Introduction to Robotics
Lecture 9: Forward Kinematics: PoE in body frame and Denavit-Hartenberg parameters

Product of exponentials: change of frame

$$
M=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & L_{1}+L_{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

i	ω_{i}	v_{i}
1	$(0,0,1)$	$(0,0,0)$
2	$(1,0,0)$	$(0,0,0)$
3	$(0,0,0)$	$(0,1,0)$
4	$(0,1,0)$	$(0,0,0)$
5	$(1,0,0)$	$\left(0,0,-L_{1}\right)$
6	$(0,1,0)$	$(0,0,0)$

\longrightarrow we expressed the screw vector of each link with respect to frame s and M is position of end effector in s.

- Recall the change of frame formula for twists: if \mathcal{S}_{1} is the twist of link 1 in frame s and \mathcal{B}_{1} is the twist of link 1 in frame b, then

$$
\left[\mathcal{S}_{1}\right]=T_{s b}\left[\mathcal{B}_{1}\right] T_{s b}^{-1} \text { and }\left[\mathcal{B}_{1}\right]=T_{b s}\left[\mathcal{S}_{1}\right] T_{b s}^{-1}
$$

or equivalently,

$$
\mathcal{S}_{1}=\operatorname{Ad}_{T_{s b}} \mathcal{B}_{1} \text { and } \mathcal{B}_{1}=\operatorname{Ad}_{T_{b s}} \mathcal{S}_{1}
$$

- Recall that $M^{-1} e^{A} M=e^{M^{-1} A M}$. Thus

$$
e^{A} M=M e^{M^{-1} A M}
$$

- Recall that in PoE, $M=T_{s b}$ where s is a reference frame and b the end-effector frame. Iterating the previous formula, we get

$$
\begin{aligned}
T(\theta) & =e^{\left[\mathcal{S}_{1} \theta_{1}\right]} e^{\left[\mathcal{S}_{2} \theta_{2}\right]} M \\
& =e^{\left[\mathcal{S}_{1} \theta_{1}\right]} M e^{M^{-1}\left[\mathcal{S}_{2} \theta_{2}\right] M} \\
& =M e^{M^{-1}\left[\mathcal{S}_{1} \theta_{1}\right] M} e^{\left[\mathcal{B}_{2} \theta_{2}\right]} \\
& =M e^{\left[\mathcal{B}_{1} \theta_{1}\right]} e^{\left[\mathcal{B}_{2} \theta_{2}\right]}
\end{aligned}
$$

- This is the body-form of the PoE
- Note that we can obtain it from the PoE in space form (i.e. with respect to reference frame), or evaluate directly \mathcal{B}_{i} from the figure.

Product of exponentials: change of frame

$$
M=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 3 L \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

i	ω_{i}	v_{i}
1	$(0,0,1)$	$(0,0,0)$
2	$(0,1,0)$	$(0,0,0)$
3	$(-1,0,0)$	$(0,0,0)$
4	$(-1,0,0)$	$(0,0, L)$
5	$(-1,0,0)$	$(0,0,2 L)$
6	$(0,1,0)$	$(0,0,0)$

space-frame

i	ω_{i}	v_{i}
1	$(0,0,1)$	$(-3 L, 0,0)$
2	$(0,1,0)$	$(0,0,0)$
3	$(-1,0,0)$	$(0,0,-3 L)$
4	$(-1,0,0)$	$(0,0,-2 L)$
5	$(-1,0,0)$	$(0,0,-L)$
6	$(0,1,0)$	$(0,0,0)$

body-frame

Denavit-Hartenberg formalism

- Recall the 3R arm. We have $T_{04}=T_{01} T_{12} T_{23} T_{34}$.
- The DH formalism provides a set of rules for assigning frames to links.
- This formalism makes velocity kinematics easier, and standardizes the way to write forward kinematics.
- We will mostly use the PoE formalism in this course, but DH being widely used, we go over the procedure.

DH rules

- For all links \hat{z}_{i} is aligned with joint axis i (i.e. with \hat{s}_{i} of the corresponding screw)
- Assume that \hat{z}_{i} and \hat{z}_{i-1} do not intersect and are not parallel. Let

$$
a_{i-1}=\text { segment intersecting } \hat{z}_{i-1} \& \hat{z}_{i}, \text { perpendicular to both. }
$$

- Origin of frame $i-1=$ intersection of a_{i-1} and axis of \hat{z}_{i-1}

DH rules

- Axis \hat{x}_{i-1} is aligned with a_{i-1}.
- Axis \hat{y}_{i-1} is obtained using right-hand-rule.
\longrightarrow frame $i-1$ is specified
- To assign T_{i}, we repeat the above with knowledge from joint $i+1$.

DH rules

- Assume frames $i-1$ and i have been specified. We need 4 parameters to obtain $T_{(i-1) i}$.

1. The length of a_{i-1}, called link length. (not length of physical link in general)
2. Angle α_{i-1} between \hat{z}_{i-1} and \hat{z}_{i} around \hat{x}_{i-1}, called link twist.
3. The distance d_{i} between intersection of a_{i-1} and \hat{z}_{i} and origin of frame i. This is called the link offset.
4. The angle ϕ_{i} between \hat{x}_{i-1} and \hat{x}_{i} measured about the \hat{z}_{i} axis. This is called the joint angle

DH rules

- Recall that $T_{s i}=T_{s(i-1)} T_{(i-1) i}$. We have

$$
T_{(i-1) i}=\operatorname{Rot}\left(\hat{x}, \alpha_{i-1}\right) \operatorname{Tr}\left(\hat{x}, a_{i-1}\right) \operatorname{Tr}\left(\hat{z}, d_{i}\right) \operatorname{Rot}\left(\hat{z}, \phi_{i}\right)
$$

$$
=\left[\begin{array}{cccc}
\cos \phi_{i} & -\sin \phi_{i} & 0 & a_{i-1} \\
\sin \phi_{i} \cos \alpha_{i-1} & \cos \phi_{i} \cos \alpha_{i-1} & -\sin \alpha_{i-1} & -d_{i} \sin \alpha_{i-1} \\
\sin \phi_{i} \sin \alpha_{i-1} & \cos \phi_{i} \sin \alpha_{i-1} & \cos \alpha_{i-1} & d_{i} \cos \alpha_{i-1} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

DH rules

- We can visualize $T_{i-1, i}$ as the following sequence of steps:

1. Rotation of frame $i-1$ about its \hat{x} axis by angle α_{i-1}
2. Translation of resulting frame along its \hat{x} axis by distance a_{i-1}.
3. Translation of resulting frame along its \hat{z} axis by distance d_{i}
4. Rotation of the new frame about its \hat{z} axis by angle ϕ_{i}.

Intersecting axes - If the two axes of revolution intersect, then $a_{i-1}=0$.

- In this case, set \hat{x}_{i-1} to be perpendicular to both \hat{z}_{i} and \hat{z}_{i-1}.
- Two such \hat{x}_{i-1} exist, both are fine (they lead to opposite signs for the angle α_{i-1})
Parallel axes - If the two axes are parallel, there is an infinite number of choices for the segment a_{i-1}, all of the same length and perpendicular to both \hat{z}_{i} and \hat{z}_{i-1}.
- We can choose any of these.
- In practice, choose it so as to make other parameters zero or easy to manipulate, but it is not necessary to do so.

DH: prismatic joints

- Choose the \hat{z} direction of the link reference frame to be along positive direction of translation.
- Link offset d_{i} is the joint variable and joint angle ϕ_{i} is constant (opposite situation of revolute joint)
- All else (convention to choose frame origin, choice of \hat{x} and \hat{y} axes) remains the same as for revolute joints.

DH: 3R open chain

1. length of $a_{i-1}=$ link length
2. $\alpha_{i-1}=\measuredangle \mathrm{b} / \mathrm{t} \hat{z}_{i-1}$ and \hat{z}_{i} around $\hat{x}_{i-1}=$ link twist.
3. $d_{i}=$ dist. $\mathrm{b} / \mathrm{t} a_{i-1} \cap \hat{z}_{i}$ and orig. frame $i=$ link offset.
4. $\phi_{i}=\measuredangle \mathrm{b} / \mathrm{t} \hat{x}_{i-1}$ and \hat{x}_{i} around $\hat{z}_{i}=j$ joint angle

- Frames 1 and 2 are uniquely specified.
- Choose frame 3 so that $\hat{x}_{3}=\hat{x}_{2}$.

i	α_{i-1}	a_{i-1}	d_{i}	ϕ_{i}
1	0	0	0	θ_{1}
2	90°	L_{1}	0	$\theta_{2}-90^{\circ}$
3	-90°	L_{2}	0	θ_{3}

DH: RRRP open chain

- θ_{4} is displacement of prismatic joint.
- Choose frame 3 so that $\hat{x}_{3}=\hat{x}_{2}$.

From DH matrix to PoE

- We can easily translate a DH representation into a PoE.
- To do so, first recall that for an invertible matrix $M, M e^{P} M^{-1}=e^{M P M^{-1}}$, and thus

$$
M e^{P}=e^{M P M^{-1}} M .
$$

- Recall that

$$
T_{(i-1) i}=\operatorname{Rot}\left(\hat{x}, \alpha_{i-1}\right) \operatorname{Tr}\left(\hat{x}, a_{i-1}\right) \operatorname{Tr}\left(\hat{z}, d_{i}\right) \operatorname{Rot}\left(\hat{z}, \phi_{i}\right) .
$$

- If joint is revolute: set $\theta_{i}=\phi_{i}$ and write $\operatorname{Rot}\left(\hat{z}, \theta_{i}\right)$ as the matrix exponential

$$
\operatorname{Rot}\left(\hat{z}, \theta_{i}\right)=e^{\left[\mathcal{A}_{i}\right] \theta_{i}},\left[\mathcal{A}_{i}\right]=\left[\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

We have $T_{i-1, i}=M_{i} e^{\left[\mathcal{A}_{i}\right] \theta_{i}}$ with $M_{i}=\operatorname{Rot}\left(\hat{x}, \alpha_{i-1}\right) \operatorname{Tr}\left(\hat{x}, a_{i-1}\right) \operatorname{Tr}\left(\hat{z}, d_{i}\right)$.

From DH matrix to PoE

- If joint is prismatic: set $\theta_{i}=d_{i}$ and write $\operatorname{Tr}\left(\hat{z}, d_{i}\right)$ as the matrix exponential

$$
\operatorname{Tr}\left(\hat{z}, \theta_{i}\right)=e^{\left[\mathcal{A}_{i}\right] \theta_{i}},\left[\mathcal{A}_{i}\right]=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

We have $T_{i-1, i}=M_{i} e^{\left[\mathcal{A}_{i}\right] \theta_{i}}$ with $M_{i}=\operatorname{Rot}\left(\hat{x}, \alpha_{i-1}\right) \operatorname{Tr}\left(\hat{x}, a_{i-1}\right) \operatorname{Rot}\left(\hat{z}, \phi_{i}\right)$. (Note that the last two operations in $T_{i-1, i}$ commute here!)

From DH matrix to PoE

- Putting the above together, we have

$$
T_{0, n}=M_{1} e^{\left[\mathcal{A}_{1}\right] \theta_{1}} M_{2} e^{\left[\mathcal{A}_{2}\right] \theta_{2}} \cdots M_{n} e^{\left[\mathcal{A}_{n}\right] \theta_{n}}
$$

- Using the identity $M e^{P}=e^{M P M^{-1}} M$ iteratively, we obtain

$$
\begin{aligned}
T_{0 n} & =e^{M_{1}\left[\mathcal{A}_{i}\right] M_{1}^{-1} \theta_{1}}\left(M_{1} M_{2}\right) e^{\left[\mathcal{A}_{2}\right] \theta_{2}} \cdots e^{\left[\mathcal{A}_{n}\right] \theta_{n}} \\
& =e^{M_{1}\left[\mathcal{A}_{i}\right] M_{1}^{-1} \theta_{1}} e^{\left(M_{1} M_{2}\right)\left[\mathcal{A}_{2}\right]\left(M_{1} M_{2}\right)^{-1} \theta_{2}}\left(M_{1} M_{2} M_{3}\right) \cdots e^{\left[\mathcal{A}_{n}\right] \theta_{n}} \\
& =e^{\left[\mathcal{S}_{1}\right] \theta_{1}} \cdots e^{\left[\mathcal{S}_{n}\right] \theta_{n}} M
\end{aligned}
$$

with

$$
\begin{aligned}
{\left[\mathcal{S}_{i}\right] } & =\left(M_{1} \cdots M_{i-1}\right)\left[\mathcal{A}_{i}\right]\left(M_{1} \cdots M_{i-1}\right)^{-1} \\
M & =M_{1} M_{2} \cdots M_{n}
\end{aligned}
$$

