Introduction to Robotics Lecture 15: Trajectory generation

- The specification of the robot's state as a function of time is called a *trajectory*.
- Using forward kinematics maps, we can obtain the position of each link from the knowledge of the joint angles.
- We can consider a trajectory to be given by

 $\theta: [0, T] \to \mathbb{R}^n,$

a function from a time interval to \mathbb{R}^n . $\theta(t)$ is the value of the joint angles at time t.

• The trajectory of the end-effector is then $T_{sb}(\theta(t))$

- A *path* is a continuous set of points (state). It is a purely geometric object and does not make any reference to time.
- For example, the centered unit circle in \mathbb{R}^2 is a path, or a line segment joining (0,0) to (1,1) is a path.
- A path can describe the set of states we want the robot to follow, but without allusion to the time at which we want the robot to be at a particular state.
- A path + specification of time (or time-scaling) yields a trajectory.
- The image of a trajectory, i.e. $im(\theta)$ is a path.
- For example, θ₁(t) = (t, t) and θ₂(t) = (t², t²), both for t ∈ [0, 1] are two trajectories that trace the same path.
- Similarly, $\theta_1(t) = (\cos 2\pi t, \cos 2\pi t), t \in [0, 1]$ and $\theta_2(t) = (\cos \pi t, \cos \pi t), t \in [0, 2]$ trace the same paths.

- In the second example of the previous slide, the trajectory covers the path twice as fast, and in the first example, they take the same amount of time but θ₂ starts slow and ends fast.
- By convention, we describe a path as the image of a normalized trajectory $\theta(s)$, where $s \in [0, 1]$.
- A time scaling s(t) is a monotonically increasing function $s : [0, T] \rightarrow [0, 1]$. A trajectory tracing θ can then be written as

$$\theta_1(t) = \theta(s(t))$$

Straight-line in joint space is not straight in workspace

• A straight-line in joint space from an initial configuration θ_0 to an end-configuration θ_1 is given by the path

$$heta(s)= heta_0+s(heta_1- heta_0)$$

- Now assume that the end-effector space in ℝ² or ℝ³, i.e. the orientation of the end-effector is ignored. A straight-line in joint-space will generally not correspond to a straight-line in end-effector space.
- For example, if $X_0 = T(\theta_0)$ and $X_1 = T(\theta_1)$ with T the end-effector kinematics map. Then $X(\theta_1(t))$ is not a straight-line.
- We can specify a straight-line in end-effector space as

$$X(s) = X_0 + s(X_1 - X_0).$$

- If the end-effector space is SE(3), note that for X₀, X₁ ∈ SE(3), then X(s) = X₀ + s(X₁ − X₀) is not an element of SE(3) for s ∈ [0, 1].
 How to think of a straight-line in SE(3)?
- A straight-line in ℝ² is characterized by a constant velocity. Indeed, the solution of x
 is x(t) = x₀ + vt. We adopt this as a definition for straight-lines in SE(3).
- Recall that $\dot{T} = T[S]$, and if S is constant, then $T(t) = T_0 e^{[S]t}$, with $T_0 \in SE(3)$. We use this equation and say that if S is constant, then T(t) as above is a straight-line in SE(3).
- Given X_0 and X_1 , the straight-line in SE(3) joining X_0 to X_1 is

$$X(s) = X_0 e^{\log(X_0^{-1}X_1)s}.$$

• If we set T(t) = (R(t), p(t)) for the T(t) defined above, we obtain

$$p(s) = p_0 + s(p_1 - p_0)$$
 and $R(s) = R_0 e^{\log(R_0^{\top} R_1)s}$,

which justifies calling such trajectory a straight-line.

• Using the inverse kinematics map, we obtain a path in joint space that translates into a straight-line path in *SE*(3).

- A time-scaling s of a path is used to insure that the motion is smooth, and that constraints on the maximal velocity and acceleration or the robot are met.
- Given a time-scaling s(t), we have $\theta(t) = \theta_0 + s(t)(\theta_1 \theta_0)$ and thus

$$rac{d}{dt} heta(t)=rac{ds}{dt}(heta_1- heta_0) ext{ and } \ddot{ heta}_t=rac{d^2s}{dt^2}(heta_1- heta_0)$$

- We now want to choose a time-scaling so as to insure that $\dot{\theta}$ and $\ddot{\theta}$ are not too high.
- One option is to use a *parametric* form for s(t). A popular choice is to use polynomials.

Polynomial time-scaling of straight-line paths

• Let

$$s(t) = a_0 + a_1t + a_2t^2 + a_3t^3$$
.

We need s(0) = 0, s(T) = 1, $\dot{s}(0) = 0$ and $\dot{s}(T) = 0$, specifying that we start from θ_0 with zero velocity, and reach θ_1 with zero velocity.

• We see that $\dot{s} = a_1 + 2a_2t^3 + a_3t^2$. The four constraints above yield

$$a_0 = 0, a_1 = 0, a_2 = \frac{3}{T^2}$$
 and $a_3 = -\frac{2}{T^3}$.

Polynomial time-scaling of straight-line paths

• The above parameters yield the trajectory

$$heta(t)= heta_0+\left(rac{3t^2}{\mathcal{T}^2}-rac{2t^3}{\mathcal{T}^3}
ight)(heta_1- heta_0)$$

with derivative and accelerations

$$\dot{ heta} = \left(rac{6t}{T^2} - rac{6t^2}{T^3}
ight)(heta_1 - heta_0) ext{ and } \ddot{ heta} = \left(rac{6}{T^2} - rac{12t}{T^3}
ight)(heta_1 - heta_0)$$

- The maximum velocity is obtained at t = T/2 and is $\dot{\theta}_{max} = \frac{3}{2T}(\theta_1 \theta_0)$.
- The maximal joint accelerations are obtained at t = 0 and t = T and are

$$\ddot{ heta}_{max} = \left| rac{6}{T^2} (heta_1 - heta_0)
ight| ext{ and } \ddot{ heta}_{min} = - \left| rac{6}{T^2} (heta_1 - heta_0)
ight|$$

• If we have limitations on maximal velocities and accelerations, we choose T appropriately.

- We choose a parametrization s(t), and computed the resulting $\dot{\theta}$ and $\ddot{\theta}$ using this parametrization. We then found their maximal values and had one parameter, T, we could tune to meet requirements.
- We can follow the same procedure with different parametrizations for *s*(*t*): e.g. polynomials of order 5, trapezoidal functions, splines, etc. The principles are the same.
- Having more parameters allows us to meet more constraints. For example, using a fifth order polynomial, we can ensure that $\ddot{\theta}(0) = \ddot{\theta}(T) = 0$. No "jerk" at the beginning and end of the motion.