Introduction to Robotics
 Lecture 8: Forward Kinematics

Forward kinematics of open chains

- The forward kinematics of a robot refers to the calculation of the position and orientation of its effector frame from its joint coordinates.
- Here, simple trigonometry yields

$$
\begin{aligned}
& x=L_{1} \cos \theta_{1}+L_{2} \cos \left(\theta_{1}+\theta_{2}\right)+L_{3} \cos \left(\theta_{1}+\theta_{2}+\theta_{3}\right) \\
& y=L_{1} \sin \theta_{1}+L_{2} \sin \left(\theta_{1}+\theta_{2}\right)+L_{3} \sin \left(\theta_{1}+\theta_{2}+\theta_{3}\right)
\end{aligned}
$$

Forward kinematics

- For more complex 3D mechanisms, a direct analysis as done in previous slide is too onerous.
- We describe two systematic, principle ways to perform forward kinematics: Product of Exponentials (PoE) and Denavit-Hartenberg (next lecture).
- What we can do using previous lectures: attaching frames $1,2,3,4$ to the three links and end-effector respectively, and denoting by 0 the reference frame, we need T_{04}, which we can obtain as

$$
T_{04}=T_{01} T_{12} T_{23} T_{34},
$$

and $T_{i(i+1)}$ are easy to derive.

Forward kinematics: using homogeneous transformations

$$
\begin{aligned}
& T_{01}=\left[\begin{array}{cccc}
\cos \theta_{1} & -\sin \theta_{1} & 0 & 0 \\
\sin \theta_{1} & \cos \theta_{1} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], T_{12}=\left[\begin{array}{ccc}
\cos \theta_{2} & -\sin \theta_{2} & 0 \\
\sin \theta_{2} & \cos \theta_{2} & 0 \\
0 & 0 & 1 \\
0 \\
0 & 0 & 0 \\
0
\end{array}\right] \\
& T_{23}=\left[\begin{array}{cccc}
\cos \theta_{3} & -\sin \theta_{3} & 0 & L_{2} \\
\sin \theta_{3} & \cos \theta_{3} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], T_{34}=\left[\begin{array}{cccc}
1 & 0 & 0 & L_{3} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Forward kinematics: using screw motions

- Assume the arm is in "resting position":

$$
M:=T\left(I,\left(L_{1}+L_{2}+L_{3}, 0,0\right)^{\top}\right)
$$

- From this resting position, what motions are possible?
- Revolute joints allow screw motions with zero pitch.
- Assume $\theta_{1}=\theta_{2}=0$. Describe the screw motion of joint 3 by its twist in frame 0: $\mathcal{S}_{3}=\left[\omega_{3}, v_{3}\right]$.

Forward kinematics: using screw motions

- How to obtain ω_{3}, v_{3} ?
- Revolute joint: rotation around axis perpendicular to motion and ω is normalized vector in this direction $\longrightarrow \omega_{3}=(0,0,1)^{\top}$.
- To find v_{3}, consider a rigid body attached to the joint and following the joint's motion: v_{3} is the velocity of the point at the origin of frame 0 . This speed is $\omega \times\left(-L_{1}-L_{2}, 0,0\right)^{\top}$.

Forward kinematics: using screw motions

- When only θ_{3} is allowed to move, we have

$$
T_{04}=e^{\left[\mathcal{S}_{3}\right] \theta_{3}} M
$$

where, by definition,

$$
\left[\mathcal{S}_{3}\right]=\left[\begin{array}{cccc}
0 & -\omega_{3} & \omega_{2} & v_{1} \\
\omega_{3} & 0 & -\omega_{1} & v_{2} \\
-\omega_{2} & \omega_{1} & 0 & v_{3} \\
0 & 0 & 0 & 0
\end{array}\right]
$$

- Thus here, $\left[\mathcal{S}_{3}\right]=\left[\begin{array}{cccc}0 & -1 & 0 & 0 \\ 1 & 0 & 0 & -\left(L_{1}+L_{2}\right) \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$

Forward kinematics: product of exponentials

- We now repeat the procedure: assume θ_{1} fixed at zero, θ_{3} fixed at an arbitrary value, and move θ_{2}. The corresponding twist is

$$
\mathcal{S}_{2}=\left(\omega_{2}=(0,0,1)^{\top},\left(0,-L_{1}, 0\right)\right)^{\top} .
$$

Forward kinematics: product of exponentials

- Thus $\left[\mathcal{S}_{2}\right]=\left[\begin{array}{cccc}0 & -1 & 0 & 0 \\ 1 & 0 & 0 & -L_{1} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
- Now rotation about joint 2 can be viewed as applying a screw motion to the rigid body (link $1+$ link 2), thus

$$
T_{04}=e^{\left[\mathcal{S}_{2}\right] \theta_{2}} e^{\left[\mathcal{S}_{3}\right] \theta_{3}} M .
$$

Forward kinematics: product of exponentials

- Finally, $\mathcal{S}_{1}=\left((0,0,1)^{\top},(0,0,0)^{\top}\right)$ and

$$
T_{04}=e^{\left[\mathcal{S}_{1}\right] \theta_{1}} e^{\left[\mathcal{S}_{2}\right] \theta_{2}} e^{\left[\mathcal{S}_{3}\right] \theta_{3}} M
$$

Product of exponentials: example

- 3R open chain, with non-collinear rotation axes.
- Note: \hat{z}_{i} aligned with rotation axis, \hat{x}_{i} points to next joint.
- Forward kinematics as the form

$$
T(\theta)=e^{\left[\mathcal{S}_{1}\right] \theta_{1}} e^{\left[\mathcal{S}_{2}\right] \theta_{2}} e^{\left[\mathcal{S}_{3}\right] \theta_{3}} M
$$

We need to find M and the \mathcal{S}_{i} 's.

Product of exponentials: example

- M is the configuration of the end-effector fixed frame (frame 3) when all joint variables are zero.
- We obtain

$$
M=\left[\begin{array}{cccc}
0 & 0 & 1 & L_{1} \\
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & -L_{2} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Product of exponentials: example

- The screw axis for joint 1 in frame 0 is $\mathcal{S}_{1}=\left(\omega_{1}, v_{1}\right)$ with $\omega_{1}=(0,0,1)^{\top}$ and $v_{1}=(0,0,0)^{\top}$.
- The screw axis for joint 2 in frame 0 is $\mathcal{S}_{2}=\left(\omega_{2}, v_{2}\right)$ with $\omega_{2}=(0,-1,0)^{\top}$ and $v_{2}=\left(0,0,-L_{1}\right)^{\top}$.
- To obtain v_{2}, set q to be the vector joining origin of reference frame to center of joint, here $q=\left(L_{1}, 0,0\right)^{\top}$ and then $v_{2}=\omega_{2} \times(-q)$.
- Finally, $\mathcal{S}_{3}=\left(\omega_{3}, v_{3}\right)$ with $\omega_{3}=(1,0,0)^{\top}$ and $v_{3}=\omega_{3} \times\left(-\left(L_{1}, 0,-L_{2}\right)^{\top}\right)=\left(0,-L_{2}, 0\right)$

Product of exponentials: example: RRPRRR open chain

Forward kinematics is described by

$$
M=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & L_{1}+L_{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

i	ω_{i}	v_{i}
1	$(0,0,1)$	$(0,0,0)$
2	$(1,0,0)$	$(0,0,0)$
3	$(0,0,0)$	$(0,1,0)$
4	$(0,1,0)$	$(0,0,0)$
5	$(1,0,0)$	$\left(0,0,-L_{1}\right)$
6	$(0,1,0)$	$(0,0,0)$

