Introduction to Robotics
 Lecture 5: Homogeneous transformations and angular velocities

Homogeneous transformation matrices

Definition

The special euclidean group $S E(3)$ is the set of 4×4 matrices of the form

$$
T=T(R, p)=\left(\begin{array}{ll}
R & p \\
\mathbf{0} & 1
\end{array}\right),
$$

where $R \in S O(3), p \in \mathbb{R}^{3}$ and $\mathbf{0}=(0,0,0)$.

- The inverse of T is

$$
T^{-1}=\left(\begin{array}{cc}
R^{\top} & -R^{\top} p \\
\mathbf{0} & 1
\end{array}\right)
$$

In particular, $T^{-1} \in S E(3)$.

- If $T_{1}, T_{2} \in S E(3)$, then $T_{1} T_{2} \in S E(3)$

Properties of homogeneous transformation matrices

- If $T_{1}, T_{2}, T_{3} \in S E(3)$, then $\left(T_{1} T_{2}\right) T_{3}=T_{1}\left(T_{2} T_{3}\right)$: associative. We can choose which pairwise product to do first, but we cannot change the order! $\left(T_{1} T_{2} \neq T_{2} T_{1}\right.$ in general $)$.
- We have $T(R, p)\binom{x}{1}=\binom{R x+p}{1}$
- We call $\binom{x}{1} \in \mathbb{R}^{4}$ the homogeneous representation of $x \in \mathbb{R}^{3}$.
- T satisfies the following relations:

$$
\begin{aligned}
\|T x-T y\| & =\|x-y\| \\
(T x-T z)^{\top}(T y-T z) & =(x-z)^{\top}(y-z)
\end{aligned}
$$

\Longrightarrow whence the name rigid motion: preserves lengths and angles, and thus the shape of solid objects.

Use of homogeneous transformation matrices

Transformation matrices $T \in S E(3)$ can be used for

1. represent the configuration (position+orientation) or a rigid body in 3D
2. change the reference frame with respect to which a configuration is described
3. move a frame to describe motions.

This is similar to what we have described in the planar case. We describe these three uses in the next slides.

Representing a configuration with $S E(3)$

- Given a multi-link mechanism, with reference frames a and body frames b and c.
- We can describe the orientation/position $\left(R_{s b}, p_{s b}\right)$ of b with respect to s, and the orientation/position $\left(R_{b c}, p_{b c}\right)$ of c with respect to b.
- Create $T_{1}=T\left(R_{s b}, p_{s b}\right)$ and $T_{2}=T\left(R_{b c}, p_{b c}\right)$.

Changing reference frame for a vector/frame

- To change reference frames, we have the rules

$$
\begin{aligned}
T_{a b} T_{b c} & =T_{a c} \\
T_{a b} v_{b} & =v_{a}
\end{aligned}
$$

Displacing frames/vectors

- Given a frame $T_{s b}$, we want to rotate it by a rotation $R=(\bar{\omega}, \theta)$ and translate it by a vector p. This is useful for, e.g., describing motion of links.
- We need to pay attention to what frame the rotation/translation are described with respect to, and whether we apply the rotation or the translation first.
- Define

$$
\operatorname{Rot}(\bar{\omega}, \theta)=\left(\begin{array}{cc}
R & 0 \\
0 & 1
\end{array}\right) \text { and } \operatorname{Trans}(p)=\left(\begin{array}{ll}
1 & p \\
0 & 1
\end{array}\right)
$$

and as usual

$$
T(R, p)=\left(\begin{array}{ll}
R & p \\
0 & 1
\end{array}\right)
$$

Displacing frames/vectors

- Multiply $T_{s b}$ on left by Rot/Trans/T: interpreted in the s frame.
- Multiply $T_{s b}$ on right by Rot/Trans/T: interpreted in the b frame.
- Action "closest" to $T_{s b}$ is executed first (rotation or translation). For left-multiplication, rotate first then translate since $T(R, p)=\operatorname{Trans}(p) \operatorname{Rot}(\bar{\omega}, \theta)$.
- Example: $\bar{\omega}=(0,0,1), p=(0,2,0)$ and $\theta=90$.

Displacing frames/vectors: example

- Robot arm mounted on wheeled platform. Camera fixed to ceiling. b is body frame, c end-effector frame, e object to pick up frame. Fixed ref. frame is a. We assume $T_{a d}$ known (camera position in ref. frame)
- From camera measurements, you can evaluate $T_{d b}$. $T_{b c}$ can be calculated using joint-angle measurements.
- To pick up object, we need position of object w/ respect end-effector: $T_{c e}$.

Displacing frames/vectors: example

- Goal: get $T_{c e}$. We have the relation

$$
T_{a b} T_{b c} T_{c e}=T_{a e}=T_{a d} T_{d e}
$$

We need $T_{a b}$, the position of the wheelbase with respect to the body frame. We obtain it as $T_{a b}=T_{a d} T_{d b}$.

- We thus obtain

$$
T_{c e}=\left(T_{a d} T_{d b} T_{b c}\right)^{-1} T_{a d} T_{d e}
$$

Linear and angular velocities of a moving frame

- Let $\{s\}$ and $\{b\}$ be the reference and body frames respectively. We want to express angular and linear velocities in these frames.
- Let $T_{s b}(t)=T(t)=\left[\begin{array}{cc}R(t) & p(t) \\ 0 & 1\end{array}\right]$. We see that

$$
\dot{T}=\left[\begin{array}{cc}
\dot{R} & \dot{p} \\
0 & 0
\end{array}\right]
$$

- Premultiplying by T^{-1} we obtain

$$
\begin{aligned}
T^{-1} \dot{T} & =\left[\begin{array}{cc}
R^{\top} & -R^{\top} p \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
\dot{R} & \dot{p} \\
0 & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
R^{\top} \dot{R} & R^{\top} \dot{p} \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
{\left[\omega_{b}\right]} & v_{b} \\
0 & 0
\end{array}\right]
\end{aligned}
$$

Note that \dot{p} is the linear velocity of the origin of b in s, and v_{b} is this velocity expressed in b.

Body twists

- The matrix $T^{-1} \dot{T}$ has 6 free parameters $\left(3\right.$ for ω_{b} and 3 for v_{b}.
- We gather them in a vector

$$
\mathcal{V}_{b}=\left[\begin{array}{c}
\omega_{b} \\
v_{b}
\end{array}\right]
$$

We call \mathcal{V}_{b} the spatial velocity in the body frame, or body twist.

- We also use the bracket notation

$$
\left[\mathcal{V}_{b}\right]:=\left[\begin{array}{cc}
{\left[\omega_{b}\right]} & v_{b} \\
0 & 0
\end{array}\right]
$$

where we recall that $\left[\omega_{b}\right]$ is a skew-symmetric matrix (but $\left[\mathcal{V}_{b}\right]$ is not!).

Linear and angular velocities in ref. frame

- We saw that, in the case of angular velocities, post-multiplying by R^{-1} yields the angular velocity in the reference frame. Let us see what happens here:

$$
\begin{aligned}
\dot{T} T^{-1} & =\left[\begin{array}{cc}
\dot{R} & \dot{p} \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
R^{\top} & -R^{\top} p \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
\dot{R} R^{\top} & \dot{p}-\dot{R} R^{\top} p \\
0 & 0
\end{array}\right]=:\left[\begin{array}{cc}
{\left[\omega_{s}\right]} & v_{s} \\
0 & 0
\end{array}\right]
\end{aligned}
$$

- We have seen earlier that $\dot{R} R^{\top}=\left[\omega_{s}\right]$ is the angular velocity in the frame $\{s\}$.
- The linear velocity in frame s is however simply \dot{p} (by definition!).
- Let us try to interpret v_{s}. We have

$$
v_{s}=\dot{p}-\left[\omega_{s}\right] p=\dot{p}-\omega_{s} \times p .
$$

Spatial twists

- We have $v_{s}=\dot{p}-\left[\omega_{s}\right] p=\dot{p}+\omega_{s} \times(-p)$.
- v_{s} is not the linear velocity of the body frame origin in the fixed frame (that is \dot{p}.)
- Assume that a very large rigid body is attached to the frame b, large enough to contain the origin of s. What is the velocity of the point of this body as the origin of s? There are 2 components: \dot{p}, the motion of the body, and $\omega_{s} \times(-p)$, due to the rotation of the body \longrightarrow this is v_{s}.

Twists

- We can relate $\left[\mathcal{V}_{s}\right]$ and $\left[\mathcal{V}_{b}\right]$ through

$$
\left[\mathcal{V}_{b}\right]=T^{-1}\left[\mathcal{V}_{s}\right] T \text { and }\left[\mathcal{V}_{s}\right]=T\left[\mathcal{V}_{b}\right] T^{-1}
$$

These formulas are obtained by replacing \dot{T} by its expression in terms of $\left[\mathcal{V}_{s}\right]$ or $\left[\mathcal{V}_{b}\right]$.

- We now look to express the above relations directly in terms of \mathcal{V}_{s} and \mathcal{V}_{b}.
- Writing out the products above, we get

$$
\mathcal{V}_{s}=\left[\begin{array}{cc}
R\left[\omega_{b}\right] R^{\top} & -R\left[\omega_{b}\right] R^{\top} p+R v_{b} \\
0 & 0
\end{array}\right]
$$

- Using $R[\omega] R^{\top}=[R \omega]$ and the relation $[\omega] p=\omega \times p=-p \times \omega=-[p] \omega$, we can simplify the above to obtain

$$
\left[\begin{array}{c}
\omega_{s} \\
v_{s}
\end{array}\right]=\left[\begin{array}{cc}
R & 0 \\
{[p] R} & R
\end{array}\right]\left[\begin{array}{c}
\omega_{b} \\
v_{b}
\end{array}\right]
$$

Adjoint representation

- For future use, we record the definition:

$$
\operatorname{Ad}_{T}=\left[\begin{array}{cc}
R & 0 \\
{[p] R} & R
\end{array}\right] \in \mathbb{R}^{6 \times 6}
$$

is called the adjoint representation of $T=(R, p) \in S E(3)$.

- We call $\operatorname{Ad}_{T}(\mathcal{V}):=\operatorname{Ad}_{T} \mathcal{V}$ the adjoint map of T. By construction, we have

$$
\mathcal{V}^{\prime}=\operatorname{Ad}_{T} \mathcal{V} \Leftrightarrow\left[\mathcal{V}^{\prime}\right]=T[\mathcal{V}] T^{-1}
$$

- The adjoint map has the easily verified properties:

$$
\operatorname{Ad}_{T_{1}} \operatorname{Ad}_{T_{2}}=\operatorname{Ad}_{T_{1} T_{2}} \text { and } \operatorname{Ad}_{T^{-1}}=\left(\operatorname{Ad}_{T}\right)^{-1}
$$

Example

- Motion is pure angular velocity of $2 \mathrm{rad} / \mathrm{s}$ around r. We have $r_{s}=(2,-1,0)^{\top}, r_{b}=(2,-1.4,0)^{\top}, \omega_{s}=(0,0,2)^{\top}$ and $\omega_{b}=(0,0,-2)^{\top}$. The position of the car frame is

$$
T_{s b}=\left[\begin{array}{cc}
R_{s b} & p_{s b} \\
0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
-1 & 0 & 0 & 4 \\
0 & 1 & 0 & 0.4 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Example

- Recall that v_{x} is the velocity of the point at the origin of frame x. If the origin is not in the body, assume the body to be infinitely large.
- $v_{b}=\omega_{b} \times\left(-r_{b}\right)=(2.8,4,0)$
- $v_{s}=\omega_{s} \times\left(-r_{s}\right)=(-2,-4,0)$
- What is v at a frame with axes parallel to x_{s}, y_{s}, z_{s} and centered at r ?
- You can verify that $\mathcal{V}_{s}=\left[\omega_{s}, v_{s}\right]=\left[\operatorname{Ad}_{T_{s b}}\right] \mathcal{V}_{b}$.

