Introduction to Robotics Lecture 9: Forward Kinematics: PoE in body frame and Denavit-Hartenberg parameters

Product of exponentials: change of frame

$$M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & L_1 + L_2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

i	ω_i	v_i
1	(0, 0, 1)	(0, 0, 0)
2	(1, 0, 0)	(0, 0, 0)
3	(0, 0, 0)	(0, 1, 0)
4	(0, 1, 0)	(0, 0, 0)
5	(1, 0, 0)	$(0,0,-L_1)$
6	(0, 1, 0)	(0, 0, 0)

 \longrightarrow we expressed the screw vector of each link with respect to frame s and M is position of end effector in s.

• Recall the change of frame formula for twists: if S_1 is the twist of link 1 in frame s and B_1 is the twist of link 1 in frame b, then

$$[\mathcal{S}_1] = \mathcal{T}_{sb}[\mathcal{B}_1]\mathcal{T}_{sb}^{-1}$$
 and $[\mathcal{B}_1] = \mathcal{T}_{bs}[\mathcal{S}_1]\mathcal{T}_{bs}^{-1}$.

or equivalently,

$$\mathcal{S}_1 = \operatorname{Ad}_{\mathcal{T}_{sb}} \mathcal{B}_1$$
 and $\mathcal{B}_1 = \operatorname{Ad}_{\mathcal{T}_{bs}} \mathcal{S}_1$

• Recall that $M^{-1}e^AM = e^{M^{-1}AM}$. Thus

$$e^A M = M e^{M^{-1} A M}.$$

• Recall that in PoE, $M = T_{sb}$ where s is a reference frame and b the end-effector frame. Iterating the previous formula, we get

Т

$$(\theta) = e^{[S_1\theta_1]} e^{[S_2\theta_2]} M$$
$$= e^{[S_1\theta_1]} M e^{M^{-1}[S_2\theta_2]M}$$
$$= M e^{M^{-1}[S_1\theta_1]M} e^{[B_2\theta_2]}$$
$$= M e^{[B_1\theta_1]} e^{[B_2\theta_2]}$$

- This is the body-form of the PoE
- Note that we can obtain it from the PoE in space form (i.e. with respect to reference frame), or evaluate directly \mathcal{B}_i from the figure.

Product of exponentials: change of frame

$$M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 3L \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

i	ω_i	v_i
1	(0, 0, 1)	(0, 0, 0)
2	(0, 1, 0)	(0, 0, 0)
3	(-1, 0, 0)	(0, 0, 0)
4	(-1, 0, 0)	(0, 0, L)
5	(-1, 0, 0)	(0, 0, 2L)
6	(0, 1, 0)	(0, 0, 0)

 ω_i v_i (0, 0, 1)(-3L, 0, 0)2 (0, 1, 0)(0, 0, 0)3 (-1, 0, 0)(0, 0, -3L)(-1, 0, 0)(0, 0, -2L)4 5 (0, 0, -L)(-1, 0, 0)(0, 1, 0)(0, 0, 0)6

space-frame

body-frame

Denavit-Hartenberg formalism

- Recall the 3R arm. We have $T_{04} = T_{01}T_{12}T_{23}T_{34}$.
- The DH formalism provides a set of rules for assigning frames to links.
- This formalism makes velocity kinematics easier, and standardizes the way to write forward kinematics.
- We will mostly use the PoE formalism in this course, but DH being widely used, we go over the procedure.

- For all links \hat{z}_i is aligned with joint axis *i* (i.e. with \hat{s}_i of the corresponding screw)
- Assume that \hat{z}_i and \hat{z}_{i-1} do not intersect and are not parallel. Let

 a_{i-1} = segment intersecting $\hat{z}_{i-1} \& \hat{z}_i$, perpendicular to both.

• Origin of frame i - 1 = intersection of a_{i-1} and axis of \hat{z}_{i-1}

- Axis \hat{x}_{i-1} is aligned with a_{i-1} .
- Axis \hat{y}_{i-1} is obtained using right-hand-rule.

 \longrightarrow frame i-1 is specified

• To assign T_i , we repeat the above with knowledge from joint i + 1.

- Assume frames i 1 and i have been specified. We need 4 parameters to obtain $T_{(i-1)i}$.
 - 1. The length of a_{i-1} , called **link length**. (not length of physical link in general)
 - 2. Angle α_{i-1} between \hat{z}_{i-1} and \hat{z}_i around \hat{x}_{i-1} , called link twist.
 - 3. The distance d_i between intersection of a_{i-1} and \hat{z}_i and origin of frame *i*. This is called the **link offset**.
 - The angle \$\phi_i\$ between \$\hat{x}_{i-1}\$ and \$\hat{x}_i\$ measured about the \$\hat{z}_i\$ axis. This is called the joint angle

• Recall that $T_{si} = T_{s(i-1)}T_{(i-1)i}$. We have

$$T_{(i-1)i} = Rot(\hat{x}, \alpha_{i-1}) Tr(\hat{x}, a_{i-1}) Tr(\hat{z}, d_i) Rot(\hat{z}, \phi_i) \\ = \begin{bmatrix} \cos \phi_i & -\sin \phi_i & 0 & a_{i-1} \\ \sin \phi_i \cos \alpha_{i-1} & \cos \phi_i \cos \alpha_{i-1} & -\sin \alpha_{i-1} & -d_i \sin \alpha_{i-1} \\ \sin \phi_i \sin \alpha_{i-1} & \cos \phi_i \sin \alpha_{i-1} & \cos \alpha_{i-1} & d_i \cos \alpha_{i-1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

10

- We can visualize $T_{i-1,i}$ as the following sequence of steps:
 - 1. Rotation of frame i-1 about its \hat{x} axis by angle α_{i-1}
 - 2. Translation of resulting frame along its \hat{x} axis by distance a_{i-1} .
 - 3. Translation of resulting frame along its \hat{z} axis by distance d_i
 - 4. Rotation of the new frame about its \hat{z} axis by angle ϕ_i .

Intersecting axes

- If the two axes of revolution intersect, then $a_{i-1} = 0$.
- In this case, set \hat{x}_{i-1} to be perpendicular to both \hat{z}_i and \hat{z}_{i-1} .
- Two such x̂_{i-1} exist, both are fine (they lead to opposite signs for the angle α_{i-1})

Parallel axes

- If the two axes are parallel, there is an infinite number of choices for the segment a_{i-1}, all of the same length and perpendicular to both 2̂_i and 2̂_{i-1}.
 - We can choose any of these.
 - In practice, choose it so as to make other parameters zero or easy to manipulate, but it is not necessary to do so.

DH: prismatic joints

- Choose the \hat{z} direction of the link reference frame to be along *positive* direction of translation.
- Link offset d_i is the joint variable and joint angle φ_i is constant (opposite situation of revolute joint)
- All else (convention to choose frame origin, choice of \hat{x} and \hat{y} axes) remains the same as for revolute joints.

DH: 3R open chain

- Frames 1 and 2 are uniquely specified.
- Choose frame 3 so that $\hat{x}_3 = \hat{x}_2$.

i	α_{i-1}	a_{i-1}	d_i	ϕ_i
1	0	0	0	θ_1
2	90°	L_1	0	$\theta_2 - 90^\circ$
3	-90°	L_2	0	θ_3

- 1. length of a_{i-1} =link length
- 2. $\alpha_{i-1} = \measuredangle b/t \ \hat{z}_{i-1}$ and \hat{z}_i around $\hat{x}_{i-1} = link$ twist.
- 3. $d_i = \text{dist. b/t } a_{i-1} \cap \hat{z}_i$ and orig. frame i = link offset.
- φ_i=∠ b/t x̂_{i-1} and x̂_i around ẑ_i=joint angle

DH: RRRP open chain

- θ_4 is displacement of prismatic joint.
- Choose frame 3 so that $\hat{x}_3 = \hat{x}_2$.

- We can easily translate a DH representation into a PoE.
- To do so, first recall that for an invertible matrix M, $Me^PM^{-1} = e^{MPM^{-1}}$, and thus

$$Me^P = e^{MPM^{-1}}M.$$

• Recall that

$$T_{(i-1)i} = Rot(\hat{x}, \alpha_{i-1}) Tr(\hat{x}, a_{i-1}) Tr(\hat{z}, d_i) Rot(\hat{z}, \phi_i).$$

• If joint is revolute: set $\theta_i = \phi_i$ and write $Rot(\hat{z}, \theta_i)$ as the matrix exponential

We have $T_{i-1,i} = M_i e^{[\mathcal{A}_i]\theta_i}$ with $M_i = Rot(\hat{x}, \alpha_{i-1}) Tr(\hat{x}, a_{i-1}) Tr(\hat{z}, d_i)$.

• If joint is prismatic: set $\theta_i = d_i$ and write $Tr(\hat{z}, d_i)$ as the matrix exponential

We have $T_{i-1,i} = M_i e^{[\mathcal{A}_i]\theta_i}$ with $M_i = Rot(\hat{x}, \alpha_{i-1})Tr(\hat{x}, a_{i-1})Rot(\hat{z}, \phi_i)$. (Note that the last two operations in $T_{i-1,i}$ commute here!)

• Putting the above together, we have

$$T_{0,n} = M_1 e^{[\mathcal{A}_1]\theta_1} M_2 e^{[\mathcal{A}_2]\theta_2} \cdots M_n e^{[\mathcal{A}_n]\theta_n}$$

• Using the identity $Me^P = e^{MPM^{-1}}M$ iteratively, we obtain

$$T_{0n} = e^{M_1[\mathcal{A}_i]M_1^{-1}\theta_1}(M_1M_2)e^{[\mathcal{A}_2]\theta_2}\cdots e^{[\mathcal{A}_n]\theta_n}$$

= $e^{M_1[\mathcal{A}_i]M_1^{-1}\theta_1}e^{(M_1M_2)[\mathcal{A}_2](M_1M_2)^{-1}\theta_2}(M_1M_2M_3)\cdots e^{[\mathcal{A}_n]\theta_n}$
= $e^{[\mathcal{S}_1]\theta_1}\cdots e^{[\mathcal{S}_n]\theta_n}M$

with

$$\begin{split} [\mathcal{S}_i] &= (\mathcal{M}_1 \cdots \mathcal{M}_{i-1}) [\mathcal{A}_i] (\mathcal{M}_1 \cdots \mathcal{M}_{i-1})^{-1} \\ \mathcal{M} &= \mathcal{M}_1 \mathcal{M}_2 \cdots \mathcal{M}_n \end{split}$$