Introduction to Robotics
 Lecture 10. Velocity Kinematics: The
 Jacobian

Velocity kinematics

- We know how to calculate the position of the end-effector of an open chain given the joint angles, i.e. derive the forward kinematic map.
- We now seek to evaluate the twist, i.e. the velocity, of the end-effector frame given the joint angles $\left(\theta_{1}, \ldots, \theta_{n}\right)$ and their velocities $\left(\dot{\theta}_{1}, \ldots, \dot{\theta}_{n}\right)$
- Abstractly, we can set the vector $x(t)$ to be the position of the end-effector at time t. The forward kinematics map is $x(t)=f(\theta(t))$. We want to obtain the derivative of $x(t)$:

$$
\frac{d}{d t} x(t)=\left.\frac{\partial f}{\partial \theta}\right|_{\theta(t)} \dot{\theta}
$$

The matrix $\frac{\partial f}{\partial \theta}$ is called the Jacobian of f.

- We can think of the Jacobian as encoding the sensitivity of the motion of the end-effector with regard to motions of the joints.

Velocity kinematics: basic example

- The forward kinematics of this open chain is

$$
\begin{aligned}
& x_{1}=L_{1} \cos \theta_{1}+L_{2} \cos \left(\theta_{1}+\theta_{2}\right) \\
& x_{2}=L_{1} \sin \theta_{1}+L_{2} \sin \left(\theta_{1}+\theta_{2}\right)
\end{aligned}
$$

- Now assume that $\theta_{i}=\theta_{i}(t)$ and differentiate on both sides

$$
\begin{aligned}
& \dot{x}_{1}=-L_{1} \dot{\theta}_{1} \sin \theta_{1}-L_{2}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right) \sin \left(\theta_{1}+\theta_{2}\right) \\
& \dot{x}_{2}=L_{1} \dot{\theta}_{1} \cos \theta_{1}+L_{2}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right) \cos \left(\theta_{1}+\theta_{2}\right)
\end{aligned}
$$

Velocity kinematics: basic example

- We can rearrange the previous equation as follows

$$
\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
-L_{1} \sin \theta_{1}-L_{2} \sin \left(\theta_{1}+\theta_{2}\right) & -L_{2} \sin \left(\theta_{1}+\theta_{2}\right) \\
L_{1} \cos \theta_{1}+L_{2} \cos \left(\theta_{1}+\theta_{2}\right) & L_{2} \cos \left(\theta_{1}+\theta_{2}\right)
\end{array}\right]}_{J(\theta)}\left[\begin{array}{c}
\dot{\theta}_{1} \\
\dot{\theta}_{2}
\end{array}\right]
$$

- We denote the two columns of $J(\theta)$ as $J_{1}(\theta)$ and $J_{2}(\theta)$ and get

$$
\dot{x}=J_{1}(\theta) \dot{\theta}_{1}+J_{2}(\theta) \dot{\theta}_{2}
$$

Velocity kinematics: basic example

- In the equation $\dot{x}=J_{1}(\theta) \dot{\theta}_{1}+J_{2}(\theta) \dot{\theta}_{2}$, we think of $\dot{\theta}_{1}$ and $\dot{\theta}_{2}$ as the coefficients of a linear combination of the vectors $J_{1}(\theta)$ and $J_{2}(\theta)$.
- If $J_{1}(\theta)$ and $J_{2}(\theta)$ are linearly independent, we can find coefficients $\dot{\theta}_{i}$ so that \dot{x} takes on any value.
- Practically, this says that by choosing appropriate velocities for the joints, we can make the end-effector move in any desired directions.
- Note that the vectors are functions of θ. The values of θ for which the $J_{i}(\theta)$ are not linearly independent, or equivalently, det $J(\theta)=0$, are called singular configurations.
- At singular configurations, some directions of motions for the end-effector cannot be realized.
- For the example here, if $\theta_{2}=0$, then the configuration is singular.

The Jacobian and its uses

- Let us look at how velocities for θ_{i} are mapped to velocities for x.
- Set $L_{1}=L_{2}=1$ and $\theta_{1}=0, \theta_{2}=\pi / 4$. We calculate $J(0, \pi / 4)=\left[\begin{array}{cc}-.71 & -.71 \\ 1.71 & .71\end{array}\right]$.
- Assume that the actuators allow joint velocities
$\dot{\theta}_{i} \in[-1,1]$. The set of possible joint velocities is mapped into a set of possible end-effector velocities by taking $\dot{x}=J(\theta) \dot{\theta}$.

The Jacobian and its uses

- If the joint velocities are so that $\dot{\theta}_{1}^{2}+\dot{\theta}_{2}^{2} \leq 1$ (disk of radius 1), we can map them through the Jacobian as before, and obtain the set of possible end-effector velocities.
- The ellipsoid obtained as an image of the disk in joint-velocities space is called the manipulability ellipsoid.
- A flatter ellipsoid says that we are close to a singular configuration: some directions are not available; a large joint velocity yields a small end-effector velocity.

The Jacobian and its uses

- Assume a force f_{t} is applied on the end-effector (e.g., weight of a load). What torque to apply at the joint to keep the end-effector at a fixed position?
- Let $\tau=\left(\tau_{1}, \tau_{2}\right)$ be the joints' torque vector. By conservation of power (principle of virtual work), we need

$$
f_{t}^{\top} \dot{x}=\tau^{\top} \dot{\theta} \Rightarrow f_{t}^{\top} J(\theta) \dot{\theta}=\tau^{\top} \dot{\theta}
$$

for all $\dot{\theta}$. We conclude that

$$
\tau=J^{\top}(\theta) f_{t}
$$

The Jacobian and its uses

- Reciprocally, given limits on the possible torques at the joints (and assuming that J^{\top} is invertible!), we can plot all the forces that can be counteracted at the end effector as

$$
f_{t}=\left(J^{\top}(\theta)\right)^{-1} \tau
$$

Computing the Jacobian from the FKM in PoE form

- Assume given the forward kinematics map in a product of exponential form

$$
T(\theta)=e^{\left[\mathcal{S}_{1}\right] \theta_{1}} e^{\left[\mathcal{S}_{2}\right] \theta_{2}} \cdots e^{\left[\mathcal{S}_{n}\right] \theta_{n}} M
$$

- Differentiating, we obtain

$$
\begin{aligned}
\dot{\bar{T}} & =\frac{d}{d t}\left(e^{\left[\mathcal{S}_{1}\right] \theta_{1}}\right) e^{\left[\mathcal{S}_{2}\right] \theta_{2}} \cdots e^{\left[\mathcal{S}_{n}\right] \theta_{n}} M+\cdots \\
& +e^{\left[\mathcal{S}_{1}\right] \theta_{1}} e^{\left[\mathcal{S}_{2}\right] \theta_{2}} \cdots \frac{d}{d t}\left(e^{\left[\mathcal{S}_{n}\right] \theta_{n}}\right) M \\
& =\left[\mathcal{S}_{1}\right] \dot{\theta}_{1} e^{\left[\mathcal{S}_{1}\right] \theta_{1}} \cdots e^{\left[\mathcal{S}_{n}\right] \theta_{n}} M+\cdots+e^{\left[\mathcal{S}_{1}\right] \theta_{1}} \cdots\left[\mathcal{S}_{n}\right] \dot{\theta}_{n} e^{\left[\mathcal{S}_{n}\right] \theta_{n}} M
\end{aligned}
$$

- We have $T^{-1}=M^{-1} e^{-\left[\mathcal{S}_{n}\right] \theta_{n}} \cdots e^{-\left[\mathcal{S}_{1}\right] \theta_{n}}$
- Now recall that the velocity (twist) of the end-effector is $\left[\nu_{s}\right]=\dot{T} T^{-1}$. We get

$$
\begin{aligned}
{\left[\mathcal{V}_{s}\right]=\left[\mathcal{S}_{1}\right] \dot{\theta}_{1} } & +e^{\left[\mathcal{S}_{1}\right] \theta_{1}}\left[\mathcal{S}_{2}\right] e^{-\left[\mathcal{S}_{1}\right] \theta_{1}} \dot{\theta}_{2} \\
& +e^{\left[\mathcal{S}_{1}\right] \theta_{1}} e^{\left[\mathcal{S}_{2}\right] \theta_{2}}\left[\mathcal{S}_{3}\right] e^{-\left[\mathcal{S}_{2}\right] \theta_{2}} e^{-\left[\mathcal{S}_{1}\right] \theta_{1}} \dot{\theta}_{3}+\cdots
\end{aligned}
$$

Computing the Jacobian from the FKM in PoE form

- Using the adjoint map, we get

$$
\mathcal{V}_{s}=\underbrace{\mathcal{S}_{1}}_{J_{s 1}} \dot{\theta}_{1}+\underbrace{\operatorname{Ad}_{e^{\left[s_{1}\right] \theta_{1}}}\left(\mathcal{S}_{2}\right)}_{J_{s 2}} \dot{\theta}_{2}+\underbrace{\operatorname{Ad}_{e^{\left[\mathcal{S}_{1}\right] \theta_{1}}{ }_{e}^{\left[S_{2}\right] \theta_{2}}}\left(\mathcal{S}_{3}\right)}_{J_{s 3}} \dot{\theta}_{3}+\cdots
$$

- We see that \mathcal{V}_{s} is the sum of n spatial twists. We set

$$
J_{s}(\theta)=\left[\begin{array}{llll}
J_{s 1} & J_{s 2} & \cdots & J_{s n}
\end{array}\right]
$$

the Jacobian in space-frame coordinates, space Jacobian.
We have

$$
\mathcal{V}_{s}=J_{s}(\theta) \dot{\theta}
$$

- For a n-joints mechanism, $J_{s}(\theta) \in \mathbb{R}^{6 \times n}$.

Computing the Jacobian from the FKM in PoE form

- The ith column of the space Jacobian is

$$
J_{s i}=\operatorname{Ad}_{e^{\left[\mathcal{S}_{1}\right] \theta_{1} \ldots e^{\left(S_{i-1}\right] \theta_{i-1}}}}\left(\mathcal{S}_{i}\right),
$$

for $i \geq 2$, and $J_{s 1}=\mathcal{S}_{1}$

- Set $T_{i}=e^{\left[\mathcal{S}_{1}\right] \theta_{1}} \ldots e^{\left[\mathcal{S}_{i}\right]}$. How to physically interpret this quantity?
- With M being "reference" configuration of the mechanism, $T_{i} M$ is the configuration when the first i joints are set to values $\theta_{1}, \ldots, \theta_{i}$ and the remaining are kept at zero $\longrightarrow T_{i}$ is the transformation matrix that takes the mechanism between the two states.
- $J_{s i}$ is the screw vector of joint i, in fixed frame coordinates, but expressed at arbitrary θ, (because of $\mathrm{Ad}_{T_{i-1}}$) instead of 0 .
- Note that $J_{s i}$ only depends on $\theta_{1} \cdots \theta_{i}$, we can ignore the other joint angles in its computation.

Computing the Jacobian: example

- To evaluate the space-Jacobian, we put in columns the screws of the joints in their order in the chain. We assume that the θ_{i} are arbitrary. We have here

1. $\omega_{s 1}=(0,0,1)$ and $v_{s 1}=(0,0,0)$.
2. $\omega_{s 2}=(0,0,1)$. To compute $v_{s 2}$, let q_{2} be a vector joining origin of ref. frame to a point on axis of rotation of 2 .
For example, $q_{2}=\left(L_{1} \cos \theta_{1}, L_{2} \sin \theta_{1}, 0\right)$. Then
$v_{s 2}=-\omega_{2} \times q_{2}=\left(L_{1} s_{1},-L_{1} c_{1}, 0\right)$.

Computing the Jacobian: example

- For the other joints:

1. $\omega_{s 3}=(0,0,1)$. Choose q_{3} joining origin to an arbitrary point on rotation axis, e.g.

$$
\begin{aligned}
& q_{3}=\left(L_{1} c_{1}+L_{2} c_{12}, L_{1} s_{1}+L_{2} s_{12}, 0\right), \text { where } \\
& c_{12}=\cos \left(\theta_{1}+\theta_{2}\right), s_{12}=\sin \left(\theta_{1}+\theta_{2}\right), \\
& c_{1}=\cos \theta_{1}, s_{2}=\sin \theta_{2} . \text { We get } \\
& v_{s 3}=\left(L_{1} s_{1}+L_{2} s_{12},-L_{1} c_{1}-L_{2} c_{12}, 0\right) .
\end{aligned}
$$

2. The last joint is prismatic: $\omega_{s 4}=(0,0,0)$. The axis of translation is always aligned with \hat{z}, regardless of the θ_{i} :

$$
v_{s 4}=(0,0,1)
$$

Computing the Jacobian: example

- The Jacobian is thus:

$$
J_{s}(\theta)=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & L_{1} \mathrm{~s}_{1} & L_{1} \mathrm{~s}_{1}+L_{2} \mathrm{~s}_{12} & 0 \\
0 & -L_{1} \mathrm{c}_{1} & -L_{1} \mathrm{c}_{1}-L_{2} \mathrm{c}_{12} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

- If finding the screw vectors in arbitrary mechanism position is too difficult geometrically, use the formula derived earlier.

Computing the Jacobian: example

- First joint: $\omega_{s 1}=(0,0,1), q_{1}=\left(0,0, L_{1}\right)$ and $v_{s 1}=-\omega_{1} \times q_{1}=(0,0,0)$
- Second joint: axis in direction $\omega_{s 2}=\left(-c_{1},-s_{1}, 0\right)$. Set $q_{2}=\left(0,0, L_{1}\right)$ and $v_{s 2}=-\omega_{s 2} \times q_{2}=\left(L_{1} s_{2},-L_{1} c_{1}, 0\right)$

Computing the Jacobian: example

- Third joint: prismatic, so $\omega_{s 3}=(0,0,0)$. The direction of motion at arbitrary positions of θ_{1}, θ_{2} is

$$
v_{s 3}=\operatorname{Rot}\left(\hat{z}, \theta_{1}\right) \operatorname{Rot}\left(\hat{x},-\theta_{2}\right)\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-s_{1} c_{2} \\
c_{1} c_{2} \\
-s_{2}
\end{array}\right]
$$

- Fourth/fifth/sixth joints: also called wrist. Its center is at

$$
q_{w}=\left[\begin{array}{c}
0 \\
0 \\
L_{1}
\end{array}\right]+\operatorname{Rot}\left(\hat{z}, \theta_{1}\right) \operatorname{Rot}\left(\hat{x},-\theta_{2}\right)\left[\begin{array}{c}
0 \\
L_{2}+\theta_{3} \\
0
\end{array}\right]=\left[\begin{array}{c}
-\left(L_{2}+\theta_{3}\right) s_{1} c_{2} \\
\left(L_{2}+\theta_{3}\right) c_{1} c_{2} \\
L_{1}-\left(L_{2}+\theta_{3}\right) s_{2}
\end{array}\right]
$$

Computing the Jacobian: example

$$
\begin{aligned}
& \omega_{s 4}=\operatorname{Rot}\left(\hat{\mathrm{z}}, \theta_{1}\right) \operatorname{Rot}\left(\hat{\mathrm{x}},-\theta_{2}\right)\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-\mathrm{s}_{1} \mathrm{~s}_{2} \\
\mathrm{c}_{1} \mathrm{~s}_{2} \\
\mathrm{c}_{2}
\end{array}\right], \\
& \omega_{s 5}=\operatorname{Rot}\left(\hat{z}, \theta_{1}\right) \operatorname{Rot}\left(\hat{\mathrm{x}},-\theta_{2}\right) \operatorname{Rot}\left(\hat{\mathrm{z}}, \theta_{4}\right)\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
-\mathrm{c}_{1} \mathrm{c}_{4}+\mathrm{s}_{1} \mathrm{c}_{2} \mathrm{~s}_{4} \\
-\mathrm{s}_{1} \mathrm{c}_{4}-\mathrm{c}_{1} \mathrm{c}_{2} \mathrm{~s}_{4} \\
\mathrm{~s}_{2} \mathrm{~s}_{4}
\end{array}\right] \\
& \omega_{s 6}=\operatorname{Rot}\left(\hat{\mathrm{z}}, \theta_{1}\right) \operatorname{Rot}\left(\hat{\mathrm{x}},-\theta_{2}\right) \operatorname{Rot}\left(\hat{\mathrm{z}}, \theta_{4}\right) \operatorname{Rot}\left(\hat{\mathrm{x}},-\theta_{5}\right)\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
-c_{5}\left(s_{1} c_{2} c_{4}+c_{1} s_{4}\right)+s_{1} s_{2} s_{5} \\
c_{5}\left(c_{1} c_{2} c_{4}-s_{1} s_{4}\right)-c_{1} s_{2} s_{5} \\
-s_{2} c_{4} c_{5}-c_{2} s_{5}
\end{array}\right] .
\end{aligned}
$$

The direction of motion at arbitrary positions of θ_{1}, θ_{2} is

$$
v_{s 3}=\operatorname{Rot}\left(\hat{z}, \theta_{1}\right) \operatorname{Rot}\left(\hat{x},-\theta_{2}\right)\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-s_{1} c_{2} \\
c_{1} c_{2} \\
-s_{2}
\end{array}\right]
$$

Computing the Jacobian: example

- The Jacobian is

$$
J_{s}(\theta)=\left[\begin{array}{cccccc}
\omega_{s 1} & \omega_{s 2} & 0 & \omega_{s 4} & \omega_{s 5} & \omega_{s 6} \\
0 & -\omega_{s 2} \times q_{2} & v_{s 3} & -\omega_{s 4} \times q_{w} & -\omega_{s 5} \times q_{w} & -\omega_{s 6} \times q_{w}
\end{array}\right]
$$

Body Jacobian

- The (space) Jacobian relates the joint angles velocities to the end-effector twist in space-coordinates $\left[\mathcal{V}_{s}\right]=\dot{T} T^{-1}$, where $T=T_{s b}(\theta)$ is the position of the end-effector frame.
- Recall that the twist of the end-effector in body-frame is $\left[\mathcal{V}_{b}\right]=T^{-1} \dot{T}$, for T as above. We derived in the previous lectures that

$$
T(\theta)=M e^{\left[\mathcal{S}_{1}\right] \theta_{1}} \cdots e^{\left[\mathcal{B}_{n}\right] \theta_{n}}=e^{\left[\mathcal{S}_{1}\right] \theta_{1}} \cdots e^{\left[\mathcal{S}_{n}\right] \theta_{n}} M
$$

- The body Jacobian is obtained by differentiating the first expression for $T(\theta)$.

Body Jacobian

- We have
$\dot{T}=M e^{\left[\mathcal{B}_{1}\right] \theta_{1}} \cdots\left[\mathcal{B}_{n}\right] \dot{\theta}_{n} e^{\left[\mathcal{B}_{n}\right] \theta_{n}}+\cdots+M\left[\mathcal{B}_{1}\right] \dot{\theta}_{1} e^{\left[\mathcal{B}_{1}\right] \theta_{1}} \cdots e^{\left[\mathcal{B}_{n}\right] \theta_{n}}$
and

$$
T^{-1}=e^{-\left[\mathcal{B}_{n}\right] \theta_{n}} \cdots e^{-\left[\mathcal{B}_{1}\right] \theta_{1}} M^{-1}
$$

- Putting the two together, we get

$$
\begin{gathered}
{\left[\mathcal{V}_{b}\right]=T^{-1} \dot{T}=\left[\mathcal{B}_{n}\right] \dot{\theta}_{n}+e^{-\left[\mathcal{B}_{n}\right] \theta_{n}}\left[\mathcal{B}_{n-1}\right] e^{-\left[\mathcal{B}_{n}\right] \theta_{n}} \dot{\theta}_{n-1}+\cdots} \\
+e^{-\left[\mathcal{B}_{n}\right] \theta_{n}} \cdots e^{-\left[\mathcal{B}_{2}\right] \theta_{2}}\left[\mathcal{B}_{1}\right] e^{\left[\mathcal{B}_{2}\right] \theta_{2}} \cdots e^{\left[\mathcal{B}_{n}\right] \theta_{n}} \dot{\theta}_{1}
\end{gathered}
$$

and in vector form

$$
\mathcal{V}_{b}=\underbrace{\mathcal{B}_{n}}_{J_{b n}} \dot{\theta}_{n}+\underbrace{\operatorname{Ad}_{e^{-\left[\mathcal{B}_{n}\right] \theta_{n}}}\left(\mathcal{B}_{n-1}\right)}_{J_{b, n-1}} \dot{\theta}_{n-1}+\cdots
$$

Body Jacobian

- We conclude that

$$
\left[\mathcal{V}_{b}\right]=\left[\begin{array}{llll}
J_{b 1} & J_{b 2} & \cdots & J_{b n}
\end{array}\right]\left[\begin{array}{c}
\dot{\theta}_{1} \\
\dot{\theta}_{2} \\
\vdots \\
\dot{\theta}_{n}
\end{array}\right]
$$

- The matrix J_{b} is the body Jacobian. The ith column of the body Jacobian is

$$
J_{b i}(\theta)=\operatorname{Ad}_{e^{-\left[\mathcal{B}_{n}\right] \theta_{n} \ldots e^{-\left[\mathcal{B}_{i+1}\right] \theta_{i+1}}}\left(\mathcal{B}_{i}\right)}
$$

for $i<n$, and $J_{b n}=\mathcal{B}_{n}$.

Relationship between space and body Jacobians

- We have $\left[\mathcal{V}_{s}\right]=\dot{T}_{s b} T_{s b}^{-1}$ and $\left[\mathcal{V}_{b}\right]=T_{s b}^{-1} \dot{T}_{s b}$. We have also shown that $\mathcal{V}_{s}=\operatorname{Ad}_{T_{s b}}\left(\mathcal{V}_{b}\right)$.
- We can also relate the twists to joint angle velocities through $\mathcal{V}_{s}=J_{s}(\theta) \dot{\theta}$ and $\mathcal{V}_{b}=J_{b}(\theta) \dot{\theta}$. Hence $\operatorname{Ad}_{T_{s b}}\left(\mathcal{V}_{b}\right)=J_{s}(\theta) \dot{\theta}$.
- Apply $\operatorname{Ad}_{T_{b s}}$ on both sides of the previous relation, and recall that $\operatorname{Ad}_{A} \operatorname{Ad}_{B}=\operatorname{Ad}_{A B}$

$$
\operatorname{Ad}_{T_{b s}} \operatorname{Ad}_{T_{s b}}\left(\mathcal{V}_{b}\right)=\mathcal{V}_{b}=\operatorname{Ad}_{T_{b s}}\left(J_{s}(\theta) \dot{\theta}\right) .
$$

Replace \mathcal{V}_{b} by $J_{b}(\theta) \dot{\theta}$ to obtain $J_{b}(\theta) \dot{\theta}=\operatorname{Ad}_{T_{b s}}\left(J_{s}(\theta) \dot{\theta}\right)$.

- Since the previous equation holds true for all $\dot{\theta}$, we have

$$
J_{b}(\theta)=\operatorname{Ad}_{T_{b s}}\left(J_{s}(\theta)\right) \text { and } J_{s}(\theta)=\operatorname{Ad}_{T_{s b}}\left(J_{b}(\theta)\right)
$$

