
Introduction to Robotics

Lecture 15: Trajectory generation
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Trajectories and paths

• The specification of the robot’s state as a function of time is called a trajectory.

• Using forward kinematics maps, we can obtain the position of each link from the knowledge of the

joint angles.

• We can consider a trajectory to be given by

θ : [0,T ] → Rn,

a function from a time interval to Rn. θ(t) is the value of the joint angles at time t.

• The trajectory of the end-effector is then Tsb(θ(t))
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Trajectories and paths

• A path is a continuous set of points (state). It is a purely geometric object and does not make

any reference to time.

• For example, the centered unit circle in R2 is a path, or a line segment joining (0, 0) to (1, 1) is a

path.

• A path can describe the set of states we want the robot to follow, but without allusion to the time

at which we want the robot to be at a particular state.

• A path + specification of time (or time-scaling) yields a trajectory.

• The image of a trajectory, i.e. im(θ) is a path.

• For example, θ1(t) = (t, t) and θ2(t) = (t2, t2), both for t ∈ [0, 1] are two trajectories that trace

the same path.

• Similarly, θ1(t) = (cos 2πt, cos 2πt), t ∈ [0, 1] and θ2(t) = (cosπt, cosπt), t ∈ [0, 2] trace the

same paths.
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Trajectories and paths

• In the second example of the previous slide, the trajectory covers the path twice as fast, and in the

first example, they take the same amount of time but θ2 starts slow and ends fast.

• By convention, we describe a path as the image of a normalized trajectory θ(s), where s ∈ [0, 1].

• A time scaling s(t) is a monotonically increasing function s : [0,T ] → [0, 1]. A trajectory tracing

θ can then be written as

θ1(t) = θ(s(t))
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Straight-line in joint space is not straight in workspace
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Straight-line paths

• A straight-line in joint space from an initial configuration θ0 to an end-configuration θ1 is given by

the path

θ(s) = θ0 + s(θ1 − θ0)

• Now assume that the end-effector space in R2 or R3, i.e. the orientation of the end-effector is

ignored. A straight-line in joint-space will generally not correspond to a straight-line in

end-effector space.

• For example, if X0 = T (θ0) and X1 = T (θ1) with T the end-effector kinematics map. Then

X (θ1(t)) is not a straight-line.

• We can specify a straight-line in end-effector space as

X (s) = X0 + s(X1 − X0).
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Straight-line paths

• If the end-effector space is SE(3), note that for X0,X1 ∈ SE(3), then X (s) = X0 + s(X1 − X0) is

not an element of SE(3) for s ∈ [0, 1].

How to think of a straight-line in SE(3)?

• A straight-line in R2 is characterized by a constant velocity. Indeed, the solution of ẋ = v , with v

constant is x(t) = x0 + vt. We adopt this as a definition for straight-lines in SE(3).

• Recall that Ṫ = T [S], and if S is constant, then T (t) = T0e
[S]t , with T0 ∈ SE(3). We use this

equation and say that if S is constant, then T (t) as above is a straight-line in SE(3).

• Given X0 and X1, the straight-line in SE(3) joining X0 to X1 is

X (s) = X0e
log(X−1

0 X1)s .
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Straight-line paths

• If we set T (t) = (R(t), p(t)) for the T (t) defined above, we obtain

p(s) = p0 + s(p1 − p0) and R(s) = R0e
log(R⊤

0 R1)s ,

which justifies calling such trajectory a straight-line.

• Using the inverse kinematics map, we obtain a path in joint space that translates into a

straight-line path in SE(3).
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Time-scaling of straight-line paths

• A time-scaling s of a path is used to insure that the motion is smooth, and that constraints on the

maximal velocity and acceleration or the robot are met.

• Given a time-scaling s(t), we have θ(t) = θ0 + s(t)(θ1 − θ0) and thus

d

dt
θ(t) =

ds

dt
(θ1 − θ0) and θ̈t =

d2s

dt2
(θ1 − θ0)

• We now want to choose a time-scaling so as to insure that θ̇ and θ̈ are not too high.

• One option is to use a parametric form for s(t). A popular choice is to use polynomials.
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Polynomial time-scaling of straight-line paths

• Let

s(t) = a0 + a1t + a2t
2 + a3t

3.

We need s(0) = 0, s(T ) = 1, ṡ(0) = 0 and ṡ(T ) = 0, specifying that we start from θ0 with zero

velocity, and reach θ1 with zero velocity.

• We see that ṡ = a1 + 2a2t
3 + a3t

2. The four constraints above yield

a0 = 0, a1 = 0, a2 =
3

T 2
and a3 = − 2

T 3
.
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Polynomial time-scaling of straight-line paths

• The above parameters yield the trajectory

θ(t) = θ0 +

(
3t2

T 2
− 2t3

T 3

)
(θ1 − θ0)

with derivative and accelerations

θ̇ =

(
6t

T 2
− 6t2

T 3

)
(θ1 − θ0) and θ̈ =

(
6

T 2
− 12t

T 3

)
(θ1 − θ0)

• The maximum velocity is obtained at t = T/2 and is θ̇max = 3
2T

(θ1 − θ0).

• The maximal joint accelerations are obtained at t = 0 and t = T and are

θ̈max =

∣∣∣∣ 6

T 2
(θ1 − θ0)

∣∣∣∣ and θ̈min = −
∣∣∣∣ 6

T 2
(θ1 − θ0)

∣∣∣∣
• If we have limitations on maximal velocities and accelerations, we choose T appropriately.
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Polynomial time-scaling of straight-line paths

• We choose a parametrization s(t), and computed the resulting θ̇ and θ̈ using this parametrization.

We then found their maximal values and had one parameter, T , we could tune to meet

requirements.

• We can follow the same procedure with different parametrizations for s(t): e.g. polynomials of

order 5, trapezoidal functions, splines, etc. The principles are the same.

• Having more parameters allows us to meet more constraints. For example, using a fifth order

polynomial, we can ensure that θ̈(0) = θ̈(T ) = 0. No “jerk” at the beginning and end of the

motion.
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