Introduction to Robotics
Lecture 15: Trajectory generation




Trajectories and paths

The specification of the robot's state as a function of time is called a trajectory.

e Using forward kinematics maps, we can obtain the position of each link from the knowledge of the
joint angles.

e We can consider a trajectory to be given by
6:[0, T] - R",

a function from a time interval to R". 6(t) is the value of the joint angles at time t.

The trajectory of the end-effector is then T (6(t))



Trajectories and paths

e A path is a continuous set of points (state). It is a purely geometric object and does not make
any reference to time.

e For example, the centered unit circle in R? is a path, or a line segment joining (0,0) to (1,1) is a
path.

e A path can describe the set of states we want the robot to follow, but without allusion to the time
at which we want the robot to be at a particular state.

e A path + specification of time (or time-scaling) yields a trajectory.

e The image of a trajectory, i.e. im(6) is a path.

e For example, 01(t) = (t,t) and 02(t) = (%, %), both for t € [0, 1] are two trajectories that trace
the same path.

e Similarly, 61(t) = (cos2nt,cos2nt), t € [0,1] and O2(t) = (cosnt,cosnt), t € [0, 2] trace the
same paths.



Trajectories and paths

e In the second example of the previous slide, the trajectory covers the path twice as fast, and in the
first example, they take the same amount of time but 6 starts slow and ends fast.

e By convention, we describe a path as the image of a normalized trajectory 6(s), where s € [0, 1].

e A time scaling s(t) is a monotonically increasing function s : [0, T] — [0, 1]. A trajectory tracing

6 can then be written as

01(t) = 0(s(t))



Straight-line in joint space is not straight in workspace
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Straight-line paths

e A straight-line in joint space from an initial configuration 6y to an end-configuration 6, is given by
the path
0(5) =0 + 5(91 — 00)

e Now assume that the end-effector space in R? or R?, i.e. the orientation of the end-effector is
ignored. A straight-line in joint-space will generally not correspond to a straight-line in
end-effector space.

For example, if Xo = T(6o) and X1 = T(61) with T the end-effector kinematics map. Then
X(01(t)) is not a straight-line.

e \We can specify a straight-line in end-effector space as

X(S) = Xo + S(X1 = Xo).



Straight-line paths

e If the end-effector space is SE(3), note that for Xy, X1 € SE(3), then X(s) = Xo + s(X1 — Xo) is
not an element of SE(3) for s € [0, 1].
How to think of a straight-line in SE(3)?

e A straight-line in R? is characterized by a constant velocity. Indeed, the solution of x = v, with v
constant is x(t) = xo + vt. We adopt this as a definition for straight-lines in SE(3).

e Recall that T = T[S], and if S is constant, then T(t) = Toelt, with To € SE(3). We use this
equation and say that if S is constant, then T(t) as above is a straight-line in SE(3).

e Given Xy and Xj, the straight-line in SE(3) joining Xp to X is

X(s) = Xoe'®sXo s,



Straight-line paths

o If we set T(t) = (R(t),p(t)) for the T(t) defined above, we obtain
p(s) = po + s(p1 — po) and R(s) = Roelog(RoTRl)s7

which justifies calling such trajectory a straight-line.

e Using the inverse kinematics map, we obtain a path in joint space that translates into a
straight-line path in SE(3).



Time-scaling of straight-line paths

e A time-scaling s of a path is used to insure that the motion is smooth, and that constraints on the
maximal velocity and acceleration or the robot are met.

e Given a time-scaling s(t), we have 6(t) = 0o + s(t)(61 — 6o) and thus
d ds - d’s
E@(t) = E(el — 90) and gt = ﬁ(el — 90)

e We now want to choose a time-scaling so as to insure that ¢ and 0 are not too high.

e One option is to use a parametric form for s(t). A popular choice is to use polynomials.



Polynomial time-scaling of straight-line paths

o Let
s(t) = a0 + art + &t + ast’.
We need s(0) = 0,s(T) =1,5(0) =0 and s(T) = 0, specifying that we start from 6y with zero
velocity, and reach 01 with zero velocity.
o We see that § = a; + 2ayt® + a3t®>. The four constraints above yield

3
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Polynomial time-scaling of straight-line paths

e The above parameters yield the trajectory

32 283

e(t) =0 + (ﬁ — F) (91 — 90)
with derivative and accelerations
: 6t  6t° . 6 12t
0= (ﬁ—ﬁ> (91_90) and 0 = (ﬁ—?) (91—00)

e The maximum velocity is obtained at t = T/2 and is Opmax = > (61 — o).

e The maximal joint accelerations are obtained at t =0 and t = T and are

. 6
emax = 'ﬁ(el - 00)

. 6
and 9”,,-,, = — ‘ﬁ(el e 90)

e If we have limitations on maximal velocities and accelerations, we choose T appropriately.
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Polynomial time-scaling of straight-line paths

e We choose a parametrization s(t), and computed the resulting 6 and 6 using this parametrization.
We then found their maximal values and had one parameter, T, we could tune to meet
requirements.

e We can follow the same procedure with different parametrizations for s(t): e.g. polynomials of
order 5, trapezoidal functions, splines, etc. The principles are the same.

e Having more parameters allows us to meet more constraints. For example, using a fifth order
polynomial, we can ensure that 6(0) = 6(T) = 0. No “jerk” at the beginning and end of the
motion.
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