
Introduction to Robotics

Lec 16: Basics of Robot control

1

Control diagram

Given sensor readings, how to design actuator torques?
2

Error dynamics

• Denote a desired sequence of joint values by θd(t), and the actual joint values by θ(t). We define

the joint error as

θe := θd(t)− θ(t).

• The differential equation governing the dynamics of θe(t) is called the error dynamics.

• We analyze/design a controller based on the error dynamics here (other point of views are

possible!)

• An ideal controller would be so that whenever θe(t) ̸= 0, it is brought to zero instantaneously.

This ideal scenario is of course not realisable.

• The commonly used/standard situation to design/analyze a controller performance is the

following: we assume that at t = 0, we have

θe(0) = 1 and θ̇e(0) = θ̈e(0) = · · · = 0.

We benchmark controllers’ performances from that initial state.

• We assume here for now that the error dynamics is linear. Robots have nonlinear dynamics, but if

the error is small, the linear approximation yields good results. Methods to obtain linear

approximations are given later in the lecture.

3

Error dynamics

• We plot a typical linear system error response above.

• We can split the response into a transient response (time during which the dynamics is not

negligible) and a steady-state response (when we are almost at equilibrium).

• The steady-state response is characterized by the steady-state error

θe,ss := lim
t→∞

θe(t).

4

Error dynamics

• The transient response is characterized by the overshoot (how far the error goes past its

steady-state):

overshoot =

∣∣∣∣θe,min − θe,ss
θe(0)− θe,ss

∣∣∣∣× 100%

and the 2% settling-time: the time needed so that

∥θe(t)− θe,ss∥ ≤ 0.02(θe(0)− θe,ss)

5

Error dynamics

• A good error response is characterized by

1. small steady-state error

2. small overshoot

3. short settling time

6

Linear Error dynamics

• A general linear error dynamics is given by

apθ
(p)
e + ap−1θ

(p−1)
e + · · ·+ a2θ̈e + a1θ̇e + a0θe = c.

• The above equation is called homogeneous if c = 0 and non-homogeneous if c ̸= 0.

• Introducing new variables, we can write the equation as a first order system of equations:

x1 := θe

x2 := ẋ1 = θ̇e

= · · ·

xp := ẋp−1 = θ(p−1)
e

ẋp = −a0/apx1 − a1/apx2 − · · · − ap−1/apxp

7

Linear Error dynamics

• We can write the previous equation in matrix/vector form: ẋ = Ax where x = (x1, . . . , xp) and

A =



0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0

0 0 0 · · · 0 1

−a′0 −a′1 −a′2
. . . −a′p−1 −a′p−1


with a′i := ai/ap. This matrix is called a companion matrix.

• Recall that the solution of ẋ = Ax is x(t) = eAtx(0), as we saw earlier in the course. This can be

verified by plugging the definition of eAt into the differential equation.

8

Stability of linear systems

• The linear autonomous system ẋ = Ax is said to be stable if the real parts of the eigenvalues of A

are negative. It is unstable otherwise.

• The state of an unstable system is asymptotically infinite for some initial conditions: there exists

x0 so that

lim
t→∞

∥x(t)∥ = lim
t→∞

∥eAtx0∥ =∞

• It is easy obtain a stability criterion in case A is diagonalizable, that is A can be written as

A = PDP−1 for some diagonal matrix D and invertible matrix P. In this case, D has the

eigenvalues of A in its diagonal and

eAt = PeDtP−1.

Now recall that edt , for d = a+ bi ∈ C is edt = eat(cos bt + i sin bt). If a > 0, eat grows large. If

a < 0, eat goes to zero.

A requirement of any controller: the error dynamics is stable

9

First order dynamics

• We now consider the angle θ(t) at a joint, omitting the index i for now.

• If the error dynamics is of first order, then it can be written as

θ̇e(t) +
k

b
θe(t) = 0

• You can think of this as a P controller (P is for proportional), with parameter k: if θe > 0, then

change θe so that it decreases, hence choose k > 0. We come back to this later.

• The solution of this equation is

θe(t) = e−k/btθe(0).

Set τ = b/k. There is no overshoot, and

θe(t)

θ0
= 0.02 = e−t/τ ⇒ t = 3.91τ

10

Second order dynamics

• A second order dynamics θ̈e + c1θ̇e + c2θ2 = 0 is written in the following standardized form:

θ̈e(t) + 2ζωnθ̇e(t) + ω2
nθe(t) = 0,

where ωn is called the natural frequency of the system, and ζ is called the damping ratio.

• We can write this system in matrix form. The characteristic polynomial of the corresponding A

matrix is then

s2 + 2ζωns + ω2
n.

The roots of this polynomial are the eigenvalues of A, and are

s1 = −ζωn + ωn

√
ζ2 − 1 and s2 = −ζωn − ωn

√
ζ2 − 1.

The dynamics is stable if and only if ωn and ζ are positive.

11

Second order dynamics: three cases

• overdamped: This is the case ζ > 1. In this case, the roots s1, s2 are real, distinct, and the

solution is

θe(t) = c1e
s1t + c2e

s2t

for some constants c1, c2 that we can compute from the knowledge of the initial conditions

θe(0), θ̇e(0).

The time constant is given by the less negative root (real part) s1 or s2. Precisely, if the real parts

are a1 and a2 with a1 < a2 < 0, then t = |3.91/a2|

• critically damped: This is the case ζ = 1. In this case, the roots s1, s2 are equal and real, and

the solution is

θe(t) = (c1 + c2t)e
−ωnt

for some constants c1, c2 that we can compute from the knowledge of the initial conditions

θe(0), θ̇e(0).

The time constant is 1
ωn

.

12

Second order dynamics: three cases

• underdamped: This is the case ζ < 1. The roots are complex conjugate

s1,2 = −ζωn ± jωd ,

where ωd = ωn

√
1− ζ2 is the natural frequency. The solution is

θe(t) = (c1 cosωd t + c2 sinωd t)e
−ζωnt .

13

Feedback/feedforward control with Velocity inputs

• A feedback controller is a controller that uses sensors to obtain information about the current

state of the system, and act depending on it.

• A feedforward controller applies a predetermined control sequence without taking into account

sensor measurements.

• Feedforward control is advisable only when sensing is impossible or unavailable, as it can yield

large errors.

• For example: Consider the model

τ(t) = M(θ(t))θ̈(t) + h(θ, θ̇).

In order to find the desired torques, it suffices to plug-in θ(t)← θd(t):

τc(t) = M(θd(t))θ̈d(t) + h(θd , θ̇d).

If there are modelling errors, or small errors in what we believe the current state of the system is,

these errors can grow.

14

Motion Control with Velocity inputs

• We assume here that we have a direct control over the velocity of the joints angles. Many

off-the-shelf motors/actuators have a velocity input that can be used for that purpose (amplifiers

are used to try to make this assumption true).

• If the inertia is large relative to the power of the motor, we have to consider torque control.

• We assume that we have computed a desired trajectory for the joint variables. Denote it

θd(t) ∈ Rn. This is a vector whose entries are the desired joint values at time t.

• We thus want to have

θ̇(t) = θ̇d(t),

i.e. the actual velocities should be equal to the desired ones.

• We now focus on the control a single joint with angle θ. Since we assume that the joints are

independent, the procedure to control several joint is to control each of them individually.

15

Feedback control with Velocity inputs

• Assume that we have a sensor reading the current position of the joint: θ(t).

• A proportional or P controller uses this information to control the system according to

θ̇(t) = Kp(θd(t)− θ(t)) = Kpθe(t),

where Kp is a real parameter to determine. Recall that we defined θe := θd − θ.

16

Feedback control with Velocity inputs

• To analyze the P controller, we first assume that θd(t) ≡ 0. Taking another constant value

besides zero does not change the analysis.

• Recall that θ̇ = Kpθe . Adding θ̇d = 0, we get

θ̇e(t) = −Kpθe(t)⇒ θe(t) = e−Kpθe(0).

• For any Kp > 0, we see that θe(∞) = 0.

• Using the results derived in the previous lecture, we get that the 2% settling time is 4/Kp:

choosing the feedback gain Kp large will improve the reaction time.

17

Feedback control with Velocity inputs

• We now return to the case of a time-varying θd(t). The general rule of thumb is that if θd(t)

varies slowly, and if Kp is large enough, the P controller will be able to track θd(t) well.

• Let us try to quantify this. Assume that θ̇d(t) = c, for a fixed constant c.

• The dynamics is then

θ̇e(t) + Kpθe(t) = c,

which has a solution

θe(t) =
c

Kp
+

(
θe(0)−

c

Kp

)
e−Kp t .

If Kp is large, we see that θe(t) indeed converges to a small value, and we have good tracking.

18

PI with Velocity inputs

• The previous analysis tells us to choose Kp as large as possible in order to reduce the value

θe(∞) = c
Kp

. However, it is not practical to take Kp too large. Is there a way to cancel this error?

• A PI controller uses, in addition to θe = θd − θ, the integral of the error:
∫ t

0
θe(s)ds. The resulting

system is (assuming θd is constant)

θ̇e(t) = Kpθe(t) + Ki

∫ t

0

θe(s)ds,

for constants Ki and Kp to be determined.

• Assuming θ̇d(t) constant, we get

θ̇e + Kpθe + Ki

∫ t

0

θe(s)ds = c.

• Taking the derivative, we obtain

θ̈e + Kp θ̇e + Kiθe = 0

19

PI with Velocity inputs

• Rewrite the previous equation in canonical form θ̈e(t) + 2ζωnθ̇e(t) + ω2
nθe(t) = 0, we get

ωn =
√
Ki and ζ = Kp/(2

√
Ki).

• The roots of the characteristic equation are

s1,2 = −
Kp

2
±
√

K 2
p

4
− Ki .

If both Kp,Ki > 0, the dynamics is stable.

• We have two parameters to shape the behavior of the controlled system. A common practice is to

fix one parameter, and vary the other until we obtain the desired behavior.

• For example, we can fix Kp = 20, and look at what the roots are as Ki varies from 0 to +∞. This

is called a root locus analysis, which we do not cover here.

20

PI with Velocity inputs

• The plot above-left is called the root locus.

• The solutions θe(t) are plotted on the right. We see that in all cases, θe(∞) = 0, as desired.

21

Motion Control with T inputs

• We assumed so far that we could directly control the velocity of the joint angles.

• This assumption is valid only when the masses/inertia involved are relatively small compared to

the power of the actuators.

• We look at a simple case: one link with an R joint, as shown below

• The dynamics is given by

τ = M θ̈ +mgr cos θ,

with M the inertia of the link, m its mass.

22

Motion Control with T inputs

• Adding friction proportional to the joint velocity τfric = bθ̇, the model becomes

τ = M θ̈ +mgr cos θ + bθ̇

• We assume given a desired θd(t), and set θe(t) := θd(t)− θ(t).

• Let us assume for now that the robot moves in a horizontal plane, and thus we can set g = 0:

τ = M θ̈ + bθ̇.

• A PD controller, which stands for proportional-derivative, uses knowledge of θ(t) and its

derivative θ̇(t). A PD controller is of the form

τ = Kp(θd − θ) + Kd(θ̇d − θ̇)

23

Motion Control with T inputs

• The system dynamics with a PD controller is

M θ̈ + bθ̇ = Kp(θd − θ) + Kd(θ̇d − θ̇)

• We assume that θd = c a constant. The dynamics is then

M θ̈e + (b + Kd)θ̇e + Kpθe = 0.

• This yields the coefficients ωn =
√

Kp

M
and ζ = b+Kd

2
√

KpM
. For stability, both b + Kd and Kp need to

be positive.

• Similarly to what we did for the PI controller, we can set the values of the coefficients Kp and Ki

to obtain a desired dynamic behavior.

24

Motion Control with T inputs

• We now return to the case where the link moves in the vertical plane:

M θ̈e + (b + Kd)θ̇e + Kpθe = mgr cos θ.

• Let us assume that we want to stabilize the link at a configuration θd . At an equilibrium, θ̇e = 0,

which implies that

θe =
1

Kp
mgr cos θe .

We see that all PD controllers will have a tracking error (of a constant)! That is, for any choice of

coefficients Kp,Kd , we get that when θ̇e = 0, θe ̸= 0, unless θd = ±π/2.

• We now show how to handle the nonlinear term, through linearization.

25

System linearization

• To linearize a system in the variables x , y , say

d

dt

(
x

y

)
= F (x , y),

replace every occurence of x by x +∆x and every occurence of y by y +∆y :

d

dt

(
x +∆x

y +∆y

)
= F (x +∆x , y +∆y).

• Then choose a trajectory x(t), y(t) (i.e., a solution of the equation) around which to linearize.
Expand every nonlinear terms using a first order Taylor expansion around x(t) and y(t):

d

dt

(
x(t) + ∆x

y(t) + ∆y

)
= F (x(t), y(t)) +

(
∂F1
∂x

∂F1
∂y

∂F2
∂x

∂F2
∂y

)
|x=x(t),y=y(t)

(
∆x

∆y

)
+ hot.

26

System linearization

• We obtain from the previous equation that

d

dt

(
∆x(t)

∆y(t)

)
=

(
∂F1
∂x

∂F1
∂y

∂F2
∂x

∂F2
∂y

)
|x=x(t),y=y(t)

(
∆x

∆y

)
.

The above system is called the linearized system. It describes how small variations ∆x ,∆y around

a nominal trajectory evolve.

• The most common case is to linearize around an equilibrium: an equilibrium is a point x0, y0 for

which the derivative vanishes. Said otherwise, a point so that F (x0, y0) = 0.

27

System linearization

• We now return to our system:

M θ̈e + (b + Kd)θ̇e + Kpθe = mgr cos θ.

• We look for an equilibrium, that is a point so that θ̇e = 0. We saw earlier that this implies

θe =
1
Kp

mgr cos θe . We can solve this equation numerically to obtain an equilibrium point. Call it

θ0.

• We linearize the system around this point:

M
d2

dt2
(θ0 +∆θe) + (b + Kd)

d

dt
(θ0 +∆θe) + Kp(θ0 +∆θe) = mgr cos(θ0 +∆θe),

which yields the linearized system

M
d2

dt2
∆θe + (b + Kd)

d

dt
∆θe + Kp∆θe = −(mgr sin θ0)∆θe

Set K̄p = Kp +mgr sin θ0. The linearized system is then:

M∆θ̈e + (b + Kd)∆θ̇e + K̄p∆θe = 0

28

System linearization

• We could perform an analysis of the linearized system and choose the coefficients KP ,KD to

stabilize ∆θe at zero. Note that this would imply that we stabilize around θe ̸= 0 as found above.

• Adding an integral term to this design would not help! The design enforces correctly that

∆θe = 0, so from the point of view of our design, there is no tracking error.

29

PID controller and nonlinearity as a disturbance

• Another approach (that bypasses linearization) is to consider the nonzero term to be a

disturbance, and use an integral controller to cancel it. We start with

M θ̈e + (b + Kd)θ̇e + Kpθe = mgr cos θ.

• We add an integral term and consider nonlinear terms to be disturbances:

M θ̈e + (b + Kd)θ̇e + Kpθe + Ki

∫ t

0
θe(s)ds = τdist .

• Taking derivatives on both sides, and assuming that τ̇dist = 0, we get

M
...
θ e + (b + Kd)θ̈e + Kp θ̇e + Kiθe = 0.

• The corresponding characteristic equation is

s3 +
b + Kd

M
s2 +

Kp

M
s +

Ki

M
= 0

30

PID controller and nonlinearity as a disturbance

• We need to choose the coefficients Ki ,Kd ,Kp so that all the roots have negative real parts. This

will make the system stable, i.e. so that θe(t)→ 0.

• The conditions for the roots of a third order polynomial to have negative real parts are:

s3 + a2s
2 + a1s + a0 = 0

has roots with negative real parts if and only if:

a2, a1, a0 > 0 and a2a1 > a0

This is a particular case of the more general Routh-Hurwitz criterion. We do not cover it.

• This yields here: Kd > −b, Kp > 0 and
(b+Kd)Kp

M
> Ki > 0.

• This approach is not guaranteed to work in general (the assumption of considering nonlinear term

to be constant disturbances is quite strong). There exist methods to check that it holds, which we

do not cover.

31

