Introduction to Robotics
Lecture 15: Trajectory generation

Trajectories and paths

- The specification of the robot's state as a function of time is called a trajectory.
- Using forward kinematics maps, we can obtain the position of each link from the knowledge of the joint angles.
- We can consider a trajectory to be given by

$$
\theta:[0, T] \rightarrow \mathbb{R}^{n}
$$

a function from a time interval to $\mathbb{R}^{n} . \theta(t)$ is the value of the joint angles at time t.

- The trajectory of the end-effector is then $T_{s b}(\theta(t))$

Trajectories and paths

- A path is a continuous set of points (state). It is a purely geometric object and does not make any reference to time.
- For example, the centered unit circle in \mathbb{R}^{2} is a path, or a line segment joining $(0,0)$ to $(1,1)$ is a path.
- A path can describe the set of states we want the robot to follow, but without allusion to the time at which we want the robot to be at a particular state.
- A path + specification of time (or time-scaling) yields a trajectory.
- The image of a trajectory, i.e. $\operatorname{im}(\theta)$ is a path.
- For example, $\theta_{1}(t)=(t, t)$ and $\theta_{2}(t)=\left(t^{2}, t^{2}\right)$, both for $t \in[0,1]$ are two trajectories that trace the same path.
- Similarly, $\theta_{1}(t)=(\cos 2 \pi t, \cos 2 \pi t), t \in[0,1]$ and $\theta_{2}(t)=(\cos \pi t, \cos \pi t), t \in[0,2]$ trace the same paths.

Trajectories and paths

- In the second example of the previous slide, the trajectory covers the path twice as fast, and in the first example, they take the same amount of time but θ_{2} starts slow and ends fast.
- By convention, we describe a path as the image of a normalized trajectory $\theta(s)$, where $s \in[0,1]$.
- A time scaling $s(t)$ is a monotonically increasing function $s:[0, T] \rightarrow[0,1]$. A trajectory tracing θ can then be written as

$$
\theta_{1}(t)=\theta(s(t))
$$

Straight-line in joint space is not straight in workspace

Straight-line paths

- A straight-line in joint space from an initial configuration θ_{0} to an end-configuration θ_{1} is given by the path

$$
\theta(s)=\theta_{0}+s\left(\theta_{1}-\theta_{0}\right)
$$

- Now assume that the end-effector space in \mathbb{R}^{2} or \mathbb{R}^{3}, i.e. the orientation of the end-effector is ignored. A straight-line in joint-space will generally not correspond to a straight-line in end-effector space.
- For example, if $X_{0}=T\left(\theta_{0}\right)$ and $X_{1}=T\left(\theta_{1}\right)$ with T the end-effector kinematics map. Then $X\left(\theta_{1}(t)\right)$ is not a straight-line.
- We can specify a straight-line in end-effector space as

$$
X(s)=X_{0}+s\left(X_{1}-X_{0}\right)
$$

Straight-line paths

- If the end-effector space is $S E(3)$, note that for $X_{0}, X_{1} \in S E(3)$, then $X(s)=X_{0}+s\left(X_{1}-X_{0}\right)$ is not an element of $\operatorname{SE}(3)$ for $s \in[0,1]$. How to think of a straight-line in $\operatorname{SE}(3)$?
- A straight-line in \mathbb{R}^{2} is characterized by a constant velocity. Indeed, the solution of $\dot{x}=v$, with v constant is $x(t)=x_{0}+v t$. We adopt this as a definition for straight-lines in $\operatorname{SE}(3)$.
- Recall that $\dot{T}=T[\mathcal{S}]$, and if \mathcal{S} is constant, then $T(t)=T_{0} e^{[\mathcal{S}] t}$, with $T_{0} \in S E(3)$. We use this equation and say that if \mathcal{S} is constant, then $T(t)$ as above is a straight-line in $\operatorname{SE}(3)$.
- Given X_{0} and X_{1}, the straight-line in $\operatorname{SE}(3)$ joining X_{0} to X_{1} is

$$
X(s)=X_{0} e^{\log \left(X_{0}^{-1} x_{1}\right) s}
$$

- If we set $T(t)=(R(t), p(t))$ for the $T(t)$ defined above, we obtain

$$
p(s)=p_{0}+s\left(p_{1}-p_{0}\right) \text { and } R(s)=R_{0} e^{\log \left(R_{0}^{\top} R_{1}\right) s}
$$

which justifies calling such trajectory a straight-line.

- Using the inverse kinematics map, we obtain a path in joint space that translates into a straight-line path in $S E(3)$.
- A time-scaling s of a path is used to insure that the motion is smooth, and that constraints on the maximal velocity and acceleration or the robot are met.
- Given a time-scaling $s(t)$, we have $\theta(t)=\theta_{0}+s(t)\left(\theta_{1}-\theta_{0}\right)$ and thus

$$
\frac{d}{d t} \theta(t)=\frac{d s}{d t}\left(\theta_{1}-\theta_{0}\right) \text { and } \ddot{\theta}_{t}=\frac{d^{2} s}{d t^{2}}\left(\theta_{1}-\theta_{0}\right)
$$

- We now want to choose a time-scaling so as to insure that $\dot{\theta}$ and $\ddot{\theta}$ are not too high.
- One option is to use a parametric form for $s(t)$. A popular choice is to use polynomials.

Polynomial time-scaling of straight-line paths

- Let

$$
s(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}
$$

We need $s(0)=0, s(T)=1, \dot{s}(0)=0$ and $\dot{s}(T)=0$, specifying that we start from θ_{0} with zero velocity, and reach θ_{1} with zero velocity.

- We see that $\dot{s}=a_{1}+2 a_{2} t^{3}+a_{3} t^{2}$. The four constraints above yield

$$
a_{0}=0, a_{1}=0, a_{2}=\frac{3}{T^{2}} \text { and } a_{3}=-\frac{2}{T^{3}} .
$$

Polynomial time-scaling of straight-line paths

- The above parameters yield the trajectory

$$
\theta(t)=\theta_{0}+\left(\frac{3 t^{2}}{T^{2}}-\frac{2 t^{3}}{T^{3}}\right)\left(\theta_{1}-\theta_{0}\right)
$$

with derivative and accelerations

$$
\dot{\theta}=\left(\frac{6 t}{T^{2}}-\frac{6 t^{2}}{T^{3}}\right)\left(\theta_{1}-\theta_{0}\right) \text { and } \ddot{\theta}=\left(\frac{6}{T^{2}}-\frac{12 t}{T^{3}}\right)\left(\theta_{1}-\theta_{0}\right)
$$

- The maximum velocity is obtained at $t=T / 2$ and is $\dot{\theta}_{\max }=\frac{3}{2 T}\left(\theta_{1}-\theta_{0}\right)$.
- The maximal joint accelerations are obtained at $t=0$ and $t=T$ and are

$$
\ddot{\theta}_{\max }=\left|\frac{6}{T^{2}}\left(\theta_{1}-\theta_{0}\right)\right| \text { and } \ddot{\theta}_{\min }=-\left|\frac{6}{T^{2}}\left(\theta_{1}-\theta_{0}\right)\right|
$$

- If we have limitations on maximal velocities and accelerations, we choose T appropriately.

Polynomial time-scaling of straight-line paths

- We choose a parametrization $s(t)$, and computed the resulting $\dot{\theta}$ and $\ddot{\theta}$ using this parametrization. We then found their maximal values and had one parameter, T, we could tune to meet requirements.
- We can follow the same procedure with different parametrizations for $s(t)$: e.g. polynomials of order 5, trapezoidal functions, splines, etc. The principles are the same.
- Having more parameters allows us to meet more constraints. For example, using a fifth order polynomial, we can ensure that $\ddot{\theta}(0)=\ddot{\theta}(T)=0$. No "jerk" at the beginning and end of the motion.

