
Introduction to Robotics

Lecture 10. Velocity Kinematics: The

Jacobian

1



Velocity kinematics

• We know how to calculate the position of the end-effector

of an open chain given the joint angles, i.e. derive the

forward kinematic map.

• We now seek to evaluate the twist, i.e. the velocity, of the

end-effector frame given the joint angles (θ1, . . . , θn) and

their velocities (θ̇1, . . . , θ̇n)

• Abstractly, we can set the vector x(t) to be the position of

the end-effector at time t. The forward kinematics map is

x(t) = f (θ(t)). We want to obtain the derivative of x(t):

d

dt
x(t) =

∂f

∂θ
|θ(t)θ̇

The matrix ∂f
∂θ is called the Jacobian of f .

• We can think of the Jacobian as encoding the sensitivity

of the motion of the end-effector with regard to motions

of the joints.
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Velocity kinematics: basic example

• The forward kinematics of this open chain is

x1 = L1 cos θ1 + L2 cos(θ1 + θ2)

x2 = L1 sin θ1 + L2 sin(θ1 + θ2)

• Now assume that θi = θi (t) and differentiate on both sides

ẋ1 = −L1θ̇1 sin θ1 − L2(θ̇1 + θ̇2) sin(θ1 + θ2)

ẋ2 = L1θ̇1 cos θ1 + L2(θ̇1 + θ̇2) cos(θ1 + θ2)
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Velocity kinematics: basic example

• We can rearrange the previous equation as follows[
ẋ1
ẋ2

]
=

[
−L1 sin θ1 − L2 sin(θ1 + θ2) −L2 sin(θ1 + θ2)

L1 cos θ1 + L2 cos(θ1 + θ2) L2 cos(θ1 + θ2)

]
︸ ︷︷ ︸

J(θ)

[
θ̇1
θ̇2

]

• We denote the two columns of J(θ) as J1(θ) and J2(θ)

and get

ẋ = J1(θ)θ̇1 + J2(θ)θ̇2
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Velocity kinematics: basic example

• In the equation ẋ = J1(θ)θ̇1 + J2(θ)θ̇2, we think of θ̇1 and

θ̇2 as the coefficients of a linear combination of the

vectors J1(θ) and J2(θ).

• If J1(θ) and J2(θ) are linearly independent, we can find

coefficients θ̇i so that ẋ takes on any value.

• Practically, this says that by choosing appropriate

velocities for the joints, we can make the end-effector

move in any desired directions.

• Note that the vectors are functions of θ. The values of θ

for which the Ji (θ) are not linearly independent, or

equivalently, det J(θ) = 0, are called singular

configurations.

• At singular configurations, some directions of motions for

the end-effector cannot be realized.

• For the example here, if θ2 = 0, then the configuration is

singular.
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The Jacobian and its uses

• Let us look at how velocities for θi are mapped to

velocities for x .

• Set L1 = L2 = 1 and θ1 = 0, θ2 = π/4. We calculate

J(0, π/4) =

[
−.71 −.71

1.71 .71

]
.

• Assume that the actuators allow joint velocities

θ̇i ∈ [−1, 1]. The set of possible joint velocities is mapped

into a set of possible end-effector velocities by taking

ẋ = J(θ)θ̇.

• E.g., A = (1, 1) is mapped to A = (−1.42, 2.42).
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The Jacobian and its uses

• If the joint velocities are so that θ̇21 + θ̇22 ≤ 1 (disk of radius

1), we can map them through the Jacobian as before, and

obtain the set of possible end-effector velocities.

• The ellipsoid obtained as an image of the disk in

joint-velocities space is called the manipulability ellipsoid.

• A flatter ellipsoid says that we are close to a singular

configuration: some directions are not available; a large

joint velocity yields a small end-effector velocity. 7



The Jacobian and its uses

• Assume a force ft is applied on the end-effector (e.g.,

weight of a load). What torque to apply at the joint to

keep the end-effector at a fixed position?

• Let τ = (τ1, τ2) be the joints’ torque vector. By

conservation of power (principle of virtual work), we need

f >t ẋ = τ>θ̇ ⇒ f >t J(θ)θ̇ = τ>θ̇

for all θ̇. We conclude that

τ = J>(θ)ft .
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The Jacobian and its uses

• Reciprocally, given limits on the possible torques at the

joints (and assuming that J> is invertible!), we can plot all

the forces that can be counteracted at the end effector as

ft = (J>(θ))−1τ
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Computing the Jacobian from the FKM in PoE form

• Assume given the forward kinematics map in a product of

exponential form

T (θ) = e [S1]θ1e [S2]θ2 · · · e [Sn]θnM.

• Differentiating, we obtain

Ṫ =
d

dt

(
e [S1]θ1

)
e [S2]θ2 · · · e [Sn]θnM + · · ·

+ e [S1]θ1e [S2]θ2 · · · d
dt

(
e [Sn]θn

)
M

= [S1]θ̇1e
[S1]θ1 · · · e [Sn]θnM + · · ·+ e [S1]θ1 · · · [Sn]θ̇ne

[Sn]θnM

• We have T−1 = M−1e−[Sn]θn · · · e−[S1]θn
• Now recall that the velocity (twist) of the end-effector is

[Vs ] = ṪT−1. We get

[Vs ] = [S1]θ̇1 + e [S1]θ1 [S2]e−[S1]θ1 θ̇2

+ e [S1]θ1e [S2]θ2 [S3]e−[S2]θ2e−[S1]θ1 θ̇3 + · · ·
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Computing the Jacobian from the FKM in PoE form

• Using the adjoint map, we get

Vs = S1︸︷︷︸
Js1

θ̇1 +Ade [S1]θ1 (S2)︸ ︷︷ ︸
Js2

θ̇2 +Ade [S1]θ1 e [S2]θ2 (S3)︸ ︷︷ ︸
Js3

θ̇3 + · · ·

• We see that Vs is the sum of n spatial twists. We set

Js(θ) =
[
Js1 Js2 · · · Jsn

]
the Jacobian in space-frame coordinates, space Jacobian.

We have

Vs = Js(θ)θ̇

• For a n-joints mechanism, Js(θ) ∈ R6×n.
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Computing the Jacobian from the FKM in PoE form

• The ith column of the space Jacobian is

Jsi = Ad
e [S1]θ1 ···e [Si−1]θi−1 (Si ),

for i ≥ 2, and Js1 = S1
• Set Ti = e [S1]θ1 · · · e [Si ]. How to physically interpret this

quantity?

• With M being “reference” configuration of the

mechanism, TiM is the configuration when the first i

joints are set to values θ1, . . . , θi and the remaining are

kept at zero −→ Ti is the transformation matrix that

takes the mechanism between the two states.

• Jsi is the screw vector of joint i , in fixed frame

coordinates, but expressed at arbitrary θ, (because of

AdTi−1) instead of 0.

• Note that Jsi only depends on θ1 · · · θi , we can ignore the

other joint angles in its computation.
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Computing the Jacobian: example

• To evaluate the space-Jacobian, we put in columns the

screws of the joints in their order in the chain. We assume

that the θi are arbitrary. We have here

1. ωs1 = (0, 0, 1) and vs1 = (0, 0, 0).

2. ωs2 = (0, 0, 1). To compute vs2, let q2 be a vector joining

origin of ref. frame to a point on axis of rotation of 2.

For example, q2 = (L1 cos θ1, L2 sin θ1, 0). Then

vs2 = −ω2 × q2 = (L1s1,−L1c1, 0). 13



Computing the Jacobian: example

• For the other joints:

1. ωs3 = (0, 0, 1). Choose q3 joining origin to an arbitrary

point on rotation axis, e.g.

q3 = (L1c1 + L2c12, L1s1 + L2s12, 0), where

c12 = cos(θ1 + θ2), s12 = sin(θ1 + θ2),

c1 = cos θ1, s2 = sin θ2. We get

vs3 = (L1s1 + L2s12,−L1c1 − L2c12, 0).

2. The last joint is prismatic: ωs4 = (0, 0, 0). The axis of

translation is always aligned with ẑ , regardless of the θi :

vs4 = (0, 0, 1).
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Computing the Jacobian: example

• The Jacobian is thus:

• If finding the screw vectors in arbitrary mechanism

position is too difficult geometrically, use the formula

derived earlier.
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Computing the Jacobian: example

• First joint: ωs1 = (0, 0, 1), q1 = (0, 0, L1) and

vs1 = −ω1 × q1 = (0, 0, 0)

• Second joint: axis in direction ωs2 = (−c1,−s1, 0). Set

q2 = (0, 0, L1) and vs2 = −ωs2 × q2 = (L1s2,−L1c1, 0)
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Computing the Jacobian: example

• Third joint: prismatic, so ωs3 = (0, 0, 0). The direction of

motion at arbitrary positions of θ1, θ2 is

vs3 = Rot(ẑ , θ1)Rot(x̂ ,−θ2)

0

1

0

 =

−s1c2c1c2
−s2


• Fourth/fifth/sixth joints: also called wrist. Its center is at

qw =

 0

0

L1

+Rot(ẑ , θ1)Rot(x̂ ,−θ2)

 0

L2 + θ3
0

 =

 −(L2 + θ3)s1c2
(L2 + θ3)c1c2

L1 − (L2 + θ3)s2


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Computing the Jacobian: example

The direction of motion at arbitrary positions of θ1, θ2 is

vs3 = Rot(ẑ , θ1)Rot(x̂ ,−θ2)

0

1

0

 =

−s1c2c1c2
−s2


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Computing the Jacobian: example

• The Jacobian is

Js(θ) =

[
ωs1 ωs2 0 ωs4 ωs5 ωs6

0 −ωs2 × q2 vs3 −ωs4 × qw −ωs5 × qw −ωs6 × qw

]
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Body Jacobian

• The (space) Jacobian relates the joint angles velocities to

the end-effector twist in space-coordinates [Vs ] = ṪT−1,

where T = Tsb(θ) is the position of the end-effector

frame.

• Recall that the twist of the end-effector in body-frame is

[Vb] = T−1Ṫ , for T as above. We derived in the previous

lectures that

T (θ) = Me [B1]θ1 · · · e [Bn]θn = e [S1]θ1 · · · e [Sn]θnM

• The body Jacobian is obtained by differentiating the first

expression for T (θ).
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Body Jacobian

• We have

Ṫ = Me [B1]θ1 · · · [Bn]θ̇ne
[Bn]θn + · · ·+ M[B1]θ̇1e

[B1]θ1 · · · e [Bn]θn

and

T−1 = e−[Bn]θn · · · e−[B1]θ1M−1

• Putting the two together, we get

[Vb] = T−1Ṫ = [Bn]θ̇n+e−[Bn]θn [Bn−1]e−[Bn]θn θ̇n−1+· · ·
+ e−[Bn]θn · · · e−[B2]θ2 [B1]e [B2]θ2 · · · e [Bn]θn θ̇1

and in vector form

Vb = Bn︸︷︷︸
Jbn

θ̇n + Ade−[Bn ]θn (Bn−1)︸ ︷︷ ︸
Jb,n−1

θ̇n−1 + · · ·
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Body Jacobian

• We conclude that

[Vb] =
[
Jb1 Jb2 · · · Jbn

]

θ̇1
θ̇2
...

θ̇n


• The matrix Jb is the body Jacobian. The ith column of

the body Jacobian is

Jbi (θ) = Ade−[Bn ]θn ···e−[Bi+1]θi+1 (Bi )

for i < n, and Jbn = Bn.
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Relationship between space and body Jacobians

• We have [Vs ] = ṪsbT
−1
sb and [Vb] = T−1sb Ṫsb. We have

also shown that Vs = AdTsb
(Vb).

• We can also relate the twists to joint angle velocities

through Vs = Js(θ)θ̇ and Vb = Jb(θ)θ̇. Hence

AdTsb
(Vb) = Js(θ)θ̇.

• Apply AdTbs
on both sides of the previous relation, and

recall that AdAAdB = AdAB

AdTbs
AdTsb

(Vb) = Vb = AdTbs
(Js(θ)θ̇).

Replace Vb by Jb(θ)θ̇ to obtain Jb(θ)θ̇ = AdTbs
(Js(θ)θ̇).

• Since the previous equation holds true for all θ̇, we have

Jb(θ) = AdTbs
(Js(θ)) and Js(θ) = AdTsb

(Jb(θ))
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