planning output, improve the smoothness while avoiding collisions

Configuration Space Obstacles

- We want to partition our C-space into two sets
- The free space $\mathcal{C}_{\text {free }}$
- The obstacle space $\mathcal{C}_{\text {obs }}$
- Where $\mathcal{C}=\mathcal{C}_{\text {free }} \cup \mathcal{C}_{\text {obs }}$
- If obstacles break $\mathcal{C}_{\text {free }}$ into separate components and $q_{\text {start }}$ and $q_{\text {goal }}$ are not in the same connected components, then there is no collision-free path

Configuration Space: 2R Planar Arm

Configuration Space: Circular Mobile Bot

Polygonal Planar robot that translates and rotates

Polygonal Planar robot that translates and rotates

Collision Detection

- Given a C -obstacle B and a configuration q,
$d(q, B)=$ distance between the robot and the obstacle
- $d(q, B)>0 \quad=>$ no contact with the obstacle
- $d(q, B)=0 \quad \Rightarrow$ contact
- $d(q, B)<0$ => penetration
- Distance-measurement algorithm
- Determines $d(q, B)$
- Collision-detection routine
- Determines whether $d\left(q, B_{i}\right) \leq 0$ for any C -obstacle B_{i}

Spherical Approximations

- One simple method is to approximate the robot and obstacles as unions of overlapping spheres
- Approximations must be conservative

Distance Measures

- Given a robot at q represented by k spheres of radius R_{i} centered at $r_{i}(q), i=1, \ldots, k$, and an obstacle B represented by l spheres of radius B_{j} centered at $b_{j}, j=1, \ldots, l$, the distance between the robot and the obstacle can be calculated as $d(q, B)$

$$
d(q, B)=\min \left\|r_{i}(q)-b_{j}\right\|-R_{i}-B_{j}
$$

Summary

- Defined and discussed concepts relating to motion planning
- Overviewed motion planning types, properties, and methods
- Discussed configuration space components $\mathcal{C}_{\text {obs }}$ and $\mathcal{C}_{\text {free }}$
- Gave example distance measurement approaches to check collision detection

