Introduction to Robotics
Lecture 10. Velocity Kinematics: The
Jacobian




Velocity kinematics

e We know how to calculate the position of the end-effector
of an open chain given the joint angles, i.e. derive the
forward kinematic map.

e We now seek to evaluate the twist, i.e. the velocity, of the
end-effector frame given the joint angles (61, ...,0,) and
their velocities (91, ce 9,,)

e Abstractly, we can set the vector x(t) to be the position of
the end-effector at time t. The forward kinematics map is
x(t) = f(0(t)). We want to obtain the derivative of x(t):

%X(t) S %\0@)9
The matrix 2 is called the Jacobian of f.

e We can think of the Jacobian as encoding the sensitivity
of the motion of the end-effector with regard to motions

of the joints.



Velocity kinematics: basic example

e The forward kinematics of this open chain is

x; = Ly costy + Ly cos(0; + 65)
Xp = Lysinfy + Lo sin(91 + 92)

e Now assume that 6; = 0;(t) and differentiate on both sides

)'<1 = —Llél sin 91 — Lg(él + 92) sin(91 + 92)
%o = L16; cosfy + L2(91 + 02) cos(by + 6,)



Velocity kinematics: basic example

e We can rearrange the previous equation as follows

X1 B —Lisinf; — Ly sin(91 + 6‘2) —Ls sin(91 + 6‘2)
x| | Licosb + Ly cos(fy + 602)  Lpcos(fy + 0,)

H

J(0)

e We denote the two columns of J(#) as J1(0) and J»(0)
and get
X = J1(9)91 + J2(09)92



Velocity kinematics: basic example

e In the equation x = J1(9)91 + J2(9)92, we think of #; and
0, as the coefficients of a linear combination of the
vectors J;(0) and J>(6).

o If J1(0) and () are linearly independent, we can find
coefficients 9,- so that x takes on any value.

e Practically, this says that by choosing appropriate
velocities for the joints, we can make the end-effector
move in any desired directions.

e Note that the vectors are functions of . The values of
for which the J;() are not linearly independent, or
equivalently, det J(0) = 0, are called singular
configurations.

e At singular configurations, some directions of motions for
the end-effector cannot be realized.

e For the example here, if 8, = 0, then the configuration is
singular.



The Jacobian and its uses

0

e Let us look at how velocities for #; are mapped to
velocities for x.

e Set Ly =L, =1and 0; =0,0, = /4. We calculate

-71 -71

1.71 .71

e Assume that the actuators allow joint velocities

J(0,7/4) =

0; € [—1,1]. The set of possible joint velocities is mapped
into a set of possible end-effector velocities by taking
x = J()f.



The Jacobian and its uses

e If the joint velocities are so that 62 + 63 < 1 (disk of radius
1), we can map them through the Jacobian as before, and
obtain the set of possible end-effector velocities.

e The ellipsoid obtained as an image of the disk in
joint-velocities space is called the manipulability ellipsoid.

o A flatter ellipsoid says that we are close to a singular
configuration: some directions are not available; a large
joint velocity yields a small end-effector velocity.

‘L

1(0)

/




The Jacobian and its uses

e Assume a force f; is applied on the end-effector (e.g.,
weight of a load). What torque to apply at the joint to
keep the end-effector at a fixed position?

e Let 7 = (71, 72) be the joints’ torque vector. By
conservation of power (principle of virtual work), we need

flx=1"0=1f"J0)¥=1"0

for all §. We conclude that



The Jacobian and its uses

e Reciprocally, given limits on the possible torques at the
joints (and assuming that JT is invertible!), we can plot all
the forces that can be counteracted at the end effector as

f,=(J" ()" r



Computing the Jacobian from the FKM in PoE form

e Assume given the forward kinematics map in a product of
exponential form

T(0) = elS1101 o[82102 | ([Snl0n gy

e Differentiating, we obtain
d (e[slwl) RSN AT YR
dt
d
(51161 g[S2]02 . = ( L[SnlOn
ree gt (917) M
= [S1]61elS00 .. lSalOnpg o 4 QSO (S 10, €150

e We have T-1 = ML= [Snlon ... g—[5110n
e Now recall that the velocity (twist) of the end-effector is
[Ve] = TT-1. We get

_i_:

V] = [S1]61 + elS1[S,]e 151004,
+ 5110 (lS210 ]IS IS, .
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Computing the Jacobian from the FKM in PoE form

e Using the adjoint map, we get

Vs - 81 0.1 +Ade[51]"’1 (82) 0.2 T Ade[51]91 elS2102 (83) 0.3 qrooe
~~~

Js1 Jo2 Js3

e We see that Vs is the sum of n spatial twists. We set
JS(H) = |:Jsl J2 o s

the Jacobian in space-frame coordinates, space Jacobian.
We have
V. = Js(0)0

e For a n-joints mechanism, Js(0) € R®*".
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Computing the Jacobian from the FKM in PoE form

e The ith column of the space Jacobian is
Jsi - Ade[sl]el...e[3i71]9i71 (Si)7

fori >2,and Js; =&

o Set T; = el%101 ... elS]1 How to physically interpret this
quantity?

e With M being “reference” configuration of the
mechanism, T;M is the configuration when the first /
joints are set to values 61, ..., 6; and the remaining are
kept at zero — T; is the transformation matrix that
takes the mechanism between the two states.

e J is the screw vector of joint /, in fixed frame
coordinates, but expressed at arbitrary 6, (because of
Adr,_,) instead of 0.

e Note that Js only depends on 6 ---6;, we can ignore the
other joint angles in its computation.
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Computing the Jacobian: example

e To evaluate the space-Jacobian, we put in columns the
screws of the joints in their order in the chain. We assume
that the 6; are arbitrary. We have here

1. we = (0,0,1) and ve; = (0,0,0).

2. ws» = (0,0,1). To compute vs2, let g be a vector joining
origin of ref. frame to a point on axis of rotation of 2.
For example, g» = (L1 cos 01, Losin61,0). Then

Vs2 = —W2 X Q2 = (1_1517 —L1C1,0). 13



Computing the Jacobian: example

e For the other joints:

1. ws3 =(0,0,1). Choose gz joining origin to an arbitrary
point on rotation axis, e.g.
Q3 = (Llcl + Locio, Lisi + Lasio, 0), where
ci2 = cos(01 + 62), s12 = sin(61 + 62),
c1 = cosfi,sp =sinf. We get
Vs = (L1s1 + Lasiz, —Lici — Lacin, 0).

2. The last joint is prismatic: wss = (0,0,0). The axis of
translation is always aligned with Z, regardless of the 6;:
vss = (0,0,1).
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Computing the Jacobian: example

e The Jacobian is thus:

0 0 0 0
0 0 0 0
1 1 1 0
0 Lis; Lysy + Lasi2 0
0 —Licy —Ljcy —Lacia 0
0 0 0 1

J.(0) =

e If finding the screw vectors in arbitrary mechanism
position is too difficult geometrically, use the formula

derived earlier. 5



Computing the Jacobian: example

L
U

e First joint: ws; = (0,0,1), g1 = (0,0, L;) and
vs1 = —wi X g1 = (0,0,0)

e Second joint: axis in direction wsy; = (—¢1, —s1,0). Set
g2 = (0,0,L1) and vso = —ws2 X g2 = (L1, —L1¢1,0)
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Computing the Jacobian: example

e Third joint: prismatic, so ws3 = (0,0,0). The direction of
motion at arbitrary positions of 61,6, is

0 —510
Ve3 = ROl’(f, 91)R0t()?, 792) 1l = | ao
0 =P

e Fourth/fifth/sixth joints: also called wrist. Its center is at
0 0 —(Ly + 03)s12
gw =10 +R0t(f, 91):‘:\’01'()?7 —92) Ly +03| = (L2 + 93)C1 o
Ll 0 L1 = (L2 + 93)52 17



Computing the Jacobian: example

= ot(z. ot (X, — |70-|—|V_(51:2-|
= Rot(z 60;)Rot(x, 92)|.(1]J7|. 182 J

C2

-1 —C1€4 +51C254
5 = Rot(z,01)Rot(x, —02)Rot(z, 04) 0 = | —sjcq —C1Co8,
0

S284

we = Rot(z01)Rot(%, —fa)Rot(z f1)Rot (%, — )

[ o -|
cs(creacs —s184) — C18285 .
[ —S204C5 — C285 J

—
oo
[E—

$1CoCy + €184) + S18285

The direction of motion at arbitrary positions of 61,605 is

—51C

Vs3 = ROt(f, 91):‘?01‘()?7 —92) @@z

o~ o
|

—5
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Computing the Jacobian: example

e The Jacobian is

Ws1 Ws2 0 Wsa Ws5 Ws6

0 —Ws2 X @2 Vs3  —Ws4 X Quw —Wss X w  —Ws6 X qw

Js(0) =
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Body Jacobian

e The (space) Jacobian relates the joint angles velocities to
the end-effector twist in space-coordinates [V,] = TT~1,
where T = T4 (0) is the position of the end-effector
frame.

e Recall that the twist of the end-effector in body-frame is
[Vo] = T~1T, for T as above. We derived in the previous
lectures that

T(0) = MelBil0r .. lBalbn — o[S1101 .. glSal0n pg

e The body Jacobian is obtained by differentiating the first
expression for T(6).
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Body Jacobian

e We have
T = MelP0 .. [B,16,elPr)0 4 ... 4 M[By]6;elBr101 ... glBnlfn

and
T1 = g [Bilbn ... o—[Bil0r g1

e Putting the two together, we get

o] = T1T = [BoJ0n+ e BB, _i]e oG, ...
+ e_[B"]ef7 N e_[62]92 [81]6[62]92 . e[Bn]enel

and in vector form

Vo= By 0n+ Ade—iso,(Ba_1) 61 + -
N

Jb" Jb.nfl
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Body Jacobian

e We conclude that
61
0
Vo] = [Jbl oo an} .
0,
e The matrix Jp is the body Jacobian. The ith column of
the body Jacobian is

Ibi(0) = Ad, _i5,16,...c- 15111101 (Bi)

for i < n, and Jp, = B,.
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Relationship between space and body Jacobians

o We have [Vs] = Ty Tt and [Vs] = T,' Top. We have
also shown that Vs = Adr,(Vs).

e We can also relate the twists to joint angle velocities
through V, = J,(0)6 and V, = Jy(#)0. Hence
Adr,(Vb) = Js(0)6.

e Apply Adr, on both sides of the previous relation, and
recall that AdpjAdg = Adag

Adr, Adr,(Vs) = Vs = Adr,, (Js(0)0).

Replace V, by Jy(6)0 to obtain Jy(0)8 = Adr,,(Js(6)0).

e Since the previous equation holds true for all 8, we have

Jp(0) = Adr,,(Js(0)) and Js(6) = Ad,, (J6(6))
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