Introduction to Robotics
 Lecture 13: Kinematics of closed chains

Kinematics of closed chains

- A kinematic chain that contains one or more loops (series of links joining the ground to the ground, i.e. without a free end-effector) is called a closed chain.
- Unlike open chains, closed-chain can have non-actuated, or passive, joints.
- Kinematics of closed-chains is more complex than the one of open chains, since: 1) there are algebraic equations corresponding to loops in mechanism. These may be independent or dependent depending on mechanism. 2) Some joint are not actuated. 3) Very often redundant.
- Approach: write algebraic equations corresponding to loops in the mechanism.

Kinematics of closed chains

- 3 DOFs planar $3 \times$ RPR mechanism.
- The three prismatic joints are actuated, the 6 revolute joints are passive.
- Denote length of the 3 legs by $s_{1}, s_{2}, s_{3}\left(s_{i}=\left\|d_{i}\right\|\right)$ and by $T_{s b}$ the orientation of the body frame.
- Forward kinematics: $\left(s_{1}, s_{2}, s_{3}\right) \mapsto T_{s b}$
- Inverse kinematics: $T_{s b} \mapsto\left(s_{1}, s_{2}, s_{3}\right)$.

Kinematics of closed chains: 3RPR mechanism

- Closed loops in the mechanism yield:

$$
d_{i}=p+b_{i}-a_{i}
$$

We set $a_{i}=\left(a_{i x}, a_{i y}\right)$ in s-frame coordinates, and similarly for p, d, and $b_{i}=\left(b_{i x}, b_{i y}\right)$ in b -frame coordinates. If we denote by $R_{s b}$ the rotation matrix of $T_{s b}$, we have

$$
\left[\begin{array}{l}
d_{i x} \\
d_{i y}
\end{array}\right]=\left[\begin{array}{l}
p_{x} \\
p_{y}
\end{array}\right]+R_{s b}\left[\begin{array}{l}
b_{i x} \\
b_{i y}
\end{array}\right]-\left[\begin{array}{l}
a_{i x} \\
a_{i y}
\end{array}\right]
$$

Kinematics of closed chains: 3RPR mechanism

- We have

$$
\left[\begin{array}{l}
d_{i x} \\
d_{i y}
\end{array}\right]=\left[\begin{array}{l}
p_{x} \\
p_{y}
\end{array}\right]+R_{s b}\left[\begin{array}{l}
b_{i x} \\
b_{i y}
\end{array}\right]-\left[\begin{array}{l}
a_{i x} \\
a_{i y}
\end{array}\right]
$$

and $s_{i}^{2}=d_{i x}^{2}+d_{i y}^{2}$, which yields
$s_{i}^{2}=\left(p_{x}+b_{i x} \cos \phi-b_{i y} \sin \phi-a_{i x}\right)^{2}+\left(p_{y}+b_{i x} \sin \phi+b_{i y} \cos \phi-a_{i y}\right)^{2}$,
where $R_{s b}$ is a rotation matrix by angle ϕ.

- The above equation solves the inverse kinematics problem: given $T_{s b}$, and thus ϕ, p, we can get the s_{i}.

Kinematics of closed chains: 3RPR mechanism

- Forward kinematics is harder. One needs to solve the equations above for p, ϕ numerically in general.
- Using the substitutions

$$
t=\tan \frac{\phi}{2}, \sin \phi=\frac{2 t}{1+t^{2}}, \cos \phi=\frac{1-t^{2}}{1+t^{2}},
$$

we can reduce the three equations to a polynomial equation in t of degree 6 .

Closed chains: 6SPS Steward-Gough platform

- The 12 spherical joints (at the ends of the 6 arms) are passive, the 6 prismatic joints (middle of the arms) are actuated.
- We make the definitions: p, a_{i}, d_{i} are expressed in s-frame, b_{i} in b-frame, and $R=R_{s b} \in S O$ (3).
- We have the 6 equations

$$
d_{i}=p+R b_{i}-a_{i} .
$$

Denote by s_{i} the length of leg i. We have

$$
s_{i}^{2}=d_{i}^{\top} d_{i}=\left(p+R b_{i}-a_{i}\right)^{\top}\left(p+R b_{i}-a_{i}\right)
$$

Closed chains: 6SPS Steward-Gough platform

- We have

$$
s_{i}^{2}=d_{i}^{\top} d_{i}=\left(p+R b_{i}-a_{i}\right)^{\top}\left(p+R b_{i}-a_{i}\right)
$$

From this equation, the inverse kinematics is straightforward: given R, p, we can obtain s_{i}.

- The forward kinematics requires numerically solving the 6 equations above.

Velocity kinematics of closed chains

- Velocity kinematics for closed chains is generally difficult, and no nice systematic formulas (like PoE) can be used to obtain the Jacobian in general.
- The velocity kinematics is then obtained from first principles, by differentiating the forward or inverse kinematics map to obtain a Jacobian relating actuator velocities to the body twist.
- For example, the two previous examples produced analytic inverse kinematics maps: $s=g(R, p)$. We can differentiate these maps to obtain

$$
\dot{s}=\frac{\partial g}{\partial(R, p)} \mathcal{V}_{s}
$$

where $\frac{\partial g}{\partial(\omega, \theta, p)}$ is a matrix of partial derivatives and we expressed $R=\operatorname{Rot}(\omega, \theta)$. This requires very lengthy computations.

Velocity kinematics of closed chains

- We can however obtain relatively easily the inverse Jacobian from a static analysis.
- Recall that the Jacobian relates a wrench to the actuator forces according to

$$
\mathcal{F}_{s}^{\top} J_{s}=\tau^{\top} .
$$

If we have a 6DOFs mechanism and 6 actuators, the Jacobian is square and can be inverted at non-singular configurations.

- A static analysis of the mechanism can yield J^{-T}.

Closed chains: 6SPS Steward-Gough platform

- If no external forces, the only forces on the platform are at the spherical joints. Write these forces as $f_{i}=\tau_{i} \hat{n}_{i}$ in the s-frame.
- The moment the forces generate is $m_{1}=r_{i} \times f_{i}$, where r_{i} the vector joining the origin of the s-frame to the spherical joint i, expressed in s-frame.
- Since the spherical joints are passive, the force is aligned with the joint axis, and thus we can express the torque as $m_{i}=q_{i} \times f_{i}$, where q_{i} is the position of the lower spherical joint on the leg.

Closed chains: 6SPS Steward-Gough platform

- We thus have that the wrench on the moving platform is

$$
\mathcal{F}_{s}=\sum_{i=1}^{6} \mathcal{F}_{i}=\sum_{i=1}^{6}\left[\begin{array}{c}
r_{\times} \hat{n}_{i} \\
\hat{n}_{i}
\end{array}\right] \tau_{i} .
$$

We can write it as

$$
\mathcal{F}_{s}=\left[\begin{array}{ccc}
-\hat{n}_{1} \times q_{i} & \cdots & -\hat{n}_{6} \times q_{6} \\
\hat{n}_{1} & \cdots & \hat{n}_{6}
\end{array}\right]\left[\begin{array}{c}
\tau_{1} \\
\vdots \\
\tau_{6}
\end{array}\right]
$$

from which we obtain J_{s}^{-T}.

