Introduction to Robotics
 Lecture 7: Screws and wrenches

Screw motion

- 2D Screw motion: any rigid motion in the plane can be represented by a rotation around a well-chosen center.
- We can encode it with $\left(\beta, s_{x}, s_{y}\right)$, where $\left(s_{x}, s_{y}\right)$ is the position of the center of the rotation, and β the angle. Here, $\beta=\pi / 4$ and $s=(0,2)$

Screw motion

- Chasles-Mozzi Theorem: Any displacement in 3D can be represented by a rotation + translation about same axis. This is called a screw motion.
- Data for a screw: Axis of rotation: $q \in \mathbb{R}^{3}+\hat{s} \in S^{2}$; pitch h : ratio linear/angular speed; $\dot{\theta}$: angular velocity.
- Rotation of θ rad results in translation of $h \theta$ along axis.
- Very useful to represent motion of revolute and prismatic joints.
- Write as $\mathcal{S}=\{q, \hat{s}, h\}$.

Ball and Chasles

- Rodrigues and Chasles took the entrance exam to Polytechnique/Normale at the same time, finishing first and second respectively. Rodrigues did not use it and elected to go to La Sorbonne.

Screw motion \rightarrow twist

- How to represent a screw motion as a twist? Take $\mathcal{S}=\{q, \hat{s}, h\}$.
- Rotational velocity: $\omega=\hat{s} \dot{\theta}$.
- Linear velocity : velocity at origin of frame= translation along the screw axis + linear motion at origin induced by rotation of screw axis:

$$
v=h \hat{s} \dot{\theta}-\hat{s} \dot{\theta} \times q .
$$

Twist \rightarrow Screw motion

- How to represent a twist as a screw motion? Take $\mathcal{V}=[\omega, v]^{\top}$
- Rotation+pitch: $\hat{s}=\omega /\|\omega\|=\bar{\omega}, \dot{\theta}=\|\omega\|$ and $h=\bar{\omega}^{\top} v / \dot{\theta}=\omega^{\top} v /\|\omega\|^{2}$.
- Offset q : Assuming $\omega \neq 0$ (not pure translation, so that there is a meaningful rotation axis), need to find q so that $v=h \hat{s} \dot{\theta}-\hat{s} \dot{\theta} \times q$. Cross product on left by \hat{s} yields

$$
q=\frac{\hat{s} \times v}{\dot{\theta}}
$$

Screw motion

- For a given reference frame, we denote by \mathcal{S} the screw axis of the screw motion $\{q, \hat{s}, \dot{\theta}\}$

$$
\mathcal{S}=\left[\begin{array}{l}
\omega \\
v
\end{array}\right]
$$

with either 1: $\|\omega\|=1$ or $2: \omega=0$ and $\|v\|=1$.
Case 1: then $v=-\omega \times q+h \omega$
Case 2: corresponds to a translation along $v:(h$ is infinite $) \rightarrow \omega=0$.

Exponential coordinates for Rigid-Body motions

- Recall: for a rotation $R \in S O(3)$, its exponential coordinates ($\bar{\omega}, \theta$) are so that $R=e^{[\bar{\omega}] \theta}$. We want to do the same for rigid motions (i.e., rotation + translation)
- The matrix $[\bar{\omega}]$ was skew-symmetric: $[\bar{\omega}] \in \mathfrak{s o}(3)$.
- We defined

$$
\begin{aligned}
& \exp : \mathfrak{s o}(3) \rightarrow S O(3): A \rightarrow I+A+A^{2} / 2!+\cdots \\
& \log : S O(3) \rightarrow \mathfrak{s o}(3): R \rightarrow \frac{1}{2 \sin \theta}\left(R-R^{\top}\right)
\end{aligned}
$$

Exponential coordinates for Rigid-Body motions

- By analogy, we define the exponential coordinates for a homogeneous transformation T as $\mathcal{S} \theta \in \mathbb{R}^{6}$, where \mathcal{S} is the screw axis and θ the distance around the screw axis to take a frame from $/$ to T.
- Recall that if $\mathcal{S}=(\omega, v)$ is with $\|\omega\|=1$, then θ is an angle of rotation about the screw axis. If $\omega=0$ and $\|v\|=1$, then θ is the distance travelled along the screw axis.
- Denote by $S E(3)$ the space of homogeneous transformations T, and by $\mathfrak{s e}(3)$ the space of their exponential coordinates. We want to define

$$
\begin{aligned}
& \exp : \mathfrak{s e}(3) \rightarrow S E(3): A \rightarrow I+A+A^{2} / 2!+\cdots \\
& \log : S E(3) \rightarrow \mathfrak{s e}(3): T \rightarrow[\mathcal{S}] \theta \in \mathfrak{s e}(3)
\end{aligned}
$$

Exponential coordinates for Rigid-Body motions

For $\mathcal{S}=[\omega, v]^{\top}$, we introduce the 4×4 matrix:

$$
[\mathcal{S}]:=\left[\begin{array}{cc}
{[\omega]} & v \\
0 & 0
\end{array}\right]
$$

- As before, we can find a simple expression for the exponential. We have (recall: $\omega=\bar{\omega} \theta$)

$$
\begin{aligned}
e^{[\mathcal{S}] \theta} & =I+[\mathcal{S}] \theta+[\mathcal{S}]^{2} \theta^{2} / 2!+[\mathcal{S}]^{3} \theta^{3} / 3!+\cdots \\
& =\left[\begin{array}{cc}
e^{[\bar{\omega}] \theta} & G(\theta) v \\
0 & 1
\end{array}\right]
\end{aligned}
$$

where $G(\theta)=I \theta+[\bar{\omega}] \theta^{2} / 2!+[\bar{\omega}]^{2} \theta^{3} / 3!+\cdots$.

- Recall that $[\bar{\omega}]^{3}=-[\bar{\omega}]$. We obtain

$$
\begin{aligned}
G(\theta) & =I \theta+\left(\theta^{2} / 2!-\theta^{4} / 4!+\cdots\right)[\bar{\omega}]+\left(\theta^{3} / 3!-\theta^{5} / 5!++\cdots\right)[\bar{\omega}]^{2} \\
& =I \theta+(1-\cos \theta)[\bar{\omega}]+(\theta-\sin \theta)[\bar{\omega}]^{2}
\end{aligned}
$$

Logarithm of Rigid-Body motions

- Given $T=(R, p) \in S E(3)$, we need to find $\mathcal{S}=(\bar{\omega}, v)$ and θ so that

$$
e^{[\mathcal{S}] \theta}=\left[\begin{array}{ll}
R & p \\
0 & 1
\end{array}\right]
$$

which implies that

$$
[\mathcal{S}] \theta=\left[\begin{array}{cc}
{[\bar{\omega}] \theta} & v \theta \\
0 & 0
\end{array}\right]
$$

is a logarithm of T.

- Case 1: If $R=I$ (pure translation), then set $\bar{\omega}=0, v=p /\|p\|$ and $\theta=\|p\|$.
- Case 2: 1. Obtain $\bar{\omega}, \theta$ using the matrix logarithm of R. 2. Set

$$
v=G^{-1}(\theta) p
$$

where

$$
G^{-1}(\theta)=\frac{1}{\theta} I-\frac{1}{2}[\bar{\omega}]+\left(\frac{1}{\theta}-\frac{1}{2} \cot \frac{\theta}{2}\right)[\bar{\omega}]^{2} .
$$

Wrenches

- Let $\{a\}$ be a ref. frame and r_{a} a point in a rigid body. Let the vector $f_{a} \in \mathbb{R}^{3}$ represent a force acting on the body. Assume it is a point force acting at r_{a}.
- The force creates a torque or moment $m_{a} \in \mathbb{R}^{3}$ given by

$$
m_{a}:=r_{a} \times f_{a}
$$

- We merge the force and the moment in a single 6-dimensional vector, called spatial force or wrench, expressed in $\{a\}$ as

$$
\mathcal{F}_{a}:=\left[\begin{array}{c}
m_{a} \\
f_{a}
\end{array}\right] .
$$

- A wrench can contain only a torque and no force: it is called a pure moment.
- If there are several forces/moments acting on the body, we can add their corresponding wrenches.

Wrenches

- Given 2 frames, a and b, and want to express the wrench in both frames: $\mathcal{F}_{a}, \mathcal{F}_{b}$.
- Denote by $\mathcal{V}_{a}, \mathcal{V}_{b}$ the motions induced by the wrench in frames a and b : we know how to relate them: $\mathcal{V}_{b}=\operatorname{Ad}_{T_{b a}} \mathcal{V}_{a}$
- Recall: dot product of velocity and force is a power!
- Power is independent from choice of frame!

$$
\begin{aligned}
\mathcal{V}_{b}^{\top} \mathcal{F}_{b} & =\mathcal{V}_{a}^{\top} \mathcal{F}_{a} \\
& =\left(\operatorname{Ad}_{T_{a b}} \mathcal{V}_{b}\right)^{\top} \mathcal{F}_{a} \\
& =\mathcal{V}_{b}^{\top}\left(\operatorname{Ad}_{T_{a b}}\right)^{\top} \mathcal{F}_{a}
\end{aligned}
$$

- Since the previous equation holds for all \mathcal{V}_{b}, we have

$$
\mathcal{F}_{b}=\left(\operatorname{Ad}_{T_{a b}}\right)^{\top} \mathcal{F}_{a}
$$

